
Técnicas de Optimización� Paralelas.
Esquema Híbrido basado en Hiperheurísticas�

y Computación Evolutiva

Directora
COROMOTO LEÓN HERNÁNDEZ

Curso 2012/13
CIENCIAS Y TECNOLOGÍAS/4

I.S.B.N.: 978-84-15910-59-6

SOPORTES AUDIOVISUALES E INFORMÁTICOS
Serie Tesis Doctorales

CARLOS SEGURA GONZÁLEZ

ciencias 04 (Carlos Segura González).indd 1 12/02/2014 8:21:01

Acknowledgements

First of all, I would like to thank my advisor Coromoto León for her support and
encouragement. Today, research is rarely carried out by one person alone. For this
reason, much of the work has been done in collaboration with other researchers. I
would like to thank everyone who has collaborated in this research. Specially I would
like to thank Gara Miranda and Eduardo Segredo. Most of the research concerning
hyperheuristics was done with Gara Miranda, while most of the research concerning
multiobjectivisation was done with Eduardo Segredo.

This thesis is dedicated to my parents and brothers for their endless love, support
and encouragement. Finally, I would like to make an special mention to my friends
for their understanding when I have “disappeared” and for their encouragement.

I am also grateful to the Spanish Ministry of Education, Culture and Sport for
grant fpu-ap2008-03213, which made this research possible. This work was also
supported by the ec (feder) and the Spanish Ministry of Education, Culture and
Sport as part of the ‘Plan Nacional de i+d+i’, with contract numbers: tin2005-
08818-c04-04, tin2008-06491-c04-02, and tin2011-25448. The Canary Government
partially funded this work through the pi2007/015 research project. I also want
to thank the hpc-europa project (rii3-ct-2003-506079), and the hpc-europa2
project (number: 228398) supported by the European Community Research Infras-
tructure Action. I would like to acknowledge the University of La Laguna for the
usage of the SAII (Servicio de Apoyo Informático a la Investigación) computational
systems.

Carlos Segura González

i

Abstract

Optimisation is the process of selecting the best element from a set of available
alternatives. Solutions are termed good or bad depending on its performance for a
set of objectives. Several algorithms to deal with such kind of problems have been
defined in the literature. Metaheuristics are one of the most prominent techniques.
They are a class of modern heuristics whose main goal is to combine heuristics in
a problem independent way with the aim of improving their performance. Meta-
heuristics have reported high-quality solutions in several fields. One of the reasons
of the good behaviour of metaheuristics is that they are defined in general terms.
Therefore, metaheuristic algorithms can be adapted to fit the needs of most real-life
optimisation. However, such an adaptation is a hard task, and it requires a high
computational and user effort.

There are two main ways of reducing the effort associated to the usage of meta-
heuristics. First, the application of hyperheuristics and parameter setting strategies
facilitates the process of tackling novel optimisation problems and instances. A
hyperheuristic can be viewed as a heuristic that iteratively chooses between a set
of given low-level metaheuristics in order to solve an optimisation problem. By
using hyperheuristics, metaheuristic practitioners do not need to manually test a
large number of metaheuristics and parameterisations for discovering the proper
algorithms to use. Instead, they can define the set of configurations which must
be tested, and the model tries to automatically detect the best-behaved ones, in
order to grant more resources to them. Second, the usage of parallel environments
might speedup the process of automatic testing, so high quality solutions might be
achieved in less time.

This research focuses on the design of novel hyperheuristics and defines a set of
models to allow their usage in parallel environments. Different hyperheuristics for
controlling mono-objective and multi-objective multi-point optimisation strategies
have been defined. Moreover, a set of novel multiobjectivisation techniques has
been proposed. In addition, with the aim of facilitating the usage of multiobjectivi-
sation, the performance of models that combine the usage of multiobjectivisation
and hyperheuristics has been studied.

iii

The proper performance of the proposed techniques has been validated with a
set of well-known benchmark optimisation problems. In addition, several practical
and complex optimisation problems have been addressed. Some of the analysed
problems arise in the communication field. In addition, a packing problem proposed
in a competition has been faced up. The proposals for such problems have not
been limited to use the problem-independent schemes. Instead, new metaheuristics,
operators and local search strategies have been defined. Such schemes have been
integrated with the designed parallel hyperheuristics with the aim of accelerating the
achievement of high quality solutions, and with the aim of facilitating their usage.
In several complex optimisation problems, the current best-known solutions have
been found with the methods defined in this dissertation.

iv

Contents

Acknowledgements i

Abstract iii

I Fundamentals and Background 1

1 Introduction 3

1.1 Optimisation Problems . 3
1.2 Optimisation Strategies . 6

1.2.1 Parameter Setting . 12
1.2.2 Stagnation Avoidance . 15
1.2.3 Performance Metrics . 16

1.3 High Performance Computing . 22
1.3.1 Parallel Computer Architectures 23
1.3.2 Trends of used Architectures 26
1.3.3 Parallel Programming Models 27
1.3.4 Metrics in Parallel Systems 30

1.4 Research Questions . 33
1.5 Contributions . 34
1.6 Overview . 37

2 Metaheuristics 39

2.1 Mono-Objective Metaheuristics . 39
2.1.1 Evolutionary Algorithms . 39
2.1.2 Differential Evolution . 45
2.1.3 Population-based Incremental Learning 47
2.1.4 Local Search with Heuristic Restarts 48
2.1.5 Scatter Search . 49
2.1.6 Iterated Local Search . 50

v

2.1.7 Variable Neighbourhood Search 51
2.1.8 Simulated Annealing . 53
2.1.9 Greedy Randomised Adaptive Search Procedure 55

2.2 Multi-Objective Metaheuristics . 56
2.2.1 Multi-Objective Evolutionary Algorithms 56
2.2.2 Multi-Objective Particle Swarm Optimisation 64
2.2.3 Non-dominated Sorting Differential Evolution 65

