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Abstract

Most open systems are subjected to dissipative and/or decoherence processes. The latter is a process by which
systems lose information that is transferred into the environment to which they are coupled, which can be
appreciated in the time evolution of the non-diagonal elements of the density matrix that describes a quantum
system (coherences), since they decay as time goes by. As for the dissipative processes, their effect can be seen
in the time evolution of the diagonal elements of the density matrix (populations). That is why, in order to
verify these effects in a series of open systems, their master equations will be determined. Afterwards, they
will be solved, which will enable us to analyse and discuss the evolution of coherences and populations with
time.
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Decoherence and Entanglement in Quantum Physics

1 Introduction

Muchos sistemas abiertos se hallan sometidos a procesos disipativos y/o de decoherencia. Estos últimos
procesos inducen pérdida de información que pasa al baño al que está acoplado el sistema, lo que queda
plasmado en la evolución temporal de los elementos no diagonales de la matriz densidad que describe el
sistema (coherencias), ya que decaen con el paso del tiempo. En lo referente a los procesos disipativos, su
efecto queda patente en la evolución de los elementos diagonales de la matriz densidad (poblaciones). Es
por ello que, con el fin de verificar estos procesos en una serie de sistemas abiertos, determinaremos sus
respectivas ecuaciones maestras. A continuación se procederá a resolverlas, con lo que se podrá analizar y
discutir la evolución temporal de las coherencias y poblaciones.

Quantum Mechanics is a very succesful field in Physics. Not only does it explain microscopic phenomena,
but also macroscopic ones, just as recent studies have proved. For instance, a cryogenic version of the Weber
bar -a gravity wave detector- must be treated as a quantum Harmonic Oscillator despite the fact that it
weighs about a ton.

In Quantum mechanics, Physical systems are described by wavefunctions that evolve according to Schrödinger’s
equation. But it must be pointed out that this equation only applies for closed systems. This implies they
go under a unitary evolution, i.e., the closed system will evolve as a pure state. Nevertheless, most Physical
systems are open, i.e., they are coupled to the environment, which leads to a loss of coherence (or information)
which is transfered to the latter. This is the so called decoherence process. Consequently, decoherence can
be summarised as a non-unitary dynamics of the system due to its coupling to the environment. By coupling
to the environment we mean either a measuring device that is performing measurements over the system, or
some kind of external field in which the system is immersed. In either of those cases, both, the environment
(i.e.:measuring device or external field) and the system, S, itself must be treated Quantum mechanically and
as a whole.

This also includes dissipative contributions, which are processes by which the populations of the quantum
states (the density matrix of the system’s diagonal elements) are modified by the interaction with the envir-
onment, and dephasing ones. Dephasing is a process of randomization of the relative phases of the quantum
states. Both of these effects are caused by the entanglement of the system with the degrees of freedom of the
environment, which leads to the non-unitary dynamics that have been mentioned above.

Now, decoherence will be explained mathematically. Let as assume we have a quantum detector that can
be in either of these two states: {|da〉 , |db〉}, performing measurements over a two level system that can be
in either of these others: {|a〉 , |b〉}. Given an initial state of the detector, let us say |db〉, if the system is in
|a〉, then the detector will switch to |da〉, while it will remain unperturbed in the case the system is in |b〉:

|a〉 |db〉 → |a〉 |da〉 |b〉 |db〉 → |b〉 |db〉 . (1)

Nevertheless, was the system to be in a superposition state: |ψinitial〉 = α |a〉+ β |b〉 then, we would get the
so called correlated state after performing a measurement over it:

|ψc〉 ≡ |ψinitial〉 |db〉 → α |a〉 |da〉+ β |b〉 |db〉 , (2)

where we have assumed the detector to be initially in |db〉. This state implies that if the detector measures
|da〉, then the state of the system will be: |a〉. While was it to measure |db〉, then the state of the system would
be: |b〉. However, this correlated state is unsatisfactory for describing a complete measurement. The reason
is that, in reality, despite not knowing the outcome of a measurement, we do know the possible alternatives,
and we can safely act as though only one of those has ocurred. The entire system can no longer be described
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separately, i.e.: H = Hsystem+Hdetector, where H, Hsystem and Hdetector are the Hamiltonians corresponding
to the total system, the detector and the system S, respectively.

As we are dealing with an open system, was the initial state of S to be a pure state, it would not evolve
ramaining a pure state, but a mixed one. That is why the state of the system can no longer be described
by a wavefunction but a density matrix. Consequently, that of the whole system will not only include the
dynamics of the detector and the system separately, but also some mixed terms:

ρc = |ψc〉 〈ψc| = (α |a〉 |da〉+ β |b〉 |db〉)(α∗ 〈a| 〈da|+ β∗ 〈b| 〈db|) =

=|α|2 |a〉 〈a| |da〉 〈da|+ |β|2 |b〉 〈b| |db〉 〈db|+ αβ∗ |a〉 〈b| |da〉 〈db|+ α∗β |b〉 〈a| |db〉 〈da| . (3)

However, Von Neumann postulated that in addition to the unitary evolution above mentioned, there should
be a non-unitary reduction of the state vector that would take the pure correlated state vector |ψc〉 into an
appropriate mixture by getting rid off the off-diagonal elements, which express purely quantum correlations
(entanglement). This way, we get the so called reduced density matrix:

ρr = |ψc〉 〈ψc| = (α |a〉 |da〉+ β |b〉 |db〉)(α∗ 〈a| 〈da|+ β∗ 〈b| 〈db|), (4)

This one allows us to describe systems with the classical probabilities: |α|2 and |β|2.

What’s more, in the quantum case, ρc can be written differently according to the chosen basis. Let us

take, as an example, the basis:
{
|c〉 ≡ 1√

2
(|a〉 + |b〉), |d〉 ≡ 1√

2
(|a〉 − |b〉)

}
and the values: α = −β = 1√

2
.

Consequently:
{
|a〉 ≡ 1√

2
(|c〉+ |d〉), |b〉 ≡ 1√

2
(|c〉 − |d〉)

}
, and so |ψc〉 can be rewritten as:

|ψc〉 ≡ |ψinitial〉 |db〉 = α |a〉 |da〉+ β |b〉 |db〉 =
1√
2

[ 1√
2

(|c〉+ |d〉) |da〉 −
1√
2

(|c〉 − |d〉) |db〉
]

≡ 1√
2

(|c〉 |dc〉 − |d〉 |dd〉), (5)

where we have set: |dc〉 = 1√
2
(|da〉+ |db〉) and |dd〉 = 1√

2
(|da〉 − |db〉). With the result in Eq. (5), ρc can be

written as:

ρc = |ψc〉 〈ψc| =
1

2

[
|c〉 〈c| |dc〉 〈dc|+ |d〉 〈d| |dd〉 〈dd|+ |c〉 〈d| |dc〉 〈dd|+ |d〉 〈c| |dd〉 〈dc|

]
. (6)

If we just take the diagonal part:

(ρc)diag =
1

2

[
|c〉 〈c| |dc〉 〈dc|+ |d〉 〈d| |dd〉 〈dd|

]
, (7)

it can be seen that it differs from the previous (ρc)diag, which is obtained by substituting α = −β = 1√
2

and

just taking the diagonal part of Eq.(3):

(ρc)diag =
1

2

[
|a〉 〈a| |da〉 〈da|+ |b〉 〈b| |db〉 〈db|

]
. (8)

As it can be noticed, the problem remains, since the quantum state of the system is still unknown. That is
why we must proceed diffferently in order to get a measurement.

First and foremost, |ψc〉 must be obtained in the same way as it was shown above. Then, the total system
(system plus detector) must be coupled to the environment (whose states will be labelled as |ε〉) ir order to
dispose of the information that had been lost into the latter. Mathematically speaking, that is:

|ψc〉 |εo〉 → α |a〉 |da〉 |εa〉+ β |b〉 |db〉 |εb〉 ≡ |ψ〉 . (9)
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If
{
|εa〉 , |εb〉

}
are orthogonal, a trace over the environment of Eq.(9) can be performed:

ρTOTAL = Trε |ψ〉 〈ψ| =
∑
i

〈εi|ψ〉〈ψ|εi〉 =
∑
i

|〈εi|ψ〉|2 = |α|2 |a〉 〈a| |da〉 〈da|+ |β|2 |b〉 〈b| |db〉 〈db| , (10)

which coincides with ρr and where ρTOTAL is the density matrix for the whole system (system plus de-
tector). Only unitary transformations have been performed, and no assumptions have been made in this
latter procedure.[3].

Throughout this work, what the detector represented in this example will be named as the reservoir R
(which plays the role of the environment) and then, the system will be S.

In this project, two types of systems driven by thermal light will be considered. Nevertheless, we will
begin by considering a general system interacting with the reservoir that will be particularised afterwards.
First and foremost, the Master equation (describing the time eveolution of the density matrix) will be derived
and then particularised for each of the systems according to [5] and [4] . On the one hand, we will be dealing
with a cavity mode. On the other hand, a two level system subjected to a non-radiative dephasing will
be studided. Afterwards, the solution for these differential equations will be calculated analitically and/or
numerically. Finally, the effect of an external electric field over the cavity mode will also be studied. Some
analitical and numerical calculus will be performed using Mathematica.

2 Master equation derivation for a small system S interacting with
a reservoir R (thermal light)

En este apartado se derivará, de forma general, la ecuación maestra de un sistema cuántico en contacto
con un entorno. Es decir, se justificará la evolución temporal de la matriz densidad que describe un sistema
abierto en general. A continuación, partiendo de ese resultado, se particularizará la ecuación maestra para
dos sistemas concretos, un ”cavity mode driven by thermal light” y un sistema de dos niveles con un ”non-
radiative dephasing”.

The following derivation has been taken from [5] and [4]. Let us consider a global system described by
the Hamiltonian:

H = HS +HR +HRS , (11)

where HR is the Hamiltonian associated to R, HS that to S, and finally, HRS represents the interaction
between S and R. The density operator of the total system is χ(t), and its time evolution is given by:

˙χ(t) =
1

i~
[H,χ(t)]. (12)

Was HRS to be sufficiently small, χ would evolve slowly in the interaction picture (χ̃), so that is why we will
be using the latter representation. Eq. (12) turns into:

˙̃χ(t) =
1

i~
[H̃RS(t), χ̃(t)] (13)

in the interaction picture, where χ̃(t) = ei(HS+HR)t/~χ(t)e−i(HS+HR)t/~ and H̃RS(t) = ei(HS+HR)t/~HRSe
−i(HS+HR)t/~.

Eq.(13) can be integrated from 0 to t and then susbtitute the result within Eq.(12), so that we get:

χ̃(t) =
1

i~
[H̃RS(t), χ̃(0)]− 1

~2

∫ t

0

dt′[H̃RS(t), [H̃RS(t′), χ̃(t′)]]. (14)
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Since we are only interested in the evolution of system S, we will perform the trace over R of χ̃(t), so that
we end up with a reduced density operator ρ(t) = TrR[χ(t)] that describes S. Let us now consider that the
interaction between R and S is turned on at t = 0 and that there does not exist correlations between them at
that time. Consequently, the density matrix can be factorized as a product of two operators, each belonging
to one of the systems: χ(0) = ρ(0)R0 = χ̃(0). From now onwards, we will be dealing with ρ(t). That is why
we now proceed onto tracing over R Eq.(14), which leads to:

˙̃ρ(t) =
1

i~
TrR[H̃RS(t), χ̃(0)]− 1

~2

∫ t

0

dt′TrR[H̃RS(t), [H̃RS(t′), χ̃(t′)]]. (15)

It has been denoted: TrR(χ̃(t)) = eiHst/~ρe−iHst/~ = ρ̃(t).

Up to this point, no approximations have been considered. Nevertheless, it must be noted that R can
be considered as being unperturbed so that R̃(t) ' R̃(0) ≡ R0 (which has already been used), where
R̃(t) = TrSχ̃(t).

Furthermore, R can be assumed to be in a stationary state, and consequently: [R0, HR] = 0 ⇒ R0 =∑
µ pµ |µ〉 〈µ|, where |µ〉 are the eigenstates of HR and pµ the probabilities associated to each of these states.

What’s more, it can also be assumed that the interaction between the two systems is given by the product
of two operators belonging to each of them: HSR = −SR which, in the interaction picture is: ˜HSR(t) =
−S̃(t)R̃(t). If it is asssumed that TrR[RR0] = TrR[R̃R0] = 0 then, TrR[H̃SR(t)R0] = −S̃T rR[R̃R0] = 0.
This can be guaranteed if it is assumed that the R’s operators coupling to S have zero mean in the state R0.
Was this condition not to be satisfied, the total Hamiltonian could be redifined so that the new interaction
Hamiltonian verified this condition:

H = HS +HR +HSR → H = HS +HR +HSR + ÔS ⊗ IR − ÔS ⊗ IR
HS
′ ≡ HS + ÔS ⊗ IR ∧ HSR

′ ≡ HSR − ÔS ⊗ IR/TrR[HSR
′(t)R0] = 0, (16)

where ÔS is a certain operator ∈ S.

In fact, this is the case of one of the systems that it will be dealt with in this work, the two state atom
in thermal equilibrium with non-radiative dephasing.

With this result, Eq.(15) can be simplified:

˙̃ρ(t) = − 1

~2

∫ t

0

dt′TrR[H̃RS(t), [H̃RS(t′), χ̃(t′)]]. (17)

But it must be kept in mind that for t > 0, correlations may arise between R and S. For this reason, a term
that accounts for them must be added: χ̃(t) = ρ̃(t)R0 +O(HSR).

Let us now consider that higher than second order terms (higher than H̃SR(t)2) can be neglected (this is
known as Born approximation). For this reason, Eq. (17) can be further simplified:

˙̃ρ(t) = − 1

~2

∫ t

0

dt′TrR[H̃RS(t), [H̃RS(t′), ρ̃(t′)R0]]. (18)

The behaviour of the whole system will be considered to be Markoffian (its future behaviour does not depend
on the past but just on the present state of the system), since the reservoir R is large enough (and in thermal
equilibrium) so as not to keep changes induced by S over it for a long time, which will be reverted reciprocally
into S. That is, S will not be affected by past events, given that, for any change in it, it will rapidly go
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into R, which will quickly return to the previous state. For that reason, ρ̃(t′) will turn into ρ̃(t) in Eq. (18),
leading to:

˙̃ρ(t) = − 1

~2

∫ t

0

dt′TrR[H̃RS(t), [H̃RS(t′), ρ̃(t)R0]]. (19)

Later on in this section, the exact reason that allows us to assume that our system is undergoing a Markoffian
process will be exposed.

Now, let us make the model slightly more general by setting that the interaction between the two systems
is given by the sum of the product of operators belonging to each system, si from S and Γi from R:
HSR = ~

∑
i siΓi which, in the interaction picture is R: H̃SR = ~

∑
i s̃iΓ̃i. So going back to the Eq.(18) and

substituting this expression we get:

˙̃ρ(t) = −
∑
i

∑
j

∫ t

0

dt′TrR[s̃i(t)Γ̃i(t), [s̃j(t
′)Γ̃j(t

′), ρ̃(t)R0]]. (20)

Now, by using a cyclic property of the trace for any three given operators A,B and C: Tr(ABC) = Tr(CAB) =
Tr(BCA), Eq. (20) can be rewritten such as:

˙̃ρ(t) = −
∑
i

∑
j

∫ t

0

dt′TrR[s̃i(t)Γ̃i(t)s̃j(t
′)Γ̃j(t

′)ρ̃(t′)R0 − s̃j(t′)Γ̃j(t′)ρ̃(t′)R0s̃i(t)Γ̃i(t)

−s̃i(t)Γ̃i(t)ρ̃(t′)R0s̃j(t
′)Γ̃j(t

′) + ρ̃(t′)R0s̃j(t
′)Γ̃j(t

′)s̃i(t)Γ̃i(t)] =

= −
∑
i

∑
j

∫ t

0

dt′
{

[s̃i(t)s̃j(t
′)ρ̃(t′)− s̃j(t′)ρ̃(t′)s̃i(t)]TrR[R0Γ̃i(t)Γ̃j(t

′)]

−[s̃i(t)ρ̃(t′)s̃j(t
′)− ρ̃(t′)s̃j(t

′)s̃i(t)]TrR[R0Γ̃j(t
′)Γ̃i(t)]

}
. (21)

Finally, it is known that the trace over R of operators belonging to it and which are multiplied by the
density operator of R (R0) is the average value of these operators. For this reason: TrR[R0Γ̃i(t)Γ̃j(t

′)] =

〈Γ̃i(t)Γ̃j(t′)〉R and TrR[R0Γ̃j(t
′)Γ̃i(t)] = 〈Γ̃j(t′)Γ̃i(t)〉R. If these correlation functions decay rapidly on the

time scale on which ρ̃(t) varies, then the so called Markoffian process (ρ̃(t′)→ ρ̃(t)) is justified.

This implies that in the problem that we are dealing with there are two different time scales. On the one
hand, a slow time scale, in which S varies, and a fast one caracterizing the evolution of R.

2.1 Cavity mode

In this case, our Hamiltonian is the sum of the following three Hamiltonians:

HS = ~ωca†a, (22)

HR =
∑
j

~ωjrj†rj (23)

and
HSR =

∑
j

~(κj
∗arj

† + κja
†rj) = ~(aΓ† + a+Γ), (24)

where a and a† are the anhiilation and creation operators, respectively, of the system S, which is a harmonic
oscillator with frequency ωc; rj and rj

† are those corresponding to the reservoir R (which is a collection
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of harmonic oscillators, each having frequency ωj). Finally, the oscillator of S couples to each of those
in R by a coupling constant κj in the Rotating Wave Approximation (RWA)[7]. The reason why this
approximation can be used is that the problem we are dealing with is non-integrable. For this reason, in
order to obtain an analitical approximate solution, the RWA is used. It basically approximates 2 cos θ by eiθ,
since 2 cos θ = eiθ + e−iθ = eiθ(1 + e−2iθ) and, given that e−2iθ goes away quicker than eiθ, then it can be
neglected. For this reason, since the thermal light in the cavity goes clasically as a trigonometric function,
this approximation is applied.

Let us assume that R is in thermal equilibrium (at temperature T). In this case, and if we relate to the

master equation derivation above detailed, R0 is given by: R0 =
∏
j e
−~ωjrj

†rj
κBT

(
1− e

−~ωj
κBT

)
, which represents

thermal light. In it, κB can be seen, which is Boltzmann’s constant.

In the present case, since S is a harmonic oscillator, the si operators used in the first section can be
identified with the annhiilation and creation operators present in HS : s1 = a and s2 = a†. By looking at
HSR (see Eq. (24)), it can be noticed that we have used

∑
j κj
∗rj
† = Γ† and

∑
j κjrj = Γ which will be

renamed such as: Γ† ≡ Γ1 and Γ ≡ Γ2.

In the interaction picture, the operators are:

s̃1(t) = eiωca
†atae−iωca

†at = ae−iωct; s̃2(t) = eiωca
†ata†e−iωca

†at = a†eiωct

Γ̃1(t) = ei
∑
n ωnr

†
nrnt

∑
j

κj
∗rj
†e−i

∑
m ωmr

†
mrmt =

∑
j

κj
∗rj
†eiωjt; Γ̃2(t) =

∑
j

κjrje
−iωjt, (25)

where the second equality is obtained after a series of calculations. As an example, the calculus corresponding
to s̃1(t) is performed:

s̃1(t) = eiωcNtae−iωcNt

eiωcnt = I + iωcNt−
1

2
(ωcNt)

2 + ...⇒ e−iωcnt = I− iωcNt−
1

2
(ωcNt)

2 + ...

s̃1(t) = [I + iωcNt−
1

2
(ωcNt)

2 + ...]a[I− iωcNt−
1

2
(ωcNt)

2 + ...]

= a− iωcaNt−
1

2
a(ωcNt)

2 + iωcNat+ ωc
2NaNt2 − 1

2
(ωcNt)

2a+ ...

= a+ iωct[N, a]− 1

2
(ωct)

2[aN2 +N2a− 2NaN ] + ...

[N, a] = −a⇒ aN2 = NaN + aN ∧ N2a = −Na+NaN ⇒

s̃1(t) = a− iωcta−
1

2
(ωct)

2[a,N ] + ... = a[I− iωct+
1

2
(ωct)

2 + ...] = ae−iωct, (26)

where a†a ≡ N has been set, i.e., the Number operator.

Now, going back to Eq.(21) and substituting all the operators by the ones just mentioned, an integral
with sixteen terms will be obtained, given that i, j = 1, 2 in the present case. As for the reservoir correlation
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functions, the ones that reqcuire to be calculated can be seen:

〈Γ̃†(t)Γ̃(t′)〉R =
∑
j

|κj |2eiωj(t−t
′)〈r†jrj〉R =

∑
j

|κj |2eiωj(t−t
′)n̄(ωj , T )

〈Γ̃(t)Γ̃†(t′)〉R =
∑
j

|κj |2e−iωj(t−t
′)〈rjr†j〉R =

∑
j

|κj |2e−iωj(t−t
′)[1 + n̄(ωj , T )]

〈Γ̃†(t)Γ̃†(t′)〉R =
∑
j

(κ∗j )
2eiωj(t+t

′)〈r†jr
†
j〉R = 0

〈Γ̃(t)Γ̃(t′)〉R =
∑
j

(κj)
2e−iωj(t+t

′)〈rjrj〉R = 0, (27)

for which the expressions in Eq.(25) have been used. It has also been introduced within Eq.(27) the fact

that 〈r†jrj〉R = 〈nj〉R = n̄(ωj , T ), where nj is the number operator for the j-th oscillator, that is, we get the
average number of photons in the j-th mode, which is given by:

n̄(ωj , T ) =
e
−

~ωj
κjT

1− e−
~ωj
κjT

. (28)

It is also known that [rj , r
†
j ] = 1⇒ rjr

†
j = 1 + r†jrj ⇒ 〈rjr

†
j〉R = 1 + n̄(ωj , T ). In addition to this, it is known

that 〈r†jr
†
j〉R = 0 and 〈rjrj〉R = 0.

With the results in Eq.(27) and making a change of variables: τ = t− t′ ⇒ t′ = t− τ , the equation above
mentioned which contained sixteen terms will be reduced to one with eight:

˙̃ρ = −
∫ t

0

dτ
{

[aa†ρ̃(t− τ)− a†ρ̃(t− τ)a]e−iωcτ 〈Γ̃†(t)Γ̃(t− τ)〉R + h.c.

[a†aρ̃(t− τ)− aρ̃(t− τ)a†]eiωcτ 〈Γ̃(t)Γ̃†(t− τ)〉R + h.c
}
. (29)

At this point, rather than having a quantized number of frequencies in R, let us assume that the frequency
is a continuous value. Then, we will introduce the density of states:g(ω) so that g(ω)dω gives the number
of oscillators with frequency ∈ [ω, ω + dω]. Furthermore, the change of variables above mentioned will be
performed:τ = t− t′ ⇒ t′ = t− τ . Consequently, the non-null averages in Eq.(27) can be rewritten as:

〈Γ̃†(t)Γ̃(t−τ)〉R =

∫ ∞
0

dωg(ω)|κ(ω)|2eiωτ n̄(ω, T ); 〈Γ̃(t)Γ̃†(t−τ)〉R =

∫ ∞
0

dωg(ω)|κ(ω)|2e−iωτ [1+n̄(ω, T )].

(30)
It can be proved (see [5]) that the reservoir correlation time (τ) is much smaller than the time scale in which
ρ̃ suffers changes. Consequently, ρ̃(t− τ) can be approximated by ρ̃(t). This way, Eq.(29) turns into:

˙̃ρ = α(aρ̃a† − a†aρ̃) + β(aρ̃a† + a†aρ̃− a†aρ̃− ρ̃aa†) + h.c., (31)

where α and β are given by:

α =

∫ t

0

dτ

∫ ∞
0

dωe−i(ω−ωc)τg(ω)|κ(ω)|2; β =

∫ t

0

dτ

∫ ∞
0

dωe−i(ω−ωc)τg(ω)|κ(ω)|2n̄(ω, T ). (32)

Since τ << t, the time integrals in Eq. (32) can be approximated using the following result:

lim
t→∞

∫ t

0

dτe−i(ω−ωc)τ = πδ(ω − ωc) + i
P

ωc − ω
, (33)

8
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where P is the Cauchy princial value. That way, α and β turn into:

α = πg(ωc)|κ(ωc)|2 + i∆; β = πg(ωc)|κ(ωc)|2n̄(ωc) + i∆′, (34)

where ∆ = P
∫∞

0
dω g(ω)|κ(ω)|2

ωc−ω and ∆′ = P
∫∞

0
dω g(ω)|κ(ω)|2

ωc−ω n̄(ω).

Finally, by setting: κ ≡ πg(ωc)|κ(ωc)|2, n̄ ≡ n̄(ωc), ωc′ ≡ ωc + ∆ and transforming ˙̃ρ back into the
Scrhödinger representation, the master equation for the cavity mode driven by thermal light is obtained:

ρ̇ = −iωc′ [a†a, ρ] + κ(2aρa† − a†aρ− ρa†a) + 2κn̄(aρa† + a+ρa− a†aρ− ρaa†).[4][5] (35)

In the following equations:

˙ρnn = 2κ[(n+ 1)ρ(n+1)(n+1)(1 + n̄) + n̄nρ(n−1)(n−1) − (n+ 2n̄n+ n̄)ρnn], (36)

and

˙ρnm = −ρnm[iωc′(n−m) + κ(n+m) + 2κn̄(n+m+ 1)]+

ρ(n+1)(m+1)2κ
√

(m+ 1)(n+ 1)(1 + n̄) +
√
nm2κn̄ρ(n−1)(m−1) (37)

the master equations for the populations and the coherences, respectively, have been calculated.

2.1.1 Interpretation of the master equation for the populations

In order to interpret Eq.(36), let us now change the notation slightly, just as follows: ρnn ≡ Pn, which enables
us to rewritte it as:

Ṗn = 2κ[(n+ 1)(1 + n̄)Pn+1 + n̄nP(n−1) − n̄(n+ 1)Pn − n(n̄+ 1)Pn]. (38)

Four terms have been written down, among which two are related to the |n〉 level probability. Each of the
factors accompanying the probabilities has been separated such as a differentiated processes in Figure 1. If
we have a look at it, it represents a subspace of the harmonic oscillator: {|n− 1〉 , |n〉 , |n+ 1〉}.

We have tried to give an explanation to these processes as follows:

1 The |n〉 level increases its population due to the fact that there is a flux of population from |n+ 1〉
to |n〉 with a rate: 2κ(1 + n̄)(1 + n).

2 The |n〉 level increases its population thanks to |n− 1〉 level, being the rate: 2κn̄n.

3 The |n〉 level loses population which is gained by |n+ 1〉 level with a rate: 2κn̄(n+ 1).

4 The |n− 1〉 level gains population coming from the |n〉 level with a rate: 2κn̄n.

Nevertheless, it still is not clear enough whether this explanation is fully correct. For this reason, let us
now considerer the rates of change associated to the levels right above and below the one considered (|n〉),
which can be seen in:

˙Pn+1 = 2κ[(n+ 2)(1 + n̄)Pn+2 + n̄(n+ 1)P(n+1) − n̄(n+ 2)Pn+1 − (n+ 1)(n̄+ 1)Pn+1], (39)

and
˙Pn−1 = 2κ[n(1 + n̄)Pn + n̄(n− 1)P(n−2) − n̄nPn−1 − (n− 1)(n̄+ 1)Pn−1], (40)

9
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Figure 1: Cavity mode driven by thermal light for the subspace:{|n− 1〉 , |n〉 , |n+ 1〉}

respectively. By following the same procedure as for the nth level, we now chose another two subspaces:
{|n〉 , |n+ 1〉 , |n+ 2〉} and {|n− 2〉 , |n− 1〉 , |n〉}, which are plotted in Figures 2 and 3, respectively. Again,
the factors in Eq.(39) and Eq.(40) have been associated with certain processes. If we have a look at them, it

can be noticed that process 6 is exactly 3 and 8 is identical to 1 . Furthermore, 9 is 4 and 11

is 2 . For these reasons, it can be concluded that the explanation given for the processes 1 , 2 , 3 and

4 is correct.

Figure 2: Cavity mode driven by thermal light for the subspace:{|n+ 2〉 , |n+ 1〉 , |n〉}

2.2 Two level system

Let us assume a two level system with levels |1〉 with energy E1 and |2〉 with E2. Then, the unperturbed
Hamiltonian is HS = E1 |1〉 〈1| + E1 |1〉 〈1|. Now, by using Pauli matrices, HS can be rewritten as follows:
HS = 1

2 (E1+E2)I+ 1
2 (E1−E2)σz. The first term can be neglected if the lowest value of energy (0) in the middle

10



Decoherence and Entanglement in Quantum Physics

Figure 3: Cavity mode driven by thermal light for the subspace:{|n〉 , |n− 1〉 , |n− 2〉}

of the atomic transition is set. What’s more, by renaming E1 −E2 = ωA~, we end up having:HS = 1
2~ωAσz.

Since this two level system is coupled to an electromagnetic field, the Hamiltonian of the latter must also
be considered:

HR =
∑
~kλ

~ωκr~kλ
†r~kλ, (41)

as well as a Hamiltonian that accounts for the interaction between both systems:

HSR =
∑
~kλ

~(κ~kλ
∗r~kλ

†σ− + κ~kλr~kλσ+). (42)

It can be seen that new operators have been introduced. That is the case of the pseudo-spin Pauli matrices:

σ− =

[
0 0
1 0

]
, σ+ =

[
0 1
0 0

]
, σz =

[
1 0
0 −1

]
., (43)

which comply the relations:

σ± =
1

2
(σx ± iσy), , (44)

as well as the commutation relations:

[σ+, σ−] = σz [σ±, σz] = ∓2σ±. (45)

By looking at them, it can be noticed that σ− acts lowering the energy of the system, while σ+ increases it.
That is why they are commonly called atomic lowering and raising operators, respectively.

Let us proceed with the description of the Hamiltonians in Eq.(41) and Eq.(42). In both of them, there
is a summation over all the harmonic oscillators of which the reservoir (the EM field) is composed. Each of

them has a wavevector: ~k and a certain polarization: λ, as well as a frequency: ω~k. There are a couple of
constants:

κ~k,λ = −iei~k~rA
√

ω~k
2~εoV

ê~k,λ~µ12 (46)

in which ê~k,λ is the unit polarization vector and ~µ12 is the element between the states |1〉 and |2〉 of the dipole

moment (~µ = eq̂, for e being the electron charge and q̂ the coordinate operator for the bound electron). In

11
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addition to this, it must be mentioned that the two level system is placed at ~rA and V is the quantization
volume.

Now, let us resort to Eq.(21), in which the operators s̃i and Γ̃i will be substituted by those corresponding
to this particular system. For that purpose, we must begin by comparing Eq.(42) to HSR = ~

∑
i siΓi (which

was used in the previous section). We can identify the relations seen below:

s1 = σ−, s2 = σ+, Γ1 ≡ Γ† =
∑
~kλ

κ~kλ
∗r~kλ

†σ−, Γ2 ≡ Γ =
∑
~kλ

κ~kλr~kλσ+. (47)

These relations turn into those seen below (in the interaction picture):

s̃1(t) =e
iωAσzt

2 σ−e
−iωAσzt

2 = σ−e
−iωAt; s̃2(t) = e

iωAσzt

2 σ+e
−iωAσzt

2 = σ+e
iωAt

Γ̃1(t) ≡ Γ̃†(t) =eit
∑
~kλ
ωκr~kλ

†r~kλ
∑
~kλ

κ~kλ
∗r~kλ

†σ−e
−it

∑
~kλ
ωκr~kλ

†r~kλ =
∑
~kλ

κ~kλ
∗r~kλ

†σ−e
−iω~kt

Γ̃2(t) ≡ Γ̃(t) =eit
∑
~kλ
ωκr~kλ

†r~kλ
∑
~kλ

κ~kλ
∗r~kλ

†σ+e
−it

∑
~kλ
ωκr~kλ

†r~kλ =
∑
~kλ

κ~kλr~kλσ+e
−iω~kt. (48)

If we look closely at relations in Eq.(25), a big resemblance between them and those in Eq.(48) can be
clearly seen. That is why the very same procedure done for the cavity mode has been followed to obtain the
two level system master equation. Nevertheless, there are two details that need to be pointed out. First of
all, while in the case of the cavity mode there was a summation over the reservoir harmonic oscillators, in this
case, the summation is over wavevector directions and polarization states. Secondly, different commutation
relations have been used.

Keeping these points in mind, all that is left is replacing a by σ−, a† by σ+ and ωc by ωA in Eq.(31).
Furthermore, if we keep in mind relations in Eq.(34) and define:

γ = 2π
∑
λ

∫
d3kg(~k)|κ(~k, λ)|2δ(kc− ωA) = 2π

∑
λ

g(ωA)|κ(ωA, λ)|2 → 2κ, (49)

it is clear that α and β from Eq.(31) are:α = κ+ i∆ and β = κn̄+ i∆′. Consequently, by rearranging terms
in Eq.(31) we get:

˙̃ρ =
[γ

2
(n̄+1)+i(∆′+∆)

]
(σ−ρ̃σ+−σ+σ−ρ̃)+h.c.+

(γ
2
n̄+i∆′

)
(σ−ρ̃σ++σ+ρ̃σ−−σ+σ−ρ̃−ρ̃σ−σ+)+h.c., (50)

where n̄ = n̄(ωA, T ), ∆ =
∑
λ P

∫
d3k g(

~k)|κ(~k,λ)|2
ωA−kc and ∆′ =

∑
λ P

∫
d3k g(

~k)|κ(~k,λ)|2
ωA−kc n̄(kc, T ).

If we now proceed onto developing the hermitic conjugate terms in Eq. (50) we get:

˙̃ρ =
γ

2
(n̄+ 1)(2σ−ρ̃σ+ − σ+σ−ρ̃− ρ̃σ+σ−)− i(∆ + ∆′)[σ+σ−, ρ̃]+

+
γ

2
n̄(2σ+ρ̃σ− − σ−σ+ρ̃− ρ̃σ−σ+) + i∆′[σ−σ+, ρ̃]. (51)

Given that σ+σ− = 1/2(1 + σz) and σ−σ+ = 1/2(1− σz), then Eq. (51) turns into:

˙̃ρ = −i1
2

(2∆′ + ∆)[σz, ρ̃] +
γ

2
(n̄+ 1)(2σ−ρ̃σ+ − σ+σ−ρ̃− ρ̃σ+σ−) +

γ

2
n̄(2σ+ρ̃σ− − σ−σ+ρ̃− ρ̃σ−σ+). (52)

12
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Finally, in the Schrödinger picture:

ρ̇ = −iωA′
1

2
[σz, ρ] +

γ

2
(n̄+ 1)(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) +

γ

2
n̄(n̄+ 1)(2σ+ρσ− − σ−σ+ρ− ρσ−σ+), (53)

where ω′A = ωA + 2∆′ + ∆ (the frequency shift: ω′A − ωA is the so called Lamb shift). From looking at que
equation, it can be seen that there exists a transition rate from the excited state to the ground one described
by: 2σ−ρσ+ − σ+σ−ρ− ρσ+σ− (spontaneous emission) and another one in the opposite direction described
by 2σ+ρσ−−σ−σ+ρ−ρσ−σ+ (absorptive transition due to the existing thermal photong from the EM field).
It must be noted that there is also a term equal to the former, accompanied by n̄, which accounts for a
stimulated transition due to thermal photons coming from the reservoir (EM field).

Finally, the master equations for the populations and coherences have been calculated:

˙ρaa = γ(n̄+ 1)ρbb − γn̄ρaa, (54)

˙ρba = −iωA′ρba −
γ

2
(n̄+ 1)ρba −

γ

2
n̄ρba = −ρba[iωA′ +

γ

2
(2n̄+ 1)], (55)

where a denotes the ground state and b the excited one. This system that has been considered could be
an atom which is radiatively damped by its interaction with the many modes of an EM field in thermal
equilibrium at temperature T.

2.2.1 Two state atom with non-radiative dephasing

In the previous case, we did not consider the fact that the interaction between the two level system and
the EM field causes both energy loss from the atom, and damping of the atomic polarization (due to a
randomization of the phases of the atom’s wavefunctions by fluctuations of the field, which causes the overlap
of the wavefunctions corresponding to the two levels to decay in time). That is why it is needed to account
for additional dephasing interactions (coming from either elastic collisions or elastic phonon scattering in a
solid).

We must now add a couple of terms to the Hamiltonian by assuming that we have two further reservoir
interactions (they are not associated with additional radiated fields but simply modify the dynamics of the
radiating source) given by: Hdephase = HR1

+ HR2
+ HSR1

+ HSR2
, where each contribution can be seen

below:
HR1 +HR2 =

∑
j

~ω1jr
†
1jr1j +

∑
j

~ω2jr
†
2rr2j , (56)

HSR1
+HSR2

=
∑
k,j

~κ1jkr
†
1jr1kσ−σ+ +

∑
k,j

~κ2jkr
†
2jr2kσ+σ−. (57)

Now, what it used to be called the reservoir R, will now be called R12, and the whole reservoir will be
R = R12 ⊕R1 ⊕R2. Each of these reservoir subsystems are assumed to be statistically independent.

Eq.(57) describes the scattering of quanta from the atom, either from |1〉 (HSR1
) or from |2〉 (HSR2

).
They are virtual processes which scatter quanta with energy ~ω1k and ~ω2k into quanta with energy ~ω1j

and ~ω2j , so the state of the atom remains constant.

Just as the Hamiltonians in Eq.(56) show, they are equal to the Hamiltonian in Eq.(41). That is why for
this system we will also keep the operators Γ̃1(t) and Γ̃2(t) seen in Eq.(25). These operators account for the
interaction of the two level system with R12. Nevertheless, we are missing the interaction with R1 and R2.
For this reason, the operators Γ̃3(t) and Γ̃4(t) will be introduced later on.

13
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It must be noted that when Eq.(21) was derived, it was assumed that all the reservoir operators coupling
to S had zero mean in the state R0. However, in the case we are dealing with in this section, it no longer
applies, just as it was mentioned above. The reservoir operators coupling to σ−σ+ and σ+σ− in Eq.(57)
have nonzero averages when j = k. That is why we will follow the procedure exposed in Eq.(16). Now,
the unperturbed Hamiltonian will turn into H ′S = 1

2~(ωA + δp)σz, where δp =
∑
j(κ2jj n̄2j − κ1jj n̄1j) =∫∞

0
dω[g2(ω)κ2(ω)− g1(ω)κ1(ω)]n̄(ω, T ).

This way, Hamiltonians in Eq.(57) turn into:

H ′SR1
+H ′SR2

=
∑
k,j

~κ1jk(r†1jr1k − δjkn̄1j)σ−σ+ +
∑
k,j

~κ2jk(r†2jr2k − δjkn̄2j)σ+σ−, (58)

where n̄1j ≡ n̄(ω1j , T ) and n̄2j ≡ n̄(ω2j , T ) are the mean occupation numbers for those modes in R with
frequencies ω1j and ω2j , respectively.

The sum of H ′S and H ′SR1
+H ′SR2

is equal to the sum of the Hamiltonians in Eq.(56) and Eq.(57). And
now, just as it was previously explained, the operators ∈ R in Eq.(58) have zero mean. Consequently, we
have solved the problem that arose and can proceed onto substituting the operators seen in Eq.(48) and
these:

s̃3(t) = σ−σ+; s̃4(t) = σ+σ−; Γ̃3(t) =
∑
j,~k

κ1j~k(r†1jr1ke
i(ω1j−ω1k)t−δj~kn̄1j); Γ̃4(t) =

∑
j,~k

κ2j~k(r†2jr2ke
i(ω2j−ω2k)t−δj~kn̄2j)

(59)
directly into Eq.(21). That way, after following a series of calculus (see pages 31-32 of [5]), the master
equation for this system is obtained:

ρ̇ = −iωA′
1

2
[σz, ρ] +

γ

2
(n̄+ 1)(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) +

γ

2
n̄(n̄+ 1)(2σ+ρσ− − σ−σ+ρ− ρσ−σ+)+

+
γp
2

(σzρσz − ρ), (60)

where ωA′ ≡ ωA+2∆′+∆+δp+∆p, with: ∆ =
∑
λ P

∫
d3k g(

~k)|κ(~k,λ)|2
ωA−kc , ∆′ =

∑
λ P

∫
d3k g(

~k)|κ(~k,λ)|2
ωA−kc n̄(kc, T )

and

∆p = P

∫ ∞
0

dω

∫ ∞
0

dω′
g2(ω)g2(ω′)|κ2(ω, ω′)|2 − g1(ω)g1(ω′)|κ1(ω, ω′)|2

ω − ω′
.

From the master equation, Eq.(60, we obtained the master equations for the populations and the coherences:

˙ρaa = γ(n̄+ 1)ρbb − γn̄ρaa, (61)

˙ρba = −[iωA′ +
γ

2
(2n̄+ 1)]ρba − γpρba = −[iωA′ +

γ

2
(2n̄+ 1) + γp]ρba. (62)

If we set γp = 0, we get the two level system about which we talked earlier. That is why from now onwards,
we will only be dealing with this general case and simply set γp = 0 when needed.

3 Solution of the master equation for the equilibrium state (anal-
itical solution)

Una vez obtenidas las ecuaciones maestras de los sistemas, procedemos a determinar la solución de las mismas
en el estado de equilibrio, es decir, para t→∞. Estos resultados se obtendrán anaĺıticamente.
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In this section, the solutions for the master equations in the equilibrium state are calculated, i.e., for
t→∞. It must be noted that independently on what the initial state of the system is, the equilibrium state
will always be the same. That is why the initial state of the system will not be taken into account in this
section.

3.1 Cavity mode

The solution of Eq. (36) corresponding to the equilibrium state (ρ̇nn = 0) can be calculated by a recurrence
procedure. For this purpose, it will be equated to zero, after which we obtain:

ρ(n+1)(n+1) =
1

(1 + n̄)(1 + n)
[(2n̄n+ n̄+ n)ρnn − nn̄ρ(n−1)(n−1)]. (63)

Now, if all the populations (n ∈ N) are calculated, a general expression for a given n can be obtained:

ρnn =

(
n̄

1 + n̄

)n
ρ00. (64)

In order to find out ρ00, the normalization condition has to be imposed: Tr(ρ) = 1, which is shown below:

Tr(ρ) = 1⇒
∑
n

ρnn = 1⇒ ρ00

∞∑
n=0

(
n̄

1 + n̄

)n
= 1⇒ ρ00

1

1− n̄
1+n̄

= 1⇒ ρ00 =
1

1 + n̄
, (65)

in which Eq.(64) has been used as well as the result:
∑∞
n=0 x

n = 1
1−x/|x| < 1. Therefore, Eq.(64) can be

rewritten as:

ρnn =

(
n̄

1 + n̄

)n
1

1 + n̄
=

n̄n

(1 + n̄)n+1
. (66)

Furthermore, as n̄ is given by:

n̄ =
e
− ~ωc
κBT

1− e−
~ωc
κBT

, (67)

Eq. (66) will end up being:

ρnn = e
− ~ωcn
κBT

(
1− e−

~ωc
κBT

)
. (68)

Eq.(68) represents the asintotic probability for the level n to be populated (Pn), that is, the probability of it
being populated at t→∞ (Ṗn = 0).

Having got this result is very useful, since it will allow us to check whether the average value of the n̂
operator (〈a+a〉) coincides with the number of photons within the reservoir (n̄). This can be shown here:

〈n̂〉 = Tr(ρa+a) =
∑
n

〈n| ρa+a |n〉 =
∑
n

nρnn ⇒ 〈n̂〉 =
∑
n

ne
− ~ωcn
κBT

(
1− e−

~ωc
κBT

)
=
(

1− e−
~ωc
κBT

) e
~ωc
κBT(

e
~ωc
κBT − 1

)2 ⇒

〈n̂〉 =
e
− ~ωc
κBT

n̄

e
~ωc
κBT(

e
~ωc
κBT − 1

)2 =
1

n̄

1

(1/n̄)2
= n̄, (69)

where the result
∑
n ne

−xn = exn

(−1+exn)2 has been used and the expression for n̄ (see Eq.(67)) has been kept

in mind.
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3.2 Two state atom with non-radiative dephasing

The equilibrium state is reached at t→∞ and can be calculated by setting ˙ρaa = 0 and ˙ρba = 0, for which
we will resort to Eq. (61) and Eq.(62). This way, we get:

˙ρaa = 0⇒ (n̄+ 1)ρbb = n̄ρaa ⇒ (n̄+ 1)(1− ρaa) = n̄ρaa ⇒ ρaa =
n̄+ 1

2n̄+ 1
∧ ρbb =

n̄

2n̄+ 1
, (70)

and

˙ρba = 0⇒ −[iωA′ +
γ

2
(2n̄+ 1) + γp]ρba = 0⇒ ρba = 0, (71)

where we have kept in mind that ρaa + ρbb = 1.

4 Time evolution of the systems (analitical and numerical solu-
tions)

A continuación se procederá a determinar la evolución temporal de los sistemas en cuestión. Para ello, se
recurrirá a las ecuaciones maestras. En el caso del sistema de dos niveles, este procedimiento se podrá llevar
a cabo tanto anaĺıtica como numéricamente (los resultados numéricos serán obtenidos usando Mathematica,
de Wolfram Alpha). Sin embargo, en el caso del ”cavity mode” tan solo se podrá realizar numéricamente.

In this section, the time evolution of the systems is obtained. In the case of the cavity mode, it will only
be determined numerically with Mathematica. The reason is that the analitical solution would take very
long to be calculated was the dimension of the system to be bigger than five. Nevertheless, in the case of the
two level system with non radiative dephasing, not only will the solution be calculated analitically, but also
numerically.

In this case, the initial state of the system will determine its time evolution. That is why it will be
highlighted before giving any solution.

4.1 Cavity mode

Even though the exact analitical solution for Eq. (35) will not be obtained, just as it was mentioned above,
let us choose a certain initial state of the system in order to see how it evolves with time, which will be
plotted in Figure 4. It must be pointed out that from now onwards, all Figures concerning the cavity mode
time evolution will contain legends in which the density matrix elements will be labelled as ρij , where |i〉 and
|j〉 actually refer to the |i− 1〉 and |j − 1〉 levels, respectively, of the cavity mode. For instance, the ground
state will be labelled by ρ11 rather than: ρ00.

Let us chose, for instance, the following initial mixed state: |ψ(0)〉 =
√

0.4 |3〉 +
√

0.6 |4〉 and the values:
κ = 0.3, ωC′ = 0.5 and n̄ = 6. If we look at the left hand graph of Figure 4, it is clear how at t = 0, all states
are empty except for the third and fourth excited states (ρ44 and ρ55), just as expected. The third excited
one is initially at 0.4 and the fourth at 0.6. As time goes by, they start decaying, while those levels which
are closer to the aforementioned ones that have higher energies (fifth -ρ66- and sixth excited -ρ66- ones), as
well as those with lower energy than the third excited state go populating and then decay progresively. The
ninth excited state (the last one considered) does not practically populate. Finally, it is the ground state
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the one that keeps a higher population. The more excited the state, the less populated it will be. If we now
focus on the coherences, it can be seen that only ρ45 and ρ54 are populated at t = 0 (at 0.49 '

√
0.4 · 0.6),

and then decay. Meanwhile, other coherences populate slighlty, though all of them tend to zero.

Figure 4: Density matrix elements behaviour with time for a cavity mode driven by thermal light. In this
case, we have set κ = 0.3, ωC′ = 0.5 and the number of photons in the EM field being 6. The initial state of
the system is: |ψ(0)〉 =

√
0.4 |3〉+

√
0.6 |4〉.

Furthermore, if the dimension of the considered subspace is increased, we get what can be seen in Figures
8, 9, 10 and 11. These Figures will be analised in Section 5, since the initial state used in those cases is a
coherent state, which will be defined in Subsection 5.2. Having chosen this initial state is the reason why the
dimension of the subspace has had to be increased, just to get the system to converge.

4.2 Two state atom in thermal equilibrium with non-radiative dephasing

4.2.1 Analitical solution

It has been obtained by two different procedures. On the one hand, I have calculated it myself for any initial
state. On the other hand, analitical solutions have been obtained with Mathematica for a certain initial
state. In order to check that both solutions are equal, the initial state used to determine the latter solution
will be imposed in the former.

First of all, the derivation I obtained is the following. As for the populations, exact solutions can be
obtained for Eq. (61), as it is shown below:

dρaa
n̄+ 1− (2n̄+ 1)ρaa

= γdt⇒ ln|n̄+ 1− (2n̄+ 1)ρaa| = −(2n̄+ 1)γt+ lnC ⇒

⇒ n̄+ 1− (2n̄+ 1)ρaa = Ce−(2n̄+1)γt ⇒

⇒ ρaa =
−Ce−(2n̄+1)γt

2n̄+ 1
+

n̄+ 1

2n̄+ 1
∧ ρbb =

Ce−(2n̄+1)γt

2n̄+ 1
+

n̄

2n̄+ 1
, (72)

keeping in mind that ρaa + ρbb = 1, and where C has been introduced as an arbitrary constant.
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As for the solution for the coherences (Eq. (62)) see:

ρba = C ′e−[iωA′+
γ
2 (2n̄+1)+γp]t, (73)

for which the same procedure as in Eq.(72) has been followed, and where C ′ has been introduced as an
arbitrary constant.

Secondly, by setting as initial state that in which the system is in the excited state, the solution for Eq.
(60)obtained with Mathematica is the following:

ρaa(t) = − (−1 + e(−1−2n̄)tγ)(1 + n̄)

1 + 2n̄
; ρbb(t) =

e(−1−2n̄)tγ + n̄+ e(−1−2n̄)tγ n̄

1 + 2n̄
; ρab(t) = ρba(t) = 0

(74)
Now, if we set the initial condition posed above (ρaa = ρab = ρba = 0 ∧ ρbb = 1) in Eq.(72) and Eq.(73),
we can verify that we obtain the same results as those in Eq.(74). For this purpose, we have calculated the
constants C and C ′:

ρaa(0) = 0⇒ 0 =
−C

2n̄+ 1
+

n̄+ 1

2n̄+ 1
⇒ C = n̄+ 1 or ρbb(0) = 1⇒ 1 =

C

2n̄+ 1
+

n̄

2n̄+ 1
⇒ C = n̄+ 1

ρba(0) = 0⇒ 0 = C ′, (75)

and substituted them in Eq.(72) and Eq.(73).

4.2.2 Numerical solutions

The numerical solutions for the master equation Eq.(60)are plotted in Figure 5. We have set γ = 0.3,
ωA′ = 0.5, γp = 3 and have varied the number of photons in the electromagnetic field. Furthermore, the
initial state has been choses as being: |ψ(0)〉 =

√
0.8 |a〉 +

√
0.2 |b〉 which, as the initial state of the density

matrix is:

ρ(0) =

[
0.8

√
0.8 · 0.2√

0.8 · 0.2 0.2

]
, (76)

If we have a look at Figure 5, except for the graph in the left top corner, it can be seen that in the
equilibrium state, both levels end up being equally populated. In addition to this, the higher the amount
of photons in the reservoir is, the quicker the system converges to the equilibrium state. What’s more, the
higher the amount of photons in the reservoir is, the more similar the levels are as far as their population is
concerned. By looking at the graphs, it can be seen that the ground state’s initial state is in 0.8 (just as we
mentioned above), and that for the excited one is: 0.2. Furthermore, the initial state for the coherences is:
0.4 (

√
0.8 · 0.2 = 0.4).

As for the graph in the left top corner, as n̄ = 1, then the populations remain practically unperturbed
and it could be stated that they nearly keep the same population as at the beginning. The coherences decay
to zero, though much slower than in the other cases.

If we set γp = 0, then we get the numerical solutions for the master equation Eq.(53), which are plotted
in Figure 6. We have set γ = 0.3, ωA′ = 0.5 and have varied the number of photons. If we have a look at
Figure 6,the same result is obtained: the time it takes the system to converge to the equilibrium state varies
according to the number of photons in the reservoir.

If we now compare Figures 5 and 6, populations behave in the same way, from which it can be concluded
that the non radiative dephasing term (that multiplied by γp) does not affect populations. Nevertheless,
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Figure 5: Density matrix elements behaviour with time. In this case, we have set γ = 0.3, ωA′ = 0.5,
γp = 3 and the number of photons in the EM field has been chosen as being: 1, 10, 20 and 30 (the
corresponding graphs are those from the top left corner to the bottom right corner). The initial state is:
|ψ(0)〉 =

√
0.8 |a〉+

√
0.2 |b〉.

it does affect coherences. The non-radiative dephasing induces them to decay quicker. For instance, let us
look at the graphs corresponding to n̄ = 1. While in the case of γp = 3, Re(ρab) reaches the zero value at
approximately t ∼ 2.2, for γp = 0 it does so at t ∼ 3. In addition to this, as the number of photons increases,
the effect of the non-radiative dephasing term loses importance.

Now, let us check whether these results for t → ∞ correspond to the expected ones, i.e., whether they
comply the analitical results obtained for the equilibrium state, which are seen in Eq.(70) and Eq.(71). These
is applicable independtly on the value of γp. For instance, let us consider the case of n̄ = 1. According to
Eq.(70), the ground state (ρaa) should tend to ∼ 0.67 while the excited one (ρbb) to ∼ 0.33 and, as for the
coherences, according to Eq.(71), they should all tend to zero. If we have a look at Figures 6 and 5, it can
be seen that the numerical results comply the analitical ones. Let us now check it for another case, such as
n̄ = 30. The ground state should tend to ∼ 0.51 while the excited one to ∼ 0.49, which is clearly seen in
Figures 6 and 5.

5 Study of the effect of an external electric field over a harmonic
oscillator driven by thermal light

Este apartado se centrará en el ”cavity mode”, aunque sometiéndolo a un campo eléctrico externo. Además,
se introducirán varios conceptos nuevos que nos permitirán poder hacer un análisis más exhaustivo de este
sistema. En primer lugar, se definirán los estados coherentes, lo que nos permitirá introducir a continuación
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Figure 6: Density matrix elements behaviour with time. In this case, we have set γ = 0.3, ω = 0.5, γp = 0 and
the number of photons in the EM field has been chosen as being: 1, 10, 20 and 30 (the corresponding graphs
are those from the top left corner to the bottom right corner). The initial state is: |ψ(0)〉 =

√
0.8 |a〉+

√
0.2 |b〉.

una representación muy usada en óptica cuántica, la representación Q o de Husimi, ya que está definida
en función de estos estados. Aśı pues, se procederá a resolver numéricamente la ecuación maestra de este
último sistema. Esta solución se mostrará gráficamente mediante la representación de Husimi, aśı como la
correspondiente al mismo sistema pero sin estar sometido al campo, el que ya se hab́ıa analizado previamente,
pero para subespacios más pequeños en secciones anteriores. De esta forma, se podrá determinar el efecto
del campo al comparar ambas representaciones. Asimismo, se aprovechará este apartado para introducir una
serie de gráficas que muestren la evolución de las poblaciones y coherencias de los dos sistemas. De esta
forma, se podrá determinar el efecto del campo al comparar ambas representaciones, ya que con la función
de Husimi no queda lo suficientemente claro.

In this section, a harmonic oscillator will be subjected to an electric field. In order to study this system,
we will resort to the cavity mode driven by thermal light. The reason why we have used the words ”harmonic
oscillator” rather than ”cavity mode” is that the latter is an electric field in itself, because of what it does
not interact with any other electric field. Consequently, it might be paradoxical if we started studying the
cavity mode assuming that it does interact with the external electric field. Nevertheless, the mathematical
procedure will be the same, so that is why we will simply use the Hamiltonian for the cavity mode and then
add a term that accounts for the external electric field. This addtional term will end up displacing the final
state of the system from that we saw for the simple case of the cavity mode (this will be proved later on in
this section).

Furthermore, the system’s dynamics will be shown by using a representation known as the Husimi or
Q-representation rather than the density matrix. This representation is obtained by using a certain set of
states known as coherent states, which will be defined in Subsection 5.2.
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5.1 Derivation of the master equation

In order to obtain the master equation for this system, an additional term will be added to the Hamiltonian

of S (HS), just as it was mentioned above: γεx̂ = γε
√

~
2mω (a† + a) ≡ η′(a† + a). Consequently, given that

ρ̇ = 1
i~ [HS , ρ], Eq. (35) will be transformed into:

ρ̇ = −iωc′ [a†a, ρ]− iη[a† + a, ρ] + κ(2aρa† − a†aρ− ρa†a) + 2κn̄(aρa† + a+ρa− a†aρ− ρaa†), (77)

where η ≡ η′

~ .

The master equation for the populations is:

ρ̇nn =
√
nρ(n−1),n +

√
n+ 1ρ(n+1),n −

√
n+ 1ρn,(n+1) −

√
nρn,(n−1)

+ 2κ[(n+ 1)ρ(n+1)(n+1)(1 + n̄) + n̄nρ(n−1)(n−1) − (n+ 2n̄n+ n̄)ρnn]. (78)

In this case, the recurrence procedure we used in the simple case of the cavity mode is more complex, given
that ρ̇nn no longer depends just on populations, but also on coherences.

In order to prove that the final state of the system will remain the same though displaced, let us perform
a unitary transformation to HS . This will allow us to show that the new HS still keeps the form of the
Hamiltonian corresponding to a harmonic oscillator.

For this purpose, the displacement (unitary) operator is needed. This operator is defined as:

D(α) ≡ eαa
†−α∗a, (79)

and it has a very useful property: D†(α)aD(α) = a+ α⇒ D(α)a†D†(α) = a† + α∗ that will be used in the
following procedure.[8]. Now, let us go onto the unitary transformation:

H ′S =D†(αη)HSD(αη) = ~ωcD†(αη)a†aD(αη) + ηD†(αη)(a† + a)D(αη)

=~ωcD†(αη)a†D(αη)D†(αη)aD(αη) + ηD†(αη)a†D(αη) + ηD†(αη)aD(αη)

=~ωc(a† + αη
∗)(a+ αη) + η(a† + αη

∗ + a+ αη)

=~ωc(a†a+ a†αη + aαη
∗ + |αη|) + η(a† + αη

∗ + a+ αη)

=~ωca†a+ a†(~ωcαη + η) + a((~ωcαη∗ + η) + ~ωc|αη|+ ηαη, (80)

where the identity: D(α)D†(α) = I has been introduced. By choosing η = −~ωcαη and assuming that
αη = αη

∗, we finally get that Eq.(80) turns into

H ′S = ~ωca†a, (81)

proving that the system will still behave as a harmonic oscillator, though being displaced: αη = − η
~ωc .

It must be kept in mind that each state of the present harmonic oscillator will be a linear combination of
states of the previous, since the other’s basis is the one that has been used. For instance, the ground state of
the present harmonic oscillator might have a 90% of probability of being in the ground state of the previous,
5% of being in this latter’s first excited state and so on.
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5.2 Coherent States

A coherent state is defined as the eigenstate of the annhilation operator: a |α〉 = α |α〉 for a single mode,
where α ∈ C. This can be proved as follows:

a |α〉 = e
−|α|2

2

∞∑
n=0

αn√
n!

√
n |n− 1〉 = e

−|α|2
2

∞∑
n=0

αn√
(n− 1)!

|n− 1〉

m ≡ n− 1⇒ a |α〉 = e
−|α|2

2

∞∑
n=0

αm+1

√
m!
|m〉 = α |α〉 . (82)

Furthermore, coherent states can be expanded in terms of Fock operators:

|α〉 = e
−|α|2

2

∞∑
n=0

αn√
n!
|n〉 , (83)

which can be proved as seen below:

|α〉 = D(α) |0〉

eαa
†
|0〉 ' |0〉+ α |1〉+

1

2!

√
2 |2〉+ ...+

αn

n!

√
n! |n〉 = |0〉+ α |1〉+

1√
2
|2〉+ ...+

αn√
n!
|n〉 =

∑
n

αn√
n!
|n〉

e−α
∗a |0〉 = 0⇒ D(α) |0〉 = e

−|α|2
2 eαa

+

|0〉 = e
−|α|2

2 eαa
+

|0〉 = e
−|α|2

2

∑
n

αn√
n!
|n〉 = |α〉 , (84)

where the displacement operator has been used, as well as a property for two given operators A and B:
eA+B = eAeBe−

1
2 [A,B]. [1]

5.3 Numerical solutions

Let us now proceed on to showing the numerical results obtained for the master equation (Eq. (77)).

We have chosen a subspace of dimension ten and have set it to be in this initial mixed state: |ψ(0)〉 =√
0.4 |3〉 +

√
0.6 |4〉. Furthermore, we have selected the values: κ = 0.2, ωc′ = 3, n̄ = 6 and η = 0.5 in

Eq.(77). This way, the evolution of the system has been plotted in Figure 7. In order to analyse this Figure,
we will resort to part of the explanation given for the same system though not subjected to the electric field
(Subsection 4.1), for which the chosen initial state was the same. Again, ρ44 is at 0.4 at t = 0 while ρ55 is at
0.6. Furthermore, as for the coherences, only ρ45 and ρ54 are initially populated around 0.49. In addition to
this, just as in the previous case, it is the ground state that keeps the higher population at the equilibrium
state. Nevertheless, if Figures 4 and 7 are compared, a clear distinction can be noticed. While populations do
not oscillate in the former, they do in the latter due to the electric field. However, the oscillation diminishes
as time goes by. As for the coherences, they do tend to zero again, though oscillating. Again, the oscillation
diminishes with time.

In the following Subsection (Subsection 5.4), the chosen initial state of the system will be a coherent state.
For this reason, in order to get the system to converge, the dimension of the subspace has been increased up
to 20 (we have increased even further the dimension of the subspace in the programs used in order to check
there is convergence with a dimension of 20 already). Its evolution can be seen in Figures 12, 13, 14 and 15,
which will be analysed later on.
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Figure 7: Density matrix elements behaviour with time for a cavity mode driven by thermal light subjected
to an external electric field. κ = 0.2, ωc′ = 3, n̄ = 6 and η = 0.5. The initial state of the system is:
|ψ(0)〉 =

√
0.4 |3〉+

√
0.6 |4〉.

5.4 Husimi representation (Q-representation)

In certain cases, describing a system using the Q-representation is more convenient than from its density
matrix. Unlike the later (which is an operator), the Husimi representation is a quasiprobability function that
represents the phase space distribution of a quantum state. It is commonly used in Quantum optics. [2]

It can be obtained from the elements of the density matrix, by averaging them in the coherent states
basis:

Q(α, α∗) ≡ 1

π
〈α| ρ |α〉 (85)

The Husimi representation is normalized:

Tr(ρ) = 1⇒ Tr
{ 1

π

∫
d2α |α〉 〈α| ρ

}
= 1⇒ 1

π

∫
d2α 〈α| ρ |α〉 =

∫
d2αQ(α, α∗) = 1 (86)

We will be using this representation to better understand the behaviour of the cavity mode driven by thermal
light.

Since the solution for the density matrix has already been calculated, we can now determine Q(α, α∗).
For this purpose, the closing relation has been introduced twice (with two different indices, n and m).
Furthermore, we have resorted to Eq.(83) in order to calculate 〈m|α〉:

〈m|α〉 = e
−|α|2

2

∞∑
n=0

αn√
n!
δnm = e

−|α|2
2

αm√
m!
, (87)

which is a result that will be required for the following procedure:

Q(α, α∗) =
1

π

∑
n

∑
m

〈α|n〉 〈n| ρ |m〉 〈m|α〉 =
1

π

∑
n

∑
m

e
−|α|2

2
(α∗)n√
n!

ρnme
−|α|2

2
αm√
m!

=
1

π
e−|α|

2 ∑
n

∑
m

(α∗)nαm√
n!m!

ρnm, (88)
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where 〈n| ρ |m〉 ≡ ρnm.

This way, by replacing the elements of the density matrix that were obtained numerically, the Husimi
representation for different times will be shown. The parameters of the system will be varied in order to see
the differences. Not only will the cavity mode driven by thermal light subjected to the electric field will be
represented, but also the system without being subjected to the electric field, in order to compare the effect
of this field.

The cases that have been considered are seen in Table 1. It shows the values of the constants that have
been substituted into Eq.(35) (in the first four cases) and into Eq. (77) (in the last four cases).

Case (Figures) κ n̄ η
1 (16, 8) 0.5 0 0
2 (17, 9) 0 0 0
3 (18, 10) 0.5 6 0
4 (19, 11) 0 6 0
5 (20, 12) 0.5 0 0.5
6 (21, 13) 0 0 0.5
7 (22, 14) 0.5 6 0.5
8 (23, 15) 0 6 0.5

Tabla 1: Considered cases. Within the parenthesis of the first column, the references for the corresponding
Figures to each case can be seen. The first reference alludes to the Husimi representation, while the second
to a Figure where the time evolution of the populations and coherences is plotted.

At this point, there is a need to make a few comments regarding the distribution of some of the figures we
will be analysing from now onwards, as well as the notation seen in some of them. First of all, those figures
that show the Husimi representation of each case are at the end of this document. That is why it will be
needed to resort to the final pages of it throughout the following analysis. Furthermore, it will be seen that
in those figures that include the time evolution of populations and coherences, a rather misleading notation
has been used. Populations are represented by: ρii or ρijij , while some coherences include a separation
dot: ρj.mn, ρjm.n or ρij.mn. The reason is that in the case of coherences, was the dot not to be used, some
ambiguity might arise regarding the levels between which the coherence is.

Let us start by analising Case 1 (Figures 8 and 16). In this case, the system is not subjected to the
electric field. Let us focus on the initial state (t=0 in Figure 16). Just as it was mentioned above, the initial
state is placed at |α0〉 = |1 + 3i〉. There exists a coupling between the cavity and the reservoir, so that is
why as time goes by, the initial state moves clockwise leading to the equilibrium state (Re(α) = Im(α) = 0),
since n̄ = 0. Let us now go onto analysing Figure 8. As for the populations, it can be noticed that most
of them are initially populated. Nevertheless, as time goes by, the highest excited levels decay, i.e., their
populations go transferring to lower energy states progresively. Finally, it is the ground state the only
one that remains populated. In fact, it keeps the total of the population while all the other states tend
to zero. This is in accordance to the result obtained in Eq.(69). In this case, n̄ = 0 then, according to
Eq.(69), 〈n̂〉 (the average number of photons in the cavity) should be zero. This is satisfied given that
there is only one level, among the twenty considered, that has a population of 1, while all the others are
empty. Consequently, since that single level is the ground state, then 〈n̂〉 = 0. As for the coherences, it
can be noticed that not only do they decay (due to the coupling with R), but also they oscillate. The
reason is that the state of the system is like: |ψ(t)〉 =

∑∞
n=0 cn(0)e−iEnt/~ |n〉. Then, the density matrix:

ρ = |ψ(t)〉 〈ψ(t)| =
∑∞
n=0

∑∞
m=0 cn(0)c∗m(0)e−iωnmt |n〉 〈m| /ωnm ≡ (En − Em)/~. Consequently, since
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Figure 8: Representation of the populations and coherences for a cavity mode driven by thermal light where
the parameters used are: κ = 0.5, ωC′ = 3 and the reservoir is in the vacuum state (n̄ = 0). The initial state
of the system is: |α0〉 = |1 + 3i〉.

coherences generally comply: En 6= Em then, they will oscillate with the Bohr frequency ωnm. Let us further
analyse them. If we have a look at Figure 8 and focus on the time evolution of the coherence ρ67, it is clear
that its period is: T ' 2. It is known that the period is given by: T = 2π

ω . Consequently, ω ' 3.14, which
is pretty similar to the characteristic frequency of the cavity mode in this case: ωC′ = 3. This is what we
expected, since the coherence we are dealing with is that between two subsequent states, and ω represents
the frequency of oscillation between two subsequent states. Furthermore, if we have a look at ρ57, it is seen
that its period is close to 1, which implies that ω ' 6.15, which would be the double of the characteristic
frequency, just as we expect for levels which are separated the double. In fact, if we have a look at coherence
ρ97, which represents the same distance between levels as ρ57, it can be noticed that they oscillate with the
same frequency. The more separeted the levels are (see coherences such as ρ1.11), the quicker the oscillation
is.

Figure 9: Representation of the populations and coherences for a cavity mode driven by thermal light where
the parameters used are: κ = 0 (there is no coupling), ωC′ = 3 and the reservoir is in the vacuum state
(n̄ = 0). The initial state of the system is: |α0〉 = |1 + 3i〉.

Now, let us consider Case 2 (Figures 9 and 17). Unlike Case 1, now there does not exist any coupling
between the cavity and the reservoir. For this reason, as time goes by, if we have a look at Figure 17, the state
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moves clockwise though remains describing a circle with the same radius, that is, it does not lead towards
the center. Now, by looking at Figure 9, it can be seen that there is no crossing between states, which is due
to the fact that in this case we are considering a closed system, so each level remains unperturbed. Again,
by looking at the coherence ρ97, it can be seen that T ∼ 1 ⇒ ω ' 6.15, which is similar to the frequency
between levels |n〉 and |n+ 2〉. However, in this case, the non-coupling to the environment can be seen in the
fact that the amplitude of the oscillations remains constant, unlike in Case 1. Furthermore, it can be seen
that the frequency of oscillation of ρ5.18 and ρ62 is the double to that with which ρ10.18 and ρ62 oscillate,
respectively. This can be explained in the same way as for Case 1.

Figure 10: Representation of the populations and coherences for a cavity mode driven by thermal light where
the parameters used are: κ = 0.5 , ωC′ = 3 and n̄ = 6. The initial state of the system is: |α0〉 = |1 + 3i〉.

Let us go onto Case 3 (Figures 10 and 18). Again, in this case there is a coupling which induces the
system to direct towards the center (just as in Case 1). Nevertheless, there is a remarkable difference and it
is the fact that not only does it move spiraling towards the center, but also, it goes modifying its shape as
time goes by. This is due to the fact that the reservoir is no longer in the vacuum, but has six photons. As
it can be seen in Figure 18, at t=0, the state is exactly the same as in the previous cases, but then it goes
progresively augmenting its radius. This implies that the population is evenly divided among many states.
As for Figure 10, unlike Case 1, where all excited levels tended to zero independently on their initial state,
all states remain populated. This is in accordance to Eq. (69), since n̄ = 6. The state that keeps the higher
population is obviously the ground state. It can be seen that at t = 0, ρ1111 (the population corresponding
to the |n = 10〉 level) has the higher population. In order to justify this result, we will perform dPn

dn , where
Pn is the probability of the |n〉 level to be populated, and then equate it to zero to find out what the value
of n that makes Pn maximum is (nm), i,e, what the level with higher population is:

dPn
dn

= e|α|
2
[ |α|2nln(|α|2)n!− |α|2n dn!

dn

(n!)2

]
;

dPn
dn

∣∣∣
nm

= 0⇒ ln(|α|2)nm! =
dnm!

dnm
⇒ ln(|α|2) =

∑
i

1

nm − i
≡ f(nm)⇒ f−1(|α|2) = nm, (89)

where the following result has been used: dn!
dn = nm!

∑
i

1
nm−i . Let us substitute into ln(|α|2) =

∑
i

1
nm−i the

initial value of α (the initial coherent state used is: |1 + 3i〉), as well as perform the sum over the first six
terms of the summatory (they are the most predominant ones):

ln(|1 + 3i|2) '
6∑
i=1

1

nm − i
⇒ nm ' 10. (90)

26



Decoherence and Entanglement in Quantum Physics

The result seen in Eq. (90) already justifies the reason why the state with a higher population is |10〉. As for
the coherences, again, the amplitude of oscillation goes decreasing. It can also be seen that coherences such
as ρ24 and ρ97 oscillate with the same frecquency, just as it was expected.

Figure 11: Representation of the populations and coherences for a cavity mode driven by thermal light where
the parameters used are: κ = 0 (there is no coupling), ωC′ = 3 and n̄ = 6. The initial state of the system is:
|α0〉 = |1 + 3i〉.

The final considered case which is not subjected to an electric field is Case 4 (Figures 11 and 19). Unlike
Case 2, by looking at Figure 19 the shape goes modifying slightly due to the fact that n̄ = 6, though it
does not lead towards the centre because of κ = 0 (no coupling). Now, let us look at Figure 11. Again, it
is the |10〉 level that has a higher population, which remains constant, just as it was explained in Case 2,
where no coupling exists either. Furthermore, the population of levels increases from the ground state to the
ninth excited one, and then it decreases. As for the coherences, since there is no coupling, the amplitude of
oscillation remains constant. Again, it can also be seen that coherences such as ρ97 and ρ14.16 oscillate with
the same frecquency, just as explained in previous cases.

Let us now begin analising the same systems described above, though subjected to the external electric
field.

Once the unperturbed Hamiltonian of the cavity mode (H0) is diagonalised, the eigenvalues of the system
are like: Eon = ( 1

2 + n)~ω /n ∈ N with their corresponding eigenvectors: {|no〉} /n ∈ N . Never-
theless, when diagonalising the new Hamiltonian (H0 + V , where V is a perturbation, the electric field),
the eigenvalues will be: En /n ∈ N with eigenvectors that will be linear combinations of the previous:
{|n〉 =

∑
m cn,m |mo〉} /n ∈ N, where cn,m are constant coefficients. Furthermore, if we resort to first order

perturbation theory, our new eigenvectors will be like: |n〉 ' |no〉 + η
∑
p 6=n

∑
i
〈poi|(a+a†)|no〉

Eon−Eop
|poi〉. For this

reason, even the populations will be perturbed in such a way that they will oscillate.

Let us now go onto Case 5 (Figures 12 and 20) is the analogous to Case 1. No appreciable difference can
be noticed between Figures 16 and 20. That is why we will resort to the analysis of the populations and
coherences with time, so let us now compare Figures 8 and 12. As for the populations, the most affected ones
by the electric field are those with lower energy, ranging from the ground state to the third excited state (ρ44

in Figure 12). They oscillate, though as time goes by, this effect diminishes and the equilibrium state ends
up being the same in both cases. As for the coherences, even though they also tend to zero for t→∞, their
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Figure 12: Representation of the populations and coherences for a cavity mode driven by thermal light
subjected to an electric field, where the parameters used are:κ = 0.5, ωC′ = 3, η = 0.5 and the reservoir is in
the vacuum state (n̄ = 0). The initial state of the system is: |α0〉 = |1 + 3i〉.

period varies. For instance, the coherence that was analised earlier on, ρ67, had T ∼ 2. In this case, again,
T ∼ 2, just as expected. The reason is that if we assume η as being small enough so as to use perturbation
theory, the corrected energies will be: En = Eon + ∆E, where, at first order: ∆E = 〈n|η(a† + a)|n〉 = 0.
Consequently, since En = Eon = ~ωC′( 1

2 + n) then the frecquency of oscillation is clearly not affected by the
presence of the external electric field, just as the numerical solutions have shown.

Figure 13: Representation of the populations and coherences for a cavity mode driven by thermal light
subjected to an electric field, where the parameters used are:κ = 0, ωC′ = 3, η = 0.5 and the reservoir is in
the vacuum state (n̄ = 0). The initial state of the system is: |α0〉 = |1 + 3i〉.

Let us now go onto Case 6 (Figures 9 and 13 will be compared). In this case, remarkable differences
can be seen. As for the populations, while they do not cross in Figure 9, in the case in which the system is
subjected to the electric field, they do, which is induced by the external field. Furthermore, in the latter case,
not all of the populations oscillate in phase. From the ground state up to |n = 9〉 (ρ1010), they oscillate in
phase. Nevertheless, from ρ1111 there is a dephase and so, approximately from ρ1212 onwards, they oscillate
in phase among them. As for the coherences, even though they oscillate in both cases, in Figure 13 they do
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not keep a constant amplitude, unlike in Figure 9.

Figure 14: Representation of the populations and coherences for a cavity mode driven by thermal light
subjected to an electric field, where the parameters used are:κ = 0.5, ωC′ = 3, η = 0.5 and n̄ = 6. The initial
state of the system is: |α0〉 = |1 + 3i〉.

As for Case 7, let us now compare Figures 10 and 14. The same differences that were found between
Cases 1 and 5 can be found between Case 3 and the one we are analising now.

Figure 15: Representation of the populations and coherences for a cavity mode driven by thermal light
subjected to an electric field, where the parameters used are:κ = 0 (no coupling), ωC′ = 3, η = 0.5 and n̄ = 6.
The initial state of the system is: |α0〉 = |1 + 3i〉.

Finally, Case 8 will be analised by comparing Figures 11 and 15. There exists crossing between states,
just as it was explained in Case 6. Furthermore, just as it could also be seen in Case 6, even though the
amplitude of oscillation of the coherences does not diminish, it goes changing periodically.
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6 Summary and conclusions

A lo largo de este trabajo se ha llegado a una serie de conclusiones que se enumerarán de nuevo en este
apartado. En primer lugar, se ha verificado que los procesos de decoherencia provocan un decaimiento de los
elementos no diagonales de la matriz densidad que describe algunos sistemas abiertos, tal y como se pretend́ıa
mostrar. Además, en el caso del ”cavity mode” también se ha analizado el correspondiente cerrado (κ = 0),
pudiendo ver que, efectivamente, sus coherencias permanecen constantes. Por otro lado, todas las soluciones
numéricas están acorde con las anaĺıticas, aśı como con la teoŕıa subyacente.

Throughout this work, a series of conclusions have been reached that will be highlighted in this section.
First of all, decoherence processes induce coherences to decay in the case of open systems, unlike what happens
with closed systems. For the cavity mode driven by thermal light (we have set the coupling parameter between
the system and the environment as: κ 6= 0), the analogous closed system has been analysed (κ = 0), from
which we have conluded that unlike in the former case, in the latter, coherences remain constant. Secondly, it
has been checked that all numerical solutions satisfy the analitical results obtained and the theory beneath it.
In the case of the cavity mode driven by thermal light, the result 〈n̂〉 = n̄ is satisfied for all cases. Furthermore,
the frequency of oscillation of the coherences between two subsequent levels is the characteristic of the cavity
mode. Finally, it has been obtained that the higher the difference between energy levels, the higher the
frequency of oscillation, just as it was expected. As for the cavity mode driven by thermal light subjected to
an external electric field, up to first order perturbation theory, the frequency of oscillation of the coherences
is the same as in the unperturbed case. To conclude, we can summarize that by tracing over the reservoir’s
degrees of freedom, the entanglement between the environment and the system decays, which produces a
decoherence process in the latter that we have been able to analise in a couple of systems.
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Figure 16: Husimi representation for a driven by thermal light where the parameters used are: κ = 0.5,
ωC′ = 3 and the reservoir is in the vacuum state (n̄ = 0). The initial state of the system is: |α0〉 = |1 + 3i〉.
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Figure 17: Husimi representation for a cavity mode driven by thermal light where the parameters used are:
κ = 0 (there is no coupling), ωC′ = 3 and the reservoir is in the vacuum state (n̄ = 0). The initial state of
the system is: |α0〉 = |1 + 3i〉.
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Figure 18: Husimi representation for a cavity mode driven by thermal light where the parameters used are:
κ = 0.5 , ωC′ = 3 and n̄ = 6. The initial state of the system is: |α0〉 = |1 + 3i〉.
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Figure 19: Husimi representation for a cavity mode driven by thermal light where the parameters used are:
κ = 0 (there is no coupling), ωC′ = 3 and n̄ = 6. The initial state of the system is: |α0〉 = |1 + 3i〉.
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Figure 20: Husimi representation for a cavity mode driven by thermal light subjected to an electric field,
where the parameters used are: κ = 0.5, ωC′ = 3, η = 0.5 and the reservoir is in the vacuum state (n̄ = 0).
The initial state of the system is: |α0〉 = |1 + 3i〉.
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Figure 21: Husimi representation for a cavity mode driven by thermal light subjected to an electric field,
where the parameters used are: κ = 0 (no coupling), ωC′ = 3, η = 0.5 and the reservoir is in the vacuum
state (n̄ = 0). The initial state of the system is: |α0〉 = |1 + 3i〉.
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Figure 22: Husimi representation for a cavity mode driven by thermal light subjected to an electric field,
where the parameters used are: κ = 0.5, ωC′ = 3, η = 0.5 and n̄ = 6. The initial state of the system is:
|α0〉 = |1 + 3i〉.
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Figure 23: Husimi representation for a cavity mode driven by thermal light subjected to an electric field,
where the parameters used are: κ = 0 (no coupling), ωC′ = 3, η = 0.5 and n̄ = 6. The initial state of the
system is: |α0〉 = |1 + 3i〉.
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