Structural and Vibrational Properties of Corundum-type In$_2$O$_3$ Nanocrystals under Compression

J.A. Sans,1,* R. Vilaplana,2 D. Errandonea,1 V.P. Cuenca-Gotor,1 B. García-Domene,1 C. Popescu,4 F. J. Manjón,1 A. Singhal,5 S. N. Achary,5 D. Martínez-García,4 J. Pellicer-Porres,3 P. Rodríguez-Hernández,6 and A. Muñoz 6

1 Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team-Universitat Politècnica de València, 46022 València, Spain
2 Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain
3 Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
4 ALBA-CELLS, Cerdanyola, 08290 Barcelona, Spain
5 Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
6 Departamento de Física, Instituto de Materiales y Nanotecnología, MALTA Consolider Team, Universidad de La Laguna, 38205 Tenerife, Spain

E-mail: juasant2@upv.es

ABSTRACT

This work reports the structural and vibrational properties of nanocrystals of corundum-type In$_2$O$_3$ (rh-In$_2$O$_3$) at high pressures by using angle-dispersive x-ray diffraction and Raman scattering measurements up to 30 GPa. The equation of state and the pressure dependence of the Raman-active modes of the corundum phase in nanocrystals are in good agreement with previous studies on bulk material and compare nicely with theoretical simulations on bulk rh-In$_2$O$_3$. Nanocrystalline rh-In$_2$O$_3$ showed stability under compression at least up to 20 GPa, unlike bulk rh-In$_2$O$_3$ which gradually transforms to the orthorhombic Pbca (Rh$_2$O$_3$-III-type) structure above 12-14 GPa. The different stability range found in nanocrystalline and bulk In$_2$O$_3$ is discussed.

KEYWORDS: indium oxide, nanocrystals, corundum, X-ray diffraction, Raman spectroscopy, high-pressure, ab initio calculations

1. Introduction

Indium oxide (In$_2$O$_3$) is a sesquioxide whose stable phase at room conditions is the cubic bixbyite-type structure1 (space group (SG) Ia-3, N. 206, Z=16). This phase has been widely studied for optoelectronic applications due to its special properties as a transparent conducting oxide (TCO)2,3 The widespread use of cubic In$_2$O$_3$ (c-In$_2$O$_3$) in industrial processes covers the
fabrication of window layers in solar cells, light-emitting diodes, electrochromic windows, liquid-crystal displays, and gas sensors. However, the scarcity and high cost to obtain indium metal has led to the study of new systems, like Sn-doped In$_2$O$_3$ (ITO) and In$_{2-2x}$Zn$_x$Sn$_x$O$_3$ (x ≤ 0.4, also named ZITO or IZTO), in order to cut the price of its production process.

Rhombohedral corundum-type (SG R-3c, N. 167, Z = 6) In$_2$O$_3$ is also known to be a metastable phase at room conditions that can be obtained after high pressure (HP)-high temperature (HT) treatment, but also at room pressure. Modern calculations of pure and doped rhombohedral In$_2$O$_3$ (rh-In$_2$O$_3$), suggest that this phase could be even better TCO than c-In$_2$O$_3$; thus opening a new way to search for improved TCOs.

Given the above result, it is clear that the study of the HP phases (perhaps metastable at ambient conditions) of a technological important compound, like In$_2$O$_3$, is crucial for the advancement of science and technology. In this respect, three additional orthorhombic phases of In$_2$O$_3$ have been theoretically predicted and indeed obtained by application of HP: Rh$_2$O$_3$-III type (SG Pbca, N. 61, Z = 8), Rh$_2$O$_3$-II type (SG Pbcn, N. 60, Z = 4), and α-Gd$_2$S$_3$-type (SG Pnma, N. 62, Z = 4). Among them only the Pbca phase has been claimed to be metastable at ambient conditions, despite the Pbca phase is a phase reported at lower pressures than the Pbca phase.

Working with nanocrystals opens the door to enhanced properties of materials and adds the possibility of obtaining metastable HP crystalline and amorphous phases at room conditions with different properties from the original material. It is well known that most nanocrystals undergo a pressure-induced phase transition at larger pressures than in the bulk and that many nanocrystals undergo a pressure-induced amorphization; however, many questions remain open regarding the behaviour of nanocrystals at HP in comparison with bulk materials. In
particular, the different thermodynamic stability of crystalline phases in nanocrystals as compared to bulk material, and whether the compressibility of nanocrystals is different to that of bulk material or if the different compressibility comes from a different degree of hydrostaticity affecting micro and nanocrystal powders.

Even if several works have been devoted to the study of In$_2$O$_3$ nanocrystals at HP, most of them have focused on nanocrystals of cubic bixbyite-type In$_2$O$_3$, and only a small part have been devoted to study nanocrystals of rhombohedral corundum-type In$_2$O$_3$. In fact, a different stability range of the rhombohedral phase under compression has been observed depending on the sample size. Gurlo et al., who studied nanocrystals of rh-In$_2$O$_3$, suggested that this compound is stable at room temperature between room pressure and 30 GPa; however, two recent studies reported that bulk rh-In$_2$O$_3$ undergoes a transformation above 12-14 GPa in good agreement with theoretical simulations. The apparent lack of phase transition in nanocrystals up to 30 GPa suggests the existence of large kinetic barriers to explain their extended structural stability.

In this work we report a HP study of the structural and vibrational properties of nanocrystals of corundum-type In$_2$O$_3$ by means of angle-dispersive powder x-ray diffraction (XRD) and Raman scattering (RS) measurements up to 30 GPa. Both the equation of state and the pressure dependence of the Raman-active modes of the corundum phase in nanocrystals are reported, showing a nice agreement with previous studies on rh-In$_2$O$_3$ nanocrystals. These results have been compared with experimental and theoretical structural and lattice dynamics results on bulk rh-In$_2$O$_3$ offering an explanation to the previously apparent contradicting results observed between bulk and nanocrystalline rh-In$_2$O$_3$.
2. Methods

2.1. Experimental details

Rh-In$_2$O$_3$ nanoparticles were synthesized by thermal dehydration of InOOH nanoparticles previously prepared from a solvothermal reaction between indium nitrate and tetramethylammonium hydroxide.61 XRD measurements confirm that nanocrystalline powders are pure and have corundum-type structure with an hexagonal unit cell with lattice parameters $a=b=5.485$ Å and $c=14.530$ Å, which are in good agreement with reference JCPDS card 220336 ($a=b=5.487$ Å and $c=14.510$ Å). On the other hand, transmission electron microscopy (TEM) confirmed both the crystalline structure and purity and determined that nanocrystals have a rice-grain type morphology with an average length (width) of 20 (13) nm and a uniform distribution between 10 (6) and 30 (20) nm.61 Room-temperature experiments in rh-In$_2$O$_3$ nanocrystals were conducted up to 30 GPa in a membrane-type diamond anvil cell. In HP-XRD and HP-RS experiments, powder sample was loaded inside a 150 μm diameter hole drilled in an inconel gasket together with a mixture of methanol-ethanol-water (MEW) in a 16:3:1 proportion as a quasi-hydrostatic pressure-transmitting medium (PTM) as in a previous work,37 in order to compare results for bulk and nanocrystalline rh-In$_2$O$_3$ under the same conditions. Additionally, a second XRD experiment with Ar as PTM was done in order to prove if nanopowders could be affected by non-hydrostatic effects using MEW and to compare with previous results described in the literature.37 For pressure calibration in angle-dispersive powder XRD and RS measurements we introduced inside the pressure cavity Cu powder62 and ruby,63 respectively. In the XRD experiments we collected also two patterns, one in the region where the Cu peaks were strong and the other where there is no Cu signal. The first pattern was used to determine pressure and the second one to analyse the crystal structure of In$_2$O$_3$.
Angle-dispersive powder XRD measurements at different pressures were performed in the MSPD beamline at ALBA synchrotron facility. This beamline is equipped with Kirkpatrick-Baez mirrors to focus the monochromatic beam and a SX165 CCD detector with a diameter of 165 mm. We used a wavelength of 0.4246 Å and the sample-detector distance during the experiment was set to 240 mm. The 2-D diffraction images were integrated with FIT2D software. Lattice parameters of XRD patterns were obtained with Rietveld refinements performed using POWDERCELL and GSAS program packages. On the other hand, RS measurements at room temperature and different pressures were excited using the 632.8 nm HeNe laser (with a power below 10 mW) and collected in backscattering geometry with a Horiba Jobin Yvon LabRam HR UV spectrometer equipped with a thermoelectrically cooled multichannel CCD detector (resolution below 2 cm⁻¹).

2.2. Theoretical Calculations

Total-energy *ab initio* calculations were performed for bulk rh-In₂O₃ within the density functional theory (DFT) using the Vienna *Ab initio* Simulation Package (VASP) as described in Ref. 37 for bulk rh-In₂O₃. In particular, we have used the projector-augmented wave (PAW) scheme implemented in this package and the generalized gradient approximation (GGA) was used for the description of the exchange-correlation energy with the PBEsol prescription.

We have also performed lattice dynamics calculations of the phonon modes in bulk rh-In₂O₃ at the center of the BZ (Γ point) using the direct force constant approach (or supercell method) already described in Ref. 37. Our theoretical results provide both the frequencies of the normal modes and their polarization vectors and enable us to assign the Raman-active modes observed in nanocrystalline rh-In₂O₃ as previously done for bulk rh-In₂O₃.
3. Results

3.1. XRD measurements

Figure 1a shows a selection of the experimental angle-dispersive powder XRD patterns of rh-In$_2$O$_3$ at room temperature at different pressures up to 21 GPa obtained in the first experiment (using MEW mixture as PTM). Figure 1b shows similar results up to 29.8 GPa obtained in the second experiment (using Ar as PTM). All the XRD patterns can be indexed with the corundum-type structure. Under compression some of the peaks shift faster to higher angles than others due to the anisotropic compressibility of In$_2$O$_3$ which will be discussed in detail later. This phenomenon is illustrated in Figs. 1a and 1b by the (104) and (110) Bragg peaks which gradually merge under compression because the interplanar distance associated to the (104) peak decreases faster under compression than that corresponding to the (110) reflection. In the second experiment, in addition to the Bragg peaks of the sample, Bragg peaks of Ar are also detected. These peaks can be easily identified because, due to the large compressibility of Ar, they shift faster to higher angles under compression than the peaks corresponding to In$_2$O$_3$. The Ar peaks were used to confirm the pressure determined from Cu using the equation of state of Ar. The pressure determined from Ar agrees within 0.1 GPa with the pressure determined from Cu. The results of both XRD experiments indicate that the phase transition to the \textit{Pbca}-type phase observed in bulk rh-In$_2$O$_3$ above 12-14 GPa,\cite{36,37} is not observed in nanocrystals even at 29.8 GPa. We would like to comment here that beyond 20 GPa all the peaks assigned to corundum-type In$_2$O$_3$ can be also explained with the \textit{Pbca}-type structure. However, this structure has a peak at low angles, the (002) peak expected to be located around 3.2º, which is not present in the corundum-type structure. In our experiments, we did not observe this peak, which supports the stability of the corundum-type structure up to
29.8 GPa. This result is in agreement with the larger stability of the corundum phase measured by Gurlo et al. in nanocrystalline rh-In$_2$O$_3$ samples with particle size between 50 and 100 nm.49 XRD peaks in our first experiment show slight broadening with increasing pressure above 10 GPa which could be due to a slight loss of quasi-hydrostatic conditions of the PTM. The same broadening is observed in the second experiment but around 20 GPa. This is a consequence of the better quasi-hydrostatic conditions generated by Ar than by MEW above 10 GPa.74 In this regard, it is expected that small non-hydrostatic stresses do not influence the structural stability of relatively uncompressible compounds like sesquioxides.75

In this work, we have extracted the evolution of the structural parameters of nanocrystalline rh-In$_2$O$_3$ under compression by Rietveld refinement. In Figure 1, one can see the experimental diffraction pattern (black symbols), the Rietveld refinement performed (black line) and the residuals (red lines) showing a good fit to the experimental data. Figure 2 represents the experimental pressure dependence of the hexagonal unit-cell volume, lattice parameters a and c and the c/a ratio in nanocrystalline rh-In$_2$O$_3$. The experimental data of the unit-cell volume up to 29.8 GPa can be fitted with a third-order Birch-Murnaghan (BM) EOS,76,77 which yields $V_0=376.7(4)$ Å3, $B_0=169(6)$ GPa and $B_0’=6.2(9)$. These values are in good agreement with theoretical data of bulk material fitted up to 30 GPa ($V_0=383.3$ Å3, $B_0=169$ GPa and $B_0’=3.3$) and with previous experimental ($B_0=176$-180 GPa) and theoretical estimations in bulk material.37 Note that the value of the bulk modulus for rh-In$_2$O$_3$ nanocrystals is slightly smaller than that in bulk material (see Table I). In relation to this, it must be noted that a decrease of the bulk modulus in nanocrystals with respect to bulk material has been observed in a number of oxides, like TiO$_2$,78,79 ZrO$_2$,80,81 SnO$_2$,82 MgO,83 ZnO,84 and Al$_2$O$_3$.85
A deviation of the compressibility of nanocrystals above certain pressure has been found in other works. In particular, nanocrystals of anatase TiO$_2$ pressurized with a 4:1 methanol-ethanol mixture were found to undergo deviations of the compressibility of the a axis and unit-cell volume above 10-12 GPa which were attributed to the appearance of an intermediate local distortion (~ 2 Å) with TiO$_2$-II structure.86 On the other hand, a significantly lower bulk modulus (148±5 GPa) compared to theoretical calculations (169.4 GPa) has been recently observed in c-In$_2$O$_3$ nanocrystals with a high defect density under compression with a 4:1 methanol-ethanol mixture as PTM.60 In that work, authors claimed that the different bulk modulus of two nanocrystalline samples with similar sizes and morphologies were due to their different defect densities. Another possibility is that the change in compressibility observed above 8 GPa in In$_2$O$_3$ nanocrystals could be due to non-hydrostatic conditions as it was reasoned for nanocrystalline TiO$_2$ anatase.78 Note that nanocrystalline powder is more prone to non-hydrostatic conditions than bulk powder because the surface area of nanocrystalline grains tend to be more surrounded by other nanocrystalline grains than by the molecules of the PTM. On the other hand, the surface area of microcrystalline grains tend to be more surrounded by the molecules of the PTM than by other grains. In any case, it was demonstrated for nanocrystalline TiO$_2$ anatase that the EOS obtained prior to observation of non-hydrostatic conditions is in good agreement with the EOS obtained under truly hydrostatic conditions along the whole range of the experiments.78 Since measurements in nanocrystalline rh-In$_2$O$_3$ using MEW or Ar show similar results (see Fig. 2), we are confident of the bulk modulus obtained for nanocrystals with an average grain size around 20 nm up to 30 GPa. It must be stressed that the bulk modulus we have obtained for rh-In$_2$O$_3$ nanocrystals in the present study is much smaller than that reported (305 GPa) in a previous work.58 In fact, Ref. 58 also reports an overestimation of the bulk modulus in rh-In$_2$O$_3$ as was also confirmed in our previous work.37 The
main reason for the overestimation of the bulk modulus in Ref. 58 is the lack of structural data for
the corundum-type phase at low pressures and the inherent uncertainty caused by the extrapolation
of the bulk modulus from data above 20 GPa.

On the other hand, both a and c lattice parameters show a rather similar pressure
dependence in both bulk material and nanocrystals, also observed in the c/a ratio (inset of figure
2b). The lattice parameters of rh-In$_2$O$_3$ nanocrystals show an almost linear variation with pressure.
Both a and c parameters have been fitted to a modified Murnaghan’s equation with free parameters
a_0, B_0 and B'_0.

\[
a = a_0 \left(1 + \frac{B'_0}{B_0} P \right)^{-\frac{1}{3B_0}}, \quad \text{Eq. (1)}
\]

The results of these fits are shown in Table II. The axial compressibilities of the a- and c-axis
defined as $\kappa_x = -\frac{1}{x} \frac{\partial x}{\partial P}$ (where $x = a, c$) can be obtained as $\kappa_x = \frac{1}{3B_0}$ with the B_0 values obtained
with the Murnagahan EOS fit for the lattice parameters. The experimental compressibility of the a
(c) axis is $1.4 \ (3.0) \cdot 10^{-3}$ GPa$^{-1}$ This result indicates that the c axis is more than two times more
compressible than the a axis as it occurs in bulk rh-In$_2$O$_3$.\(^{37}\) Consequently, we can conclude that
the major contribution to the compressibility of nanocrystalline rh-In$_2$O$_3$ comes from the larger
compressibility of the c axis than that of the a axis. These behaviours are in agreement with
experiments and theoretical calculations already published for bulk rh-In$_2$O$_3$\(^{37}\) and theoretical
calculations (Table II). Similarly, the c/a ratio in bulk and nanocrystalline rh-In$_2$O$_3$ shows the same
tendency in good agreement with our theoretical calculations; however, this behaviour is different
to that reported in corundum-type Al$_2$O$_3$, V$_2$O$_3$, Cr$_2$O$_3$, and Fe$_2$O$_3$\(^{87}\) as already discussed in our
previous work regarding bulk rh-In$_2$O$_3$.\(^{37}\)
3.2. Raman scattering

The corundum structure of In$_2$O$_3$ has 7 Raman-active modes whose frequencies at ambient pressure have been already reported in bulk and nanocrystals.22,30,37,39,40 Figure 3 shows selected Raman spectra of nanocrystalline rh-In$_2$O$_3$ at different pressures up to 29.3 GPa using MEW as PTM. As observed, the RS spectrum of nanocrystals is dominated by the A$_{1g}$ mode with lowest frequency (near 163 cm$^{-1}$ at room pressure). Table III summarizes the Raman-active modes of our nanocrystals at ambient conditions compared to those found in bulk material. All Raman frequencies in nanocrystals differ by less than 10 cm$^{-1}$ from those of the bulk material. In order to analyse the influence of the morphology of the nanocrystals in the Raman frequencies, different nanocrystalline geometries can also be compared. Hierarchical nanocrystals orderly dendrite-like aggregates39 and 3D rh-In$_2$O$_3$ nanoflowers40 were characterized by XRD and Raman spectroscopy at room conditions. In the former geometry, the Raman spectrum showed peaks at 164, 222, 273, 385, 504, and 595 cm$^{-1}$ whereas in the latter, the Raman modes appeared at 163, 219, 384, 501 and 590 cm$^{-1}$. Regarding the XRD patterns of these samples at room conditions, both studies reported a good correlation with lattice planes obtained from the JCPDS database. It can be concluded that the difference in Raman frequency between the different geometries of rh-In$_2$O$_3$ nanocrystals is less than 5 cm$^{-1}$, which reveals the low influence of the morphology in the vibrational properties.

As regards the pressure dependence of the Raman-active modes, the A$_{1g}$ mode of the corundum phase is observed up to 24.8 GPa; i.e., almost up to the same pressure as in bulk rh-In$_2$O$_3$ (26 GPa).37 However, a slight change in the RS spectrum is observed above 21.5 GPa (more clear in the spectra at 24.8 and 29.3 GPa) with the appearance of new peaks which are coincident with the decrease of the intensity of the A$_{1g}$ peak of the corundum phase. The new modes can be reasonably attributed to \textit{Pbca}-type In$_2$O$_3$ (with Rh$_2$O$_3$-III structure) since the most intense mode of
this phase has a slightly larger frequency (near 183 cm$^{-1}$) than the A_{1g} mode of the corundum phase.36,37 In this way, all RS modes of the sample at 29.3 GPa are attributed to the orthorhombic $Pbca$ phase. Finally, in the downstroke process, the rhombohedral phase was recovered below 8 GPa (see top RS spectrum in Fig. 4); i.e, at a similar pressure as in bulk material.37 Therefore, the hysteresis in rh-In$_2$O$_3$ nanocrystals is larger than in bulk material.

It is noteworthy that a HP phase transition from the corundum type phase to the $Pbca$ phase is observed above 20 GPa in RS measurements, but not in XRD measurements. The explanation for this discrepancy could come from different aspects. First, it is well known that RS measurements are more sensitive to local structural changes than XRD measurements and HP phase transitions are observed at lower pressures in RS measurements than in XRD measurements.88 In our nanocrystals, this fact could lead to the observation of the HP transition beyond 25 GPa by XRD measurements. Second, the nanometric size of samples, leading to broader XRD peaks than those in bulk material, and the fact that many peaks of the rhombohedral $R-3c$ and orthorhombic $Pbca$ phases are coincident in the range between 20 and 30 GPa, provides additional difficulty to the observation of the HP phase transition even beyond 25 GPa since the small peak near 3.2º could be smeared out in nanocrystals. Third, it has been recently shown that HP transformations in nanocrystals can be affected by internal defects60 or even surface effects,89,90 which could eventually depend on the PTM. This means that the HP phase transition measured in RS measurements using MEW could be retarded when using Ar, which will explain the lack of phase transition even up to 30 GPa in this work and on that of Gurlo et al.49 Supporting this assumption, we already observed a similar behaviour on bulk c-In$_2$O$_3$ under compression.36 The transition pressure from cubic-to-orthorhombic phase appeared at 35 GPa using the most hydrostatic PTM (helium), whereas using MEW was observed at slightly lower pressures (31
Finally, some transitions not observed by XRD at ambient temperature can be induced by local laser heating in small bandgap materials or in samples with dark defects which are precursors of the HP phase transition.91 The lack of radiation damage by laser heating in rh-In\textsubscript{2}O\textsubscript{3} nanocrystals is supposed by the large bandgap energy of this compound (above 3.75 eV at ambient pressure).92 In fact, the energy bandgap of rh-In\textsubscript{2}O\textsubscript{3} under compression remains in the UV region up to around 20 GPa. The origin of this controversy could be unveiled by new single crystal XRD experiments well above 20 GPa in rh-In\textsubscript{2}O\textsubscript{3} nanocrystals using a nanosize beam93 and using argon, neon or helium as PTM.

Figure 4 shows the pressure dependence of the experimental and theoretical frequencies of the first-order Raman-active modes of rh-In\textsubscript{2}O\textsubscript{3} nanocrystals. All Raman-active mode frequencies increase with pressure in a monotonous way up to the maximum pressure attained in the experiment in good agreement with previously reported experimental and theoretical Raman modes for bulk rh-In\textsubscript{2}O\textsubscript{3}.37 Table III summarizes the zero-pressure experimental and theoretical frequencies, pressure coefficients and the Grüneisen parameters of the Raman active modes of rh-In\textsubscript{2}O\textsubscript{3} nanocrystals. Above 20 GPa new peaks have been attributed to the $Pbca$ phase due to the similarity to previously reported RS spectrum and pressure dependences of the observed peaks. It must also be considered that different rh-In\textsubscript{2}O\textsubscript{3} nanocrystals with different morphologies other than rice-grain type have been grown in the last decade.39,40 A priori, we expect that all nanoparticles with similar size behave in a similar way.79 In any case, future HP experiments using rh-In\textsubscript{2}O\textsubscript{3} nanocrystals with different morphologies will help to understand the HP behaviour of rh-In\textsubscript{2}O\textsubscript{3} nanocrystals.

Finally, we would like to stress that the higher sensitivity of rh-In\textsubscript{2}O\textsubscript{3} to compression than its isostructural compounds Al\textsubscript{2}O\textsubscript{3}, Ga\textsubscript{2}O\textsubscript{3}, and Cr\textsubscript{2}O\textsubscript{3} could be relevant for pressure calibration.
As commented in our previous work on bulk rh-In$_2$O$_3$,37 the most usual method for pressure calibration in the laboratory relies on spectroscopic techniques in ruby, whose sensitivity is related to the bulk modulus of this material. Therefore, the existence of compounds with a smaller bulk modulus than ruby and with the possibility to host Cr$^{3+}$ cations opens a new path in the search for more accurate pressure sensors. In this context, the low value of the bulk modulus of rh-In$_2$O$_3$ and the stability of the rh-In$_2$O$_3$ nanocrystals at least up to 20 GPa (8 GPa more than bulk material at least) at room temperature37 suggest that Cr$^{3+}$-doped rh-In$_2$O$_3$ nanocrystals could be a possible candidate to substitute ruby at least below 20 GPa. It is expected that the higher sensitivity of the host material (rh-In$_2$O$_3$) would produce an increase of the pressure coefficient of the luminescence lines of Cr$^{3+}$ of about 30\% with respect to ruby and consequently, a more accurate determination of pressure. However, for that purpose metastable corundum-type Cr$^{3+}$-doped In$_2$O$_3$ nanocrystals must be prepared in an easy way as a single crystalline phase and its photoluminescence under pressure need to be studied for different concentrations of Cr$^{3+}$ doping.

\textbf{4. Conclusions}

We have presented the structural and vibrational behaviour of rh-In$_2$O$_3$ nanocrystals up to 30 GPa and compared them to those of the bulk material and theoretical simulations. Angle-dispersive powder XRD measurements in rh-In$_2$O$_3$ nanocrystals have allowed us to obtain a more accurate experimental equation of state for this compound in good agreement with theoretical calculations and experiments for bulk rh-In$_2$O$_3$. Also similar pressure coefficients for the Raman-active modes have been observed in nanocrystals, thus confirming the similar bulk modulus of our nanocrystals and bulk material.
Our RS measurements confirm that rh-In$_2$O$_3$ nanocrystals undergo a phase transition towards the $Pbca$ phase at much higher pressures (above 20 GPa) than in bulk material. However, such a phase transition has not been confirmed with our powder XRD measurements even up to 30 GPa. The origin of this discrepancy has been circumscribed to three possible effects, proposing a new experiment to solve it. On the downstroke, the original corundum-type phase was observed in nanocrystals below 8 GPa, as it occurs in bulk material.

Finally, it must be stressed the difference in the structural stability established between nanocrystalline and bulk rh-In$_2$O$_3$ but keeping a similar compressibility, which extends the possible applications of this compound at larger pressure ranges. Those effects are important in forthcoming studies of the possibility to use Cr$^{3+}$-doped rh-In$_2$O$_3$ nanocrystals at room temperature as a more sensitive pressure sensor than ruby at least up to 20 GPa.
Figure 1. Selected X-ray diffraction patterns of nanocrystalline rh-In$_2$O$_3$ at several pressures using MEW (a) and Ar (b) as PTM. Diffraction patterns have been shifted vertically for clarity. Different diffraction peaks are assigned in the graph to rh-In$_2$O$_3$ (R-3c), Ar and Cu phases. Refinements and residuals of the fit to these phases are also shown.
Figure 2. Pressure dependence of the unit-cell parameters (a) and volume (b) in nanocrystalline rh-In$_2$O$_3$ for our first experiment (close symbols) and the second experiment (open symbols). The inset shows the pressure dependence of the c/a ratio in nanocrystalline rh-In$_2$O$_3$. Red dashed lines correspond to theoretical data of bulk rh-In$_2$O$_3$.
Figure 3. Selected RS spectra of nanocrystalline rh-In$_2$O$_3$ at different pressures on upstroke up to 29.3 GPa. In the RS spectrum at 0.2 GPa, first-order Raman modes of rh-In$_2$O$_3$ are indicated by arrows, while second-order Raman modes are denoted with asterisks. Above 20 GPa, arrows in the RS spectra indicate the new peaks assigned to the $Pbca$ phase. The top RS spectrum at 2.3 GPa shows the reversibility of the sample to the corundum phase on downstroke.
Figure 4. Pressure dependence of the Raman-active mode frequencies in nanocrystalline rh-In$_2$O$_3$ (violet circles) and Pbca-type In$_2$O$_3$ (orange squares). Full (empty) symbols correspond to the upstroke (downstroke) process. Solid lines correspond to \textit{ab initio} simulated Raman-active modes of bulk rh-In$_2$O$_3$. The symmetry of the Raman-active modes of rh-In$_2$O$_3$ is indicated.
Table I. Comparison of theoretical and experimental zero pressure unit-cell volume per formula unit, bulk modulus, and its pressure derivative for bulk and nanocrystalline rh-In₂O₃.

<table>
<thead>
<tr>
<th>Phase</th>
<th>(V_0 (\text{Å}^3))</th>
<th>(B_0) (GPa)</th>
<th>(B'_0)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>nano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-3c</td>
<td>62.78(1)</td>
<td>169(6)</td>
<td>6.2(9)</td>
<td>Exp. (XRD)(^a)</td>
</tr>
<tr>
<td>R-3c</td>
<td>61.49</td>
<td>305.5</td>
<td>2.9</td>
<td>Exp. (XRD)(^b)</td>
</tr>
<tr>
<td>bulk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-3c</td>
<td>62.86(4)</td>
<td>180(7)</td>
<td>3.2(1.2)</td>
<td>Exp. (XRD)(^c)</td>
</tr>
<tr>
<td>R-3c</td>
<td>63.88</td>
<td>167</td>
<td>3.3</td>
<td>Theo. (GGA-PBEsol)(^d)</td>
</tr>
</tbody>
</table>

\(^a\) This work
\(^b\) Ref. 58
\(^c\) Ref. 37
\(^d\) Data up to 30 GPa.
Table II. Lattice parameters and their bulk modulus and pressure derivative of bulk modulus at room pressure in nanocrystalline rh-In\textsubscript{2}O\textsubscript{3} (top) as compared to experimental and theoretical parameters in bulk Exp. rh-In\textsubscript{2}O\textsubscript{3} (bottom)

<table>
<thead>
<tr>
<th>(a_0) (Å)</th>
<th>(B_{0a}) (GPa)</th>
<th>(B_a')</th>
<th>(c_0) (Å)</th>
<th>(B_{0c}) (GPa)</th>
<th>(B_c')</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4831(8)</td>
<td>233(16)</td>
<td>11.8</td>
<td>14.461(8)</td>
<td>109(3)</td>
<td>0.48</td>
<td>Our Exp. (XRD)</td>
</tr>
<tr>
<td>5.479(2)</td>
<td>220(30)</td>
<td>11.8</td>
<td>14.511(5)</td>
<td>121(7)</td>
<td>0.48</td>
<td>Exp. (XRD)</td>
</tr>
<tr>
<td>5.520(1)</td>
<td>216(3)</td>
<td>11.8(4)</td>
<td>14.552(1)</td>
<td>106.0(9)</td>
<td>0.48(11)</td>
<td>Theo. (GGA-PBEsol)</td>
</tr>
</tbody>
</table>
Table III. Room-pressure experimental frequencies, pressure coefficients and Grüneisen parameters of the Raman active modes of bulk and nanocrystalline rh-In$_2$O$_3$.

<table>
<thead>
<tr>
<th>Mode (Sym)</th>
<th>ω_0 (cm$^{-1}$)</th>
<th>$\frac{\partial \omega}{\partial P}$ (cm$^{-1}$ GPa$^{-1}$)</th>
<th>$\frac{\partial^2 \omega}{\partial P^2}$ (cm$^{-1}$ GPa$^{-2}$)</th>
<th>γ^a</th>
<th>ω_0 (cm$^{-1}$)</th>
<th>$\frac{\partial \omega}{\partial P}$ (cm$^{-1}$ GPa$^{-1}$)</th>
<th>$\frac{\partial^2 \omega}{\partial P^2}$ (cm$^{-1}$ GPa$^{-2}$)</th>
<th>γ</th>
<th>ω_0 (cm$^{-1}$)</th>
<th>$\frac{\partial \omega}{\partial P}$ (cm$^{-1}$ GPa$^{-1}$)</th>
<th>γ^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>A$_{1g}$</td>
<td>156(1)</td>
<td>0.65 (3)</td>
<td>-0.012 (2)</td>
<td>0.66</td>
<td>162.3 (2)</td>
<td>0.85 (4)</td>
<td>-0.015 (1)</td>
<td>0.93</td>
<td>163.2(2)</td>
<td>0.590(14)</td>
<td>0.61</td>
</tr>
<tr>
<td>E$_g$</td>
<td>169(1)</td>
<td>0.73 (3)</td>
<td>-0.010 (2)</td>
<td>0.68</td>
<td>177.1 (2)</td>
<td>1.01 (6)</td>
<td>-0.022 (3)</td>
<td>1.01</td>
<td>181.3(5)</td>
<td>0.54(4)</td>
<td>0.50</td>
</tr>
<tr>
<td>E$_g$</td>
<td>214(1)</td>
<td>1.54 (3)</td>
<td>-0.023 (2)</td>
<td>1.14</td>
<td>218.1 (3)</td>
<td>1.85 (8)</td>
<td>-0.039 (5)</td>
<td>1.50</td>
<td>223.9(5)</td>
<td>1.30(3)</td>
<td>0.97</td>
</tr>
<tr>
<td>E$_g$</td>
<td>265(1)</td>
<td>1.11 (6)</td>
<td>-0.005 (5)</td>
<td>0.66</td>
<td>270.7 (4)</td>
<td>1.33 (13)</td>
<td>-0.011 (7)</td>
<td>0.87</td>
<td>270(1)</td>
<td>1.49(11)</td>
<td>0.93</td>
</tr>
<tr>
<td>E$_g$</td>
<td>373(2)</td>
<td>4.91 (5)</td>
<td>-0.040 (4)</td>
<td>2.08</td>
<td>383.8 (6)</td>
<td>4.69 (16)</td>
<td>-0.022 (8)</td>
<td>2.16</td>
<td>388.3(9)</td>
<td>4.61(6)</td>
<td>2.0</td>
</tr>
<tr>
<td>A$_{1g}$</td>
<td>486(2)</td>
<td>4.46 (6)</td>
<td>-0.033 (4)</td>
<td>1.45</td>
<td>501.9 (9)</td>
<td>3.92 (25)</td>
<td>0.005 (14)</td>
<td>1.38</td>
<td>502.5(6)</td>
<td>4.75(5)</td>
<td>1.6</td>
</tr>
<tr>
<td>E$_g$</td>
<td>569(2)</td>
<td>6.14 (5)</td>
<td>-0.059 (4)</td>
<td>1.70</td>
<td>590.3 (6)</td>
<td>5.95 (18)</td>
<td>-0.058 (12)</td>
<td>1.78</td>
<td>599(1)</td>
<td>5.42(11)</td>
<td>1.53</td>
</tr>
</tbody>
</table>

a Theoretical B_0= 158 GPa used for calculating the Grüneisen parameter.

b From ref. 37 (experimental B_0= 177 GPa used for calculating the Grüneisen parameter).

c Experimental B_0= 169 GPa used for calculating the Grüneisen parameter.
Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Acknowledgments

This work is supported by the Spanish MICINN projects MAT2016-75586-C4-1/2/4-P and MAT2015-71070-REDC. A.M. and P.R-H acknowledge computing time provided by Red Española de Supercomputación (RES) and MALTA-Cluster. J.A.S. acknowledges financial support through the Ramon y Cajal fellowship.

References

1 Marezio M 1966 Refinement of the Crystal Structure of In2O3 at two Wavelengths Acta Crystallogr. 20 723-728.

9 Lee B H et al 1997 Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application Thin Solid Films 302 25-30

10 Hsu S F et al 2005 Highly efficient top-emitting white organic electroluminescent devices Appl. Phys. Lett. 86 253508

12 X. Lai et al 2010 Ordered Arrays of Bead-Chain-like In2O3 Nanorods and Their Enhanced Sensing Performance for Formaldehyde Chemistry of Materials 22 3033-3042
13 Rauf I A 1993 Low Resistivity and High Mobility Tin-Doped Indium Oxide Films Mater. Lett. 18 123–127

14 Palmer G B et al 1997 Conductivity and Transparency of ZnO/SnO2-Cosubstituted In2O3 Chem. Mater. 9 3121–3126.

15 Hoel C A et al 2010 High-Pressure Synthesis and Local Structure of Corundum-Type In2−2xZnxSnxO3 (x ≤ 0.7) J. Am. Chem. Soc. 132 16479–16487.

16 Shannon R D 1966 New High Pressure Phases Having The Corundum Structure Solid State Commun. 4 629-630

17 Nordlund Christensen A et al 1967 Hydrothermal Investigation of the Systems In2O3·H2O·Na2O and In2O3·D2O·Na2O. The Crystal Structure of Rhombohedral In2O3 and of In(OH)3 Act. Chem. Scan. 21 1046-1056

19 Atou T et al 1990 Shock-Induced Phase Transition of M2O3 (M = SC, Y, Sm, Gd, and In)-Type Compounds J. Solid State Chem. 89 378-384

20 Gurlo A et al 2003 Polycrystalline Well-Shaped Blocks of Indium Oxide Obtained by the Sol-Gel Method and their Gas-Sensing Properties Chemistry of Materials 15 4377-4383

21 Gurlo A et al 2003 Corundum-type indium (III) oxide: formation under ambient conditions in Fe2O3–In2O3 system Inorg. Chem. Comm. 6 569-572

22 Yu D B et al 2003 Metastable Hexagonal In2O3 Nanofibers Templated from InOOH Nanofibers under Ambient Pressure Adv. Funct. Mater. 13 497-501

24 Epifani M et al 2004 Ambient Pressure Synthesis of Corundum-Type In$_2$O$_3$ J. Am. Chem. Soc. 126 4078-4079

25 Yu D B et al 2004 Synthesis of metastable hexagonal In$_2$O$_3$ nanocrystals by a precursor-dehydration route under ambient pressure J. Solid State Chem. 177 1230-1234

26 Sorescu M et al 2004 Nanocrystalline rhombohedral In$_2$O$_3$ synthesized by hydrothermal and postannealing pathways J. Mat. Sci. 39 675-677

27 Lee C H et al 2006 Ambient Pressure Syntheses of Size-Controlled Corundum-type In$_2$O$_3$ Nanocubes J. Am. Chem. Soc. 128 9326-9327

28 Chen C et al 2006 Ultrathin corundum-type In$_2$O$_3$ nanotubes derived from orthorhombic InOOH: synthesis and formation mechanism Chem. Commun. 2006 4632-4634

29 Xu J Q et al 2007 A new route for preparing corundum-type In$_2$O$_3$ nanorods used as gassensing materials Nanotech. 18 115615

32 Gurlo A et al 2008 Metastability of Corundum-Type In$_2$O$_3$ Chem. Eur. J. 14 3306-3310

33 Saitoh H et al 2008 Solid-phase grain growth of In$_2$O$_3$ at high pressures and temperatures J. Cryst. Growth 310 2295-2297

35 Farvid S S et al 2010 Phase-Controlled Synthesis of Colloidal In$_2$O$_3$ Nanocrystals via Size-Structure Correlation Chem. Mater. 22 9-11

37 García-Domene B et al 2015 Synthesis and High-Pressure Study of Corundum-Type In$_2$O$_3$ J. Phys. Chem. C 119 29076-29087

38 Bekheet M F et al 2015 Kinetic control in the synthesis of metastable polymorphs: Bixbyite-to-Rh$_2$O$_3$(II)-to-corundum transition in In$_2$O$_3$ J. Solid State Chem. 229 278-286

39 Wu M et al 2015 Hydrothermal synthesis of porous rh-In$_2$O$_3$ nanostructures with visible-light-driven photocatalytic degradation of tetracycline CrystEngComm. 17 2336-2345

40 Jiang H et al 2013 Hierarchical rh-In$_2$O$_3$ crystals derived from InOOH counterparts and their sensitivity to ammonia gas CrystEngComm. 15 7003-7009

44 de Boer T et al 2016 Band gap and electronic structure of cubic, rhombohedral, and orthorhombic In$_2$O$_3$ polymorphs: Experiment and theory Phys. Rev. B 93 155205

45 Brazhkin V 2006 Metastable phases, phase transformations, and phase diagrams in physics and chemistry Physic-Uspekhi 49 719-724

47 Gurlo A 2010 Structural Stability of High-Pressure Polymorphs in In$_2$O$_3$ Nanocrystals: Evidence of Stress-Induced Transition? *Angew. Chem., Int. Ed.* **49** 5610–5612

48 Yusa H *et al* 2008 Rh$_2$O$_3$(II)-type structures in Ga$_2$O$_3$ and In$_2$O$_3$ under high pressure: Experiment and theory *Phys. Rev. B* **77** 064107

51 Bekheet M F *et al* 2013 In situ high pressure high temperature experiments in multi-anvil assemblies with bixbyite-type In$_2$O$_3$ and synthesis of corundum-type and orthorhombic In$_2$O$_3$ polymorphs *High Press. Res.* **33**, 697-711

52 Yusa H *et al* 2008 α-Gd$_2$S$_3$-type structure in In$_2$O$_3$: Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide *Phys. Rev. B* **78** 092107

53 Cherian R *et al* 2010 Size dependence of the bulk modulus of semiconductor nanocrystals from first-principles calculations *Phys. Rev. B* **82** 235321

58 Qi J et al 2011 Compression behavior and phase transition of cubic In$_2$O$_3$ nanocrystals J. Appl. Phys. 109 063520
59 García-Domene B et al 2012 High-pressure lattice dynamical study of bulk and nanocrystalline In$_2$O$_3$ J. Appl. Phys. 112 123511
60 Tang S X et al 2015 Effects of microstructures on the compression behavior and phase transition routine of In$_2$O$_3$ nanocubes under high pressures RSC Adv. 5 85105-85110
61 Singhal A et al 2016 Corundum type indium oxide nanostructures: ambient pressure synthesis from InOOH, and optical and photocatalytic properties RSC Adv. 6 108393-108403
63 Syassen K 2008 Ruby under pressure High Press. Res. 28 75-126
64 Knapp M et al 2011 Technical concept of the materials science beamline at ALBA Z. Kristallogr. Proc. 1, 137-142
66 Kraus W and Nolze G 1996 POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns J. Appl. Crystallogr. 29 301-303
67 Toby B H 2001 EXPGUI, a graphical user interface for GSAS J. Appl. Crystallogr. 34 210-213

74 Errandonea D et al 2005 Pressure-induced $\alpha \rightarrow \omega$ transition in titanium metal: a systematic study of the effects of uniaxial stress Physica B 355 116–125

76 Murnaghan F D 1944 THE COMPRESSIBILITY OF MEDIA UNDER EXTREME PRESSURES Proc. Natl. Acad. Sci. 30 244-247

77 Birch F 1944 Finite Elastic Strain of Cubic Crystals Phys. Rev. 71 809-824

81 Ohtaka O et al 2002 Phase Relations and EOS of ZrO$_2$ and HfO$_2$ Under High-temperature and High-pressure High Press. Res. 22 221-226

82 He Y et al 2005 High-pressure behavior of SnO$_2$ nanocrystals Phys. Rev. B 72 212102

83 Marquardt H et al 2011 Elastic properties of MgO nanocrystals and grain boundaries at high pressures by Brillouin scattering Phys. Rev. B 84 064131
84 Jiang J Z et al 2000 Structural stability in nanocrystalline ZnO *Europhys. Lett.* **50** 48–53

85 Chen B et al 2002 Particle-size effect on the compressibility of nanocrystalline alumina *Phys. Rev. B* **66** 144101

87 Sato Y and Akimoto S 1979 Hydrostatic compression of four corundumtype compounds: α-Al$_2$O$_3$, V$_2$O$_3$, Cr$_2$O$_3$, and α-Fe$_2$O$_3$ *J. Appl. Phys.* **50** 5285-5291

92 Lee C H et al 2006 Ambient Pressure Syntheses of Size-Controlled Corundum-type In$_2$O$_3$ Nanocubes *J. Am. Chem. Soc.* **128** 9326-9327

93 Yang W et al 2013 Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure *Nature Commun.* **4** 1680