2.3 Memetic Algorithms . 66
2.4 Parallel Metaheuristics . 68

2.4.1 Island-based Model . 70

3 Recent Developments in Optimisation 75

3.1 Hyperheuristics . 75
3.1.1 Principles and motivation . 75
3.1.2 Classification . 78
3.1.3 Mono-objective hyperheuristics 80
3.1.4 Multi-objective hyperheuristics 82

3.2 Multiobjectivisation . 83
3.2.1 Principles and Motivation . 83
3.2.2 Best-known Approaches . 84

II Problem-Independent Proposals and Validation 87

4 General Algorithmic Proposals 89

4.1 Innovation in hyperheuristics . 89
4.1.1 Mono-objective hyperheuristic 89
4.1.2 Multi-objective hyperheuristic 94
4.1.3 Dynamic-mapped Island-based Model 96
4.1.4 Other tested hyperheuristics 97

4.2 Innovations in multiobjectivisations 99
4.2.1 Multiobjectivisation with parameters 99
4.2.2 Adaptive Multiobjectivisation 101

5 Validation with Benchmark Optimisation Problems 103

5.1 Mono-objective Benchmark Problems 103
5.1.1 Problems Description . 103
5.1.2 Experimental Evaluation of the Mono-objective Hyperheuristics105
5.1.3 Experimental Evaluation of Schemes Based on Multiobjectivi-

sation . 127

vi

5.2 Multi-objective Benchmark Problems 139

5.2.1 Problems Description . 139

5.2.2 Experimental Evaluation . 141

III Practical Applications 163

6 Communication Optimisation Problems 165

6.1 Antenna Positioning Problem . 165

6.1.1 General Problem Description 165

6.1.2 Mathematical Formulation . 166

6.1.3 Proposed Optimisation Schemes 167

6.1.4 Experimental Evaluation . 170

6.2 Frequency Assignment Problem . 176

6.2.1 General Problem Description 176

6.2.2 Mathematical Formulation . 178

6.2.3 Proposed Optimisation Schemes 180

6.2.4 Experimental Evaluation . 185

6.3 Broadcast Operation in Mobile Ad-hoc Networks 206

6.3.1 Introduction . 206

6.3.2 Problem Description . 207

6.3.3 Proposed Optimisation Schemes 208

6.3.4 Experimental Evaluation . 209

7 Two-dimensional Packing Problem 213

7.1 Introduction . 213

7.2 Problem Description . 214

7.3 Proposed Optimisation Schemes . 215

7.3.1 Local Search . 215

7.3.2 Memetic Schemes . 216

7.3.3 Multiobjectivised Approaches 217

7.3.4 Hyperheuristics . 217

7.4 Experimental Evaluation . 218

7.4.1 Mono-objective Schemes . 218

7.4.2 Multiobjectivised Schemes . 221

vii

IV Conclusions 235

V Appendices 239

A List of Publications 241

Bibliography 247

viii

List of Algorithms

1 Evolutionary Algorithm . 40
2 Differential Evolution . 46
3 Population-based Incremental Learning 47
4 Local Search with Heuristic Restarts 48
5 Scatter Search . 49
6 Iterated Local Search . 50
7 Variable Neighbourhood Search . 52
8 Simulated Annealing . 54
9 Greedy Randomised Adaptive Search Procedure 55
10 Non-Dominated Sorting Genetic Algorithm II 58
11 Strength Pareto Evolutionary Algorithm 2 59
12 Indicator-based Evolutionary Algorithm (Adaptive Version) 61
13 Multi-objective Cellular Genetic Algorithm 62
14 Evolution Strategy with NSGA-II . 63
15 Multi-Objective Particle Swarm Optimisation 65
16 Non-dominated Sorting Differential Evolution 66
17 Memetic Algorithm . 67
18 Local Search for the Frequency Assignment Problem 180
19 Evolutionary Algorithm with Increasing Population Size 183

ix

List of Figures

1.1 Pareto Dominance Examples . 5

1.2 Classification of Optimisation Strategies 9

1.3 Attainment surfaces (10%, 50% and 100%) 19

1.4 Hypervolume metric . 20

1.5 Shared memory architecture . 25

1.6 Distributed memory architecture . 26

1.7 Hybrid distributed-shared memory architecture 27

2.1 Flow-chart of an Evolutionary Algorithm (EA) 41

2.2 Sub-string Crossover (SSX) . 43

3.1 Hyperheuristic Framework . 77

3.2 Classification of hyperheuristics proposed by Burke et al. 79

4.1 Assignments to ConfBad for the trivial problem 92

4.2 Evolution of assignments for the trivial problem (k = 2048) 93

4.3 Behaviour of the metaheuristics without threshold (left-hand side)
and with threshold (right-hand side) 101

4.4 Shifted Ackley function with two variables 102

5.1 Median of the fitness considering different mutation probabilities (F1
- F6) . 107

5.2 Median of the fitness considering different mutation probabilities (F7
- F11) . 108

5.3 Median of the fitness considering different number of configurations
(F1 - F6) . 109

5.4 Median of the fitness considering different number of configurations
(F7 - F11) . 110

5.5 Resource sharing with 16 configurations (F1 - F2) 112

5.6 Fitness for F5 with different configurations 114

xi

5.7 Evolution of the fitness with mono weight for different adaptation
levels . 117

5.8 Comparison of the best sequential approach and mono weight . . . 118
5.9 Boxplots of the fitness achieved in 105 evaluations with F11 (starting

from 800) . 119
5.10 Boxplots of the fitness achieved in 105 evaluations with F11 (starting

from 46) . 120
5.11 Comparison of elitist and probabilistic selection schemes 121
5.12 Scalability analysis for the best migration stages (F1 - F6) 125
5.13 Scalability analysis for the best migration stages (F7 - F11) 126
5.14 Median of the fitness considering different multiobjectivisations (F1

- F6) . 136
5.15 Median of the fitness considering different multiobjectivisations (F7

- F11) . 137
5.16 Median of the hypervolume considering different mutation probabili-

ties (WFG1 - WFG6) . 143
5.17 Median of the hypervolume considering different mutation probabili-

ties (WFG7 - WFG9) . 144
5.18 Median of the hypervolume considering different number of configu-

rations (WFG1 - WFG6) . 145
5.19 Median of the hypervolume considering different number of configu-

rations (WFG7 - WFG9) . 146
5.20 50% Attainment Surfaces at 1.000.000 Evaluations (WFG7, WFG8) . 148
5.21 Evolution of the median of the hypervolume (WFG7, WFG8) 148
5.22 Resource sharing with 16 configurations (WFG1 - WFG6) 150
5.23 Resource sharing with 16 configurations (WFG7 - WFG9) 151
5.24 Hypervolume for WFG8 with different configurations 153
5.25 Boxplots of the resources granted to the configuration that executed

more evaluations . 157
5.26 Scalability analysis for different migration stages (WFG1 - WFG6) . . 160
5.27 Scalability analysis for different migration stages (WFG7 - WFG9) . . 161

6.1 Creation of offspring with gc . 169
6.2 Mean of the fitness obtained at the end of the executions 170
6.3 Fitness obtained by the best mono-objective approaches 171
6.4 Attainment Surfaces with several pm values 172
6.5 Attainment Surfaces with several pc values 173
6.6 Comparison of multi-objective and mono-objective approaches 174
6.7 Comparison of hv weight and Seq1 175

xii

6.8 Generation of a new neighbour by reassigning the frequencies of a sector181

6.9 Topology of the considered instances 186

6.10 Mean interference of the four metaheuristics every 120 seconds in the
Seattle network. 188

6.11 Mean interference of the four metaheuristics every 120 seconds in the
Denver network. 189

6.12 Mean cost obtained with different models for the Seattle and Denver
instance . 191

6.13 Boxplots of the obtained cost . 193

6.14 Run-length distribution for both considered instances 194

6.15 Evolution of the cost function for Seattle and Denver networks 194

6.16 Box-plots of the achieved costs . 196

6.17 Run length distributions for “seq1” and mono weight 197

6.18 Evolution of the mean of the cost - 4 islands 201

6.19 Boxplots for the Seattle and Denver Instances - 4 islands 202

6.20 RLDs for the Seattle and Denver Instances - 4 islands 203

6.21 Boxplot for the Seattle Instance with the best and worst migration
schemes . 206

6.22 Boxplot for the Denver Instance with the best and worst migration
schemes . 207

6.23 Hypervolume achieved by the parallel models 211

6.24 Run length distributions of parallel and sequential approaches 212

7.1 Generation of neighbours by the learning process 215

7.2 Fitness obtained in the Contest instance 219

7.3 RLDs of seq1 and mono weight16 220

7.4 Evolution of the mean of the original objective function obtained with
the multiobjectivised schemes . 225

7.5 Evolution of the mean of the original objective function obtained with
the mono weight model with 4 worker islands 226

7.6 Boxplots of the obtained fitness with the mono weight model with
4 islands . 227

7.7 Boxplots of the mono weight model with the best and worst mi-
gration stages for the Small Instance 229

7.8 Boxplots of the mono weight model with the best and worst mi-
gration stage for the Contest Instance 229

7.9 RLDs of the mono weight model with the best and worst migration
stages for the Small Instance . 231

xiii

7.10 RLDs of the mono weight model with the best and worst migration
stages for the Contest Instance . 231

7.11 Boxplots of the mono weight model with the best migration stage
with 64 and 128 islands . 233

xiv

List of Tables

5.1 Main features of f1-f11 problems . 104

5.2 Percentage of saved evaluations with mono-weight (F1 - F6) 111

5.3 Percentage of saved evaluations with mono-weight (F7 - F11) . . . 111

5.4 Factor of additional evaluations performed with mono-weight (F1
- F6) . 113

5.5 Factor of additional evaluations performed with mono-weight (F7
- F11) . 113

5.6 Median of the fitness for different values of k (F1 - F6) 116

5.7 Median of the fitness for different values of k (F7 - F11) 116

5.8 Median of the fitness achieved in 105 evaluations with F11 (starting
from 800) . 119

5.9 Median of the fitness achieved in 105 evaluations with F11 (starting
from 46) . 120

5.10 Speedup of the parallel approach (4 islands) with mono-weight and
different migration stages (F1 - F6) 123

5.11 Speedup of the parallel approach (4 islands) with mono-weight and
different migration stages (F7 - F11) 123

5.12 Best mono-objective and multi-objective approaches - D = 50 128

5.13 Median of the error for the best approaches - D = 50 128

5.14 Best mono-objective and multi-objective approaches - D = 500 129

5.15 Median of the error for the best approaches - D = 500 129

5.16 Percentage of saved evaluations by the best multiobjectivisation . . . 130

5.17 Statistical comparison among different threshold values 132

5.18 Number of evaluations required to achieve a fixed quality level 132

5.19 Statistical comparison among different threshold values by stages - F4 133

5.20 Statistical comparison among different threshold values by stages - F5 133

5.21 Statistical comparison among different threshold values by stages - F11134

5.22 Factor of additional evaluations performed with each th in comparison
to eli-mono-weight (F1 - F6) . 138

xv

5.23 Factor of additional evaluations performed with each th in comparison
to eli-mono-weight (F7 - F11) . 138

5.24 Median of the fitness with a population with 100 individuals (F1 - F6)138

5.25 Median of the fitness with a population with 100 individuals (F1 - F6)139

5.26 Main features of wfg problems . 140

5.27 Statistical comparison between hv weight and random (WFG1 -
WFG5) . 147

5.28 Statistical comparison between hv weight and random (WFG6 -
WFG9) . 147

5.29 Percentage of saved evaluations with hv-weight (WFG1 - WFG5) . 149

5.30 Percentage of saved evaluations with hv-weight (WFG6 - WFG9) . 149

5.31 Factor of additional evaluations performed with hv-weight (WFG1
- WFG5) . 152

5.32 Factor of additional evaluations performed with hv-weight (WFG6
- WFG9) . 152

5.33 Median of the hypervolume for different values of k (WFG1 - WFG5) 154

5.34 Median of the hypervolume for different values of k (WFG6 - WFG9) 154

5.35 Statistical comparison between k =∞ and other values of k (WFG1
- WFG5) . 155

5.36 Statistical comparison between k =∞ and other values of k (WFG6
- WFG9) . 155

5.37 Factor of additional evaluations performed with each k respect to
k =∞ (WFG1 - WFG5) . 155

5.38 Factor of additional evaluations performed with each k respect to
k =∞ (WFG6 - WFG9) . 156

5.39 Speedup of the parallel approach (4 islands) with hv-weight and
different migration stages (WFG1 - WFG5) 158

5.40 Speedup of the parallel approach (4 islands) with hv-weight and
different migration stages (WFG6 - WFG9) 159

6.1 Statistical comparison of Multi-Objective Evolutionary Algorithms
(MOEAs) . 172

6.2 Advantages of incorporating problem-dependent information 173

6.3 Statistical comparison of gc with different radius 174

6.4 Results of the metaheuristics for 4 different time limits on the Seattle
instance . 187

6.5 Results of the metaheuristics for 4 different time limits on the Denver
instance . 187

xvi

6.6 Mean and standard deviation of 30 random solutions and 30 execu-
tions of local search for the Denver and Seattle networks. 187

6.7 Post-hoc tests of the results for the Seattle instance. Time limits for
which the pairwise comparison is not significant. 190

6.8 Post-hoc tests of the results for the Denver instance. Time limits for
which the pairwise comparison is not significant. 190

6.9 Statistical Comparison of Configurations for the Seattle Instance . . . 191

6.10 Statistical Comparison of Configurations for the Denver Instance . . . 192

6.11 Statistical Comparison of Variation Schemes for Seattle 192

6.12 Statistical Comparison of Variation Schemes for Denver 192

6.13 Robustness of sequential configurations 195

6.14 Statistical analysis fixing the execution time 197

6.15 Speedup of the parallel models in the Seattle network 198

6.16 Speedup of the parallel models in the Denver network 198

6.17 Quality comparison of the hyperheuristic-based models with a ran-
dom scheme for the Seattle network 199

6.18 Quality comparison of the hyperheuristic-based models with a ran-
dom scheme for the Denver network 200

6.19 Statistical comparison for the Seattle Instance - 4 islands 202

6.20 Speedup factors for the Seattle Instance - 4 islands 203

6.21 Statistical comparison for the Denver Instance - 4 islands 203

6.22 Speedup factors for the Denver Instance - 4 islands 203

6.23 Speedup factors for the Seattle Instance - 8, 16, and 32 islands 204

6.24 Statistical comparison for the Seattle Instance - 32 islands 204

6.25 Speedup factors for the Denver Instance - 8, 16, and 32 islands 205

6.26 Statistical comparison for the Denver Instance - 32 islands 205

6.27 Mean hypervolume achieved by the different Parallel Multi-Objective
Evolutionary Algorithms (PMOEAs) 210

6.28 Speedup of the proposed model and success ratio for sequential models212

7.1 Speedup of the new parallel model 221

7.2 Mean and median fitness for mono weight16 and random16 221

7.3 Original objective function for the multiobjectivised configurations -
Small Instance . 222

7.4 Original objective function for the multiobjectivised configurations -
Contest Instance . 223

7.5 Statistical tests of the mono weight model - 16 islands - 5 hours -
Small Instance . 227

xvii

7.6 Statistical tests of the mono weight model - 32 islands - 5 hours -
Small Instance . 228

7.7 Statistical tests of the mono weight model - 4 islands - 11.5 hours
- Contest Instance . 228

7.8 Statistical tests of the mono weight model - 8, 16, 32 islands - 11.5
hours - Contest Instance . 228

7.9 Speedup factors of mono weight with the best and worst migration
stages - Small Instance . 232

7.10 Speedup factors of mono weight with the best and worst migration
stages - Contest Instance . 232

7.11 Speedup factors of mono weight with the best migration stage for
both instances . 234

xviii

List of Acronyms

2DPP Two-Dimensional Packing Problem
ACO Ant Colony Optimisation
ADI Average Distance to Individuals
APP Antenna Positioning Problem
CHC Eshelman’s cross generational elitist selection, heterogeneous

recombination, and cataclysmic mutation
CGA Cellular Genetic Algorithm
CMOS Complementary Metal-Oxide-Semiconductor
COW Clusters of Workstations
CPU Central Processing Unit
CSP Cutting Stock Problem
DBI Distance to Best Individual
DC Divide-and-Conquer
DCN Distance to Closest Neighbour
DE Differential Evolution
DFCN Delayed Flooding with Cumulative Neighbourhood
EA Evolutionary Algorithm
EAIPS Evolutionary Algorithm with Increasing Population Size
EGA Equilibrium Genetic Algorithm
EP Evolutionary Programming
ES Evolution Strategies
ESN Evolution Strategy with NSGA-II
FAP Frequency Assignment Problem
GA Genetic Algorithm
GAA Genetic Annealing Algorithm
GECCO Genetic and Evolutionary Computation Conference
GEN-S Generational with Elitism Selection
GP Genetic Programming
GRASP Greedy Randomised Adaptive Search Procedure
GSM Global System for Mobile Communications

xix

HPC High Performance Computing
HUX Half Uniform Crossover
IBEA Indicator-Based Evolutionary Algorithm
ILS Iterated Local Search
IX Interference-based Crossover
LSHR Local Search with Heuristic Restart
MANET Mobile Ad-Hoc Networks
MA Memetic Algorithm
METCO Metaheuristic-based Extensible Tool for Cooperative Optimisation
MIFAP Minimum Interference Frequency Assignment Problem
MIMD Multiple Instruction Multiple Data
MISD Multiple Instruction Single Data
MM Mapping Mutation
MOCell Multi-Objective Cellular Genetic Algorithm
MOEA Multi-Objective Evolutionary Algorithm
MOFAP Minimum Order Frequency Assignment Problem
MOGA Multi-Objective Optimisation Genetic Algorithm
MOP Multi-Objective Optimisation Problem
MOPSO Multi-Objective Particle Swarm Optimisation
MSFAP Minimum Span Frequency Assignment Problem
MPI Message Passing Interface
NM Neighbour-based Mutation
NOW Networks of Workstations
NPGA Niched Pareto Genetic Algorithm
NSGA Non-Dominated Sorting Genetic Algorithm
NSGA-II Non-Dominated Sorting Genetic Algorithm II
NSDEMO Non-dominated Sorting Differential Evolution for

Multiobjective Optimization
NUMA Non-Uniform Memory Access
OpenMP Open Multi-Processing
OPX One Point Crossover
PAES Pareto Archived Evolution Strategy
PBIL Population-based Incremental Learning
PM Polynomial Mutation
PMOEA Parallel Multi-Objective Evolutionary Algorithm
PSO Particle Swarm Optimisation
PVM Parallel Virtual Machine
QoS Quality of Service

xx

RLD Run-Length Distribution
RW-S Replace Worst Selection
SA Simulated Annealing
SBX Simulated Binary Crossover
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SS Scatter Search
SSX Two-Dimensional Substring Crossover
SPEA Strength Pareto Evolutionary Algorithm
SPEA2 Strength Pareto Evolutionary Algorithm 2
SPMD Single-Program Multiple-Data
SSGA Steady-State Genetic Algorithm
SS-S Steady-State Selection
TS Tabu Search
UM Uniform Mutation
UX Uniform Crossover
VEGA Vector Evaluated Genetic Algorithm
VND Variable Neighbourhood Descent
VNS Variable Neighbourhood Search
2DPP Two-Dimensional Packing Problem

xxi

Part I

Fundamentals and Background

Chapter

1

Introduction

This chapter introduces the main concepts used throughout the dissertation. The
definition of optimisation problem as well as a brief introduction to some of the most
extended optimisation strategies is offered. In addition, the set of metrics used to
validate the proposals are summarised. The solution of most of the optimisation
problems addressed in this research involves the usage of computationally expensive
procedures. In order to reduce the time required to solve them, a parallel model has
been proposed. Thus, an introduction to high performance computing and parallel
computing is also presented. The main objectives and contributions achieved during
the research are summarised in this chapter. Finally, the overview of the dissertation
is described.

1.1 Optimisation Problems

Optimisation is a key topic in computer science, artificial intelligence, operational
research and several other related fields [62]. In these fields, optimisation is the
process of trying to find the best possible solution to solve a problem. Thus, it turns
out that an optimisation problem is a problem for which there are different possible
solutions, and there is a clear notion of solution quality. Solving an optimisation
problem involves finding the best solution from all feasible solutions regarding cer-
tain objectives and subject to certain constraints. Computational optimisation is
crucial in many fields of science and technology as well as in finance, business and
medicine [154]. A solution to an optimisation problem is generated by taking several
decisions that depend on the problem domain. For instance, the deployment of a
wireless network might involve several decisions as selecting the places where the
set of antennas must be placed, or assigning their frequencies; while in a scheduling

CHAPTER 1. Introduction

problem, the decisions might involve selecting the timetable for different lessons, or
selecting the granted resources. Regardless of the given optimisation problem, such
decisions are usually expressed as a set of decision variables. Therefore, a solution
of the problem is generated by assigning specific values to such a set of variables.
This set of variables is usually called the decision vector.
Given an optimisation problem P , the quality of a decision vector x is determined
by a function f . When the aim of the optimisation problem is to maximise f , the
optimisation function f is usually said to be a fitness function. In the cases where f
must be minimised, f is usually said to be a cost function. However, some authors
use the term fitness function regardless of the optimisation direction. Thus, in order
to avoid misunderstanding, it is better to explicitly define the optimisation direction
of f . Based on the function f , optimisation problems can be classified as mono-
objective or multi-objective optimisation problems. In mono-objective optimisation
problems f is a scalar function, while in multi-objective optimisation problems f
is a vector function. Several formal definitions of optimisation problem have been
proposed. A mono-objective optimisation problem P can be defined [147] as a
quadruple (I, F, f, g), where:

• I is a set of instances.

• Given an instance i ∈ I, F (i) is the set of feasible solutions.

• Given an instance i and a feasible solution x of i, f(i, x) is the objective value.

• g is the goal function, and is either min or max.

Solving an instance i of a mono-objective optimisation problem involves finding its
optimal solution, i.e. a feasible solution x with: f(i, x) = g{f(i, x′)|x′ ∈ F (i)}. In
mono-objective optimisation problems, several optimal solutions might exist. Usua-
lly, the aim of the optimisation is to find any of them [75].
In the case of multi-objective optimisation problems, f is a vector function that com-
prises a set of scalar objectives [211]. The multiple objectives are usually conflicting,
so a solution optimising every single objective might not exist [57, 58]. Without loss
of generality, in the following description it is assumed that every scalar objective
must be minimised. A multi-objective optimisation problem can be formally descri-
bed as:

Optimize f(x) = (f1(x), f2(x), ..., fk(x)) subject to x ∈ F

where f(x) is the objective vector, fi(x) is the i-th objective to be optimised, k is
the number of objectives to optimise, x is the decision vector and F is the feasible

4

1.1. Optimisation Problems

(a) Non-dominated solutions (b) a � b , a � c

Figure 1.1: Pareto Dominance Examples

region in the decision space. Given that in multi-objective optimisation, several
objectives are simultaneously considered, the notion of optimal solution must be
redefined. The most common applied definition of optimality is the one defined by
Francis Ysidro Edgeworth [88], and generalised by Vilfredo Pareto [200]. Such a
definition of optimality constitutes by itself the origin of research in multi-objective
optimisation. In fact, the main aim of multi-objective optimisation is to identify
the set of Pareto Optimal solutions. In order to formally define a Pareto Optimal
solution, the concept of Pareto domination must be given:

Definition 1 A decision vector x dominates the vector y (x � y) if ∀i ∈
{1, . . . , k} fi(x) ≤ fi(y) ∧ ∃i ∈ {1, . . . , k} : fi(x) < fi(y)

That is, a solution x is said to dominate a solution y if and only if x performs better
than y in at least one objective and at least as good as y in the rest. Figure 1.1
illustrates the concept of Pareto domination. It shows the objectives values of a
set of solutions for an optimisation problem with two objectives. Minimisation is
assumed in both objectives. In subfigure a, no one of the solutions is better than
any other when both objectives are taken into consideration. Thus, there are no
dominations among the solutions. In subfigure b, the solution a dominates both the
solutions b and c. Both f1(a) and f2(a) are lower than the corresponding objective
values of b and c. However, there is no domination between solutions b and c.

The definition of domination can be extended to sets of solutions. The set of solu-
tions A is said to dominate the set of solution B, if every solution in the set B is
dominated by at least one solution of the set A.

5

CHAPTER 1. Introduction

Definition 2 A decision vector x strongly dominates the vector y (x ≺ y) if solu-
tion x is strictly better than solution y in every objective, i.e. ∀i ∈ {1, . . . , k} fi(x) <
fi(y)

In order to distinguish between both kinds of dominations, some authors refer to the
domination x � y as weak domination. In this dissertation, the term domination
always denotes the weak domination.

Definition 3 A decision vector x is a Pareto Optimum if there is no solution
y ∈ F : y � x.

These solutions are optimal in the sense that no other solutions in the search space
are superior to them when all objectives are considered, i.e. a solution x is said to be
Pareto Optimal, or non-dominated, if there not exist any solution y that performs
better than x in at least one objective and at least as good as x in the rest. Usually,
practitioners refer to the set of solutions obtained by an optimisation scheme, as the
set of non-dominated solutions. In this case non-dominated solutions mean that the
scheme has not been able to find any solution that dominates them. However, if
every candidate solutions were explored, a solution which dominates some of them
might be found. Some other related concepts are the Pareto Set and the Pareto
Front.

Definition 4 The Pareto Set, P∗, for a given multi-objective optimisation pro-
blem P , and instance i, is the set of feasible solutions that are Pareto Optimum.

It is important to note that the vectors in the set P∗ are in the space of the varia-
bles. However, in order to identify them, their transformations to the space of the
objectives are used.

Definition 5 Given a problem P and instance i, whose Pareto Set is P∗, the
Pareto Front, Pareto Optimal Front, or Pareto Frontier is defined as PF∗ =
{f(x), x ∈ P∗}
Thus, the Pareto Front of a problem is made up by applying the function f to each
solution of the Pareto Set.

1.2 Optimisation Strategies

Several optimisation strategies have been designed with the aim of dealing with
optimisation problems. Their corresponding algorithms can be classified in different
groups in terms of different properties. This section shows a classification based

6

1.2. Optimisation Strategies

on the next properties of the algorithms: implementation, complexity, and design
paradigms.

Classification by Implementation

The optimisation strategies can be categorised depending on several implementation
details. Some of the most used are:

• Programming paradigm: there are several programming paradigms to develop
algorithms. In imperative programming algorithms are described in terms of
statements that change the program state. Imperative programs define se-
quences of commands that the computer must execute. In functional pro-
gramming algorithms are expressed as the evaluation of mathematical func-
tions. This kind of programming avoids the usage of states and mutable data.
Thus, in contrast with imperative programming, in functional programming
the results of a function only depends on its arguments. In logic programming
algorithms are expressed as logical inference rules. These algorithms consist
of two main components: logic and control. The logic expresses the axioms
that may be used in the computation and the control determines the way in
which deduction is applied to the axioms.

• Recursive or iterative: a recursive algorithm is one that invokes itself repeat-
edly until a certain final condition is satisfied, whereas iterative algorithms use
repetitive constructs - like loops - and never invoke themselves.

• Serial or parallel or distributed : serial algorithms execute one instruction at a
time, while parallel and distributed algorithms run on computer architectures
where several processing units can work together. Thus, several sentences
are executed at the same time. In order to afford the cooperation among
processors, the algorithm is usually divided into different subtasks which can
be distributed or solved by different units. The results are then gathered to
yield the final solution of the algorithm.

• Deterministic or non-deterministic: deterministic algorithms solve the pro-
blem with exact decisions at every step of the algorithm. In this kind of
approaches, randomness is not used. Therefore, given a fixed input, the same
outcome is always obtained. Non-deterministic algorithms, also known as
stochastic algorithms, introduce some decision steps based on randomness
and probabilities. Therefore, this kind of algorithms does not guarantee the
achievement of similar outcomes for an identical input in different executions
of the approach.

7

CHAPTER 1. Introduction

Classification by Complexity

Algorithms can also be classified based on their complexity. The complexity of an
algorithm is a function that expresses the amount of resources - usually time and
memory - required by an algorithm to complete. Several notations for the complexity
have been proposed. The O-notation is the dominant method used to express the
complexity of algorithms [32]. This notation characterises procedures and algorithms
according to their growth rates in the worst-case. Thus, a complexity O(g) in the
time, means that the execution time of the algorithm grows asymptotically no higher
than g, being g a function which usually depends on the inputs of the algorithm.
The complexity of the algorithm is useful to analyse the limitations of the designed
approaches and to predict the resources required by the designed approaches to
finalise.
Optimisation problems are also categorised using their complexity. Specifically,
if a given problem may be solved to optimality by using multiple algorithms of
different complexities, the one with the best worst-case is considered. Complexity
classes collect the problems that can be solved using no more time than a specified
amount. The most prominent complexity classes are P and NP. The class P refers
to the problems solvable by some algorithm within a number of steps bounded by
some fixed polynomial in the length of the input. The class NP refers to problems
which are solvable by a non-deterministic touring machine in polynomial time. The
complexity class P is contained in NP. The opposite is unknown [61]. The class NP
contains many important problems, the hardest of which are called NP-Complete
problems. A NP problem p is also a NP-Complete problem if and only if every other
problem in NP can be transformed into p in polynomial time. A large number of
optimisation problems are classified as NP-Complete problems [69]. Several of the
optimisation problem addressed in this thesis are known to be NP-Complete.

Classification by Design Paradigm

Another classification criterion is based on the general methodology applied in the
design of the algorithms. Many design paradigms have been proposed in the litera-
ture. Depending on the problem type and properties, on the aim of the optimisation,
and on the size of the instances, some of the methodologies will be more appropriate
than others [180]. Figure 1.2 shows some of the most used paradigms. A high-
level classification of the paradigms divides them into two categories: exact and
approximation approaches. Exact algorithms guarantee the achievement of opti-
mal solutions. However, they usually require a large amount of resources, even for
small instances. Thus, many real-world problems can not be tackled with exact
approaches. Among the exact approaches is worth mentioning the next ones:

8

1.2. Optimisation Strategies

Figure 1.2: Classification of Optimisation Strategies

• Numerical Analysis [225]: this kind of method is based on the usage of nume-
rical approximations to solve the problem. Such approximations can only be
applied when some properties hold for the underlying optimisation function,
so they are not general methods. Although the achievement of the optimal
value is not ensured in every numerical method, generally the properties of
the convergence of each numerical strategy are known. Thus, the achievement
of an error lower than some fixed threshold might be ensured. Since other ap-
proximation methods do not ensure any properties regarding the convergence,
in many classifications they are categorised as exact methods [163].

• Divide and conquer [151]: an instance of a problem is repeatedly reduced to a
set of smaller subinstances or subproblems. When the subproblems are small
enough, they are solved and the results are subsequently combined until a com-
plete solution is achieved for the initial problem. Three generic computational
operations can be identified in this model: split, compute, and join.

• Dynamic programming [23]: in many problems, the optimal solution can be
constructed from optimal solutions to slightly small subproblems. In such
cases, the problem usually exhibits the properties of overlapping subproblems,
i.e. the same subproblems are used to solve several different problem in-
stances [70]. In dynamic programming, the solution of each solved subproblem
is stored in memory. Thus, the recomputing of solutions that have already been
computed is avoided.

9

CHAPTER 1. Introduction

• Enumeration techniques [196]: these techniques are based on enumerating
the different feasible solutions of the decision space, probably pruning some
of them. The prune is done on the basis of a mathematical argument that
guarantees that exploring the pruned zones is not required to obtain an optimal
solution. Some of the most common algorithms in this category are exhaustive
search, branch and bound, and backtracking with pruning.

Approximation approaches try to find reasonably good solutions reasonably fast.
The requirements in time and memory of approximation algorithms are much lower
than the requirements of exact approaches. Thus, by using approximation ap-
proaches, real-world instances of complex optimisation problems can be tackled.
However, they do not guarantee the achievement of optimal solutions. Among the
approximation algorithms, heuristics are very popular.

Definition 6 A heuristic is a criterion, method, or principle for deciding which
among several alternative courses of action promises to be the most effective in order
to achieve some goal [202].

The design of heuristics represents a compromise between two requirements: the
need to make simple and low-cost methods and, at the same time, the desire to see
them discriminate correctly between good and bad choices. The heuristic design is
usually based on problem-dependent information. Heuristics can be used as a whole
optimisation algorithm, or they can also be used inside exact search strategies as
a way to recommend which of a set of possible solutions is to be examined next.
Thus, they can be used as a way of speeding-up an exact approach.
Heuristics are usually based on specific knowledge of the problem. Therefore, its
design and implementation is a hard task. Usually, they can not be easily adapted to
other similar optimisation problems, or even they might be useful only for a subset
of the instances of an optimisation problem. In order to improve the behaviour of
heuristics, they can be integrated with other techniques, as re-starting and randomi-
sation strategies. Also, by combining different heuristics, results can be improved.
However, combining different simple heuristics is not an easy task, and it might
yield to unsatisfactory results [111]. Metaheuristics appear as a class of modern
heuristics whose main goal is to combine heuristics in a problem independent way
with the aim of improving their performance [247].

Definition 7 A metaheuristic is a heuristic method for solving a very general
class of problems. It combines objective functions or heuristics in an abstract and
hopefully efficient way, usually without considering deeper insight into their struc-
ture.

10

1.2. Optimisation Strategies

Metaheuristics are defined as master strategies that guide and modify other heuris-
tics with the aim of improving the solutions obtained by them. They are usually
non-deterministic approaches whose main goal is to efficiently explore the search
space in order to find near-optimal solutions. The design of metaheuristics is not
problem-specific. However, they might make usage of domain-specific knowledge in
the form of heuristics that are controlled by the upper level strategy. Most of the
metaheuristics try to combine in an intelligent manner the processes of intensifi-
cation and diversification [112]. In the intensification stage the search focuses on
examining neighbours of elite solutions. The diversification stage encourages the
search process to examine unvisited regions and to generate solutions that differ
in various significant ways from those explored before. Compared to exact search
methods, metaheuristics are not able to ensure a systematic exploration of the entire
solution space. Instead, they attempt to examine the parts where “good” solutions
may be found. Well-designed metaheuristics try to avoid being trapped in local op-
tima or to repeatedly cycle through visited solutions. Moreover, given the limitation
of resources, it is also important to provide a reasonable assurance that the search
does not overlook promising regions.

A wide variety of metaheuristics have been proposed in the literature [29]. They
range from simple local searches to complex learning procedures. Many of them are
based on utilising statistics obtained from samples previously visited in the search
space; others are based on some natural phenomenon or physical process models.
For example, Simulated Annealing (SA) decides which solution candidate to be
evaluated next according to the Boltzmann probability factor of atom configurations
of solidifying metal melts, while Evolutionary Algorithms (EAs) mimic the behaviour
of natural evolution and treat candidate solutions as individuals competing in a
virtual environment. Other widely used metaheuristics are: Tabu Search (TS),
Scatter Search (SS), Memetic Algorithms (MAs), Greedy Randomised Adaptive
Search Procedure (GRASP), Variable Neighbourhood Search (VNS), Iterated Local
Search (ILS), and Ant Colony Optimisation (ACO).

Several classifications of metaheuristics are seen to exist [50]. A very popular one
makes a distinction between trajectory-based and population-based approaches [30].
The main difference between these two kinds of methods lies in the number of tenta-
tive solutions managed at each step of the algorithm. Trajectory-based approaches,
also named single point search, maintain at any instant of the optimisation process
a single solution x. At each step, a transformation over x is performed, genera-
ting a new candidate solution. The term trajectory refers to the fact that the
search performed by these methods is characterised by a trajectory in the search
space. A successor solution may or may not be a neighbour of the current solution.
Population-based approaches maintain a pool with several candidate solutions in

11

CHAPTER 1. Introduction

every iteration of the algorithm. The final results depend on the way the population
is manipulated. The basic actions are add or delete candidate solutions from this
pool, as well as make transformations over a candidate solution.

Another popular classification distinguishes between metaheuristics for static opti-
misation and metaheuristics that have been adapted for dynamic optimisation. In
static optimisation the function f does not depends on the time. Thus, the meta-
heuristic can assume that f only depends on the decision vector x, and therefore,
exploring the same region several times in not necessary. However, in the dynamic
case, the function f changes over the time. They are used to model time-varying
systems. In this kind of optimisation problems, the quality of a decision vector
depends on several factors that change over the time. In this thesis every tackled
problem has static objectives.

A widely explored research topic in metaheuristics deals with the design of suitable
stopping criteria. In order to avoid a waste of resources, an optimisation run should
be terminated as soon as convergence has been obtained. However, detection of this
condition is not a trivial task, and it depends on several features of the problem [253].
Since the set of candidate solutions is usually very large, metaheuristics are typically
implemented so that they can also be interrupted after a user-specified budget. This
budget is usually defined in terms of the maximum execution time, or in terms of
maximum number of function evaluations which can be performed. Most of the
experiments in this thesis have been performed using a fixed budget of resources as
stopping criterion. However, in order to be able to analyse the convergence features
of the analysed models, the way in which the quality of the solution has evolved
during the executions has also been considered.

1.2.1 Parameter Setting

Many real-world optimisation problems are characterised by large and complex
search spaces. In order to solve them, many difficulties have to be faced. When
dealing with such difficult and large-size optimisation problems, metaheuristics are
preferable to classical optimisation methods [231]. However, from the methodolo-
gical side, the development of efficient metaheuristics results in a complex process.
Moreover, it requires the setting of a large number of parameters and the decision
between numerous search components at different design steps.

In general, in order to successfully apply a metaheuristic several components and
parameters must be specified. For instance, EAs - which has been widely used in
this research - are a class of algorithms based on the same generic framework whose
details need to be specified to obtain a particular EA. It is customary to call these
details the EA parameters. Among others parameters, in EAs [93], the mutation,

12

1.2. Optimisation Strategies

crossover, and selection operators, as well as several probabilities must be set up.
The quality of the solutions highly depends on such components and parameteri-
sations [8, 167]. Thus, it is very important to perform the parameterisation in a
proper way.

Usually, when a novel problem is tackled, there is no a priori information of which
metaheuristic is the most suitable one. Therefore, in order to obtain high-quality
solutions, several metaheuristics, as well as several parameterisations for each of
them must be tested. Thus, the effort required to obtain high-quality solutions, both
in terms of user-effort and computational-effort, might be very large. The complexity
and cost of the selection process highly hinders the usage of metaheuristics. The
selection of the parameters can be done in several ways [18]:

• Checking in a systematic way some ranges of the parameter values and assess-
ing the performance of each value.

• Based on the experiences reported in the literature for similar optimisation
problems.

• Performing a theoretical analysis of the behaviour of the metaheuristic for
determining the optimal parameter setting.

• Using “standard” values.

Although every option has reported good results in different fields, using standard
values, and checking the parameters in a systematic way are the most extended ap-
proaches [156]. In order to reduce the waste of resources of a systematic testing of the
ranges, and with the aim of minimising the user effort, several studies has analysed
the automation of the parameterisation of EAs and other metaheuristics [219].
Setting strategies usually divide the parameters and components into two cate-
gories [219]. The first group contains the parameters in which a metric of distance
can be established among the accepted values. For instance, considering an EA, the
crossover probability belongs to this group. The second group contains parameters
with a finite domain and no sensible distance metric. For instance, considering again
an EA, the crossover operator belongs to this group. The reason to make the distinc-
tion between this two groups is that the first group has a structure where relations
between different parameters can be exploited. Specifically, it is usually assumed
that two parameters with a low distance, will behave in a similar way. However, in
the second group there is no an exploitable structure. The parameters in the first
group are usually named numeric parameters, while the ones in the second group
are named symbolic parameters.

13

CHAPTER 1. Introduction

The setting strategies are commonly divided into two categories: parameter tuning
and parameter control. In parameter tuning [219] the objective is to identify the
best set of parameters for a given metaheuristic. Then, the algorithms are run using
these parameterisations, which remain fixed during the complete run. In this regard,
it is important to remark that, usually, the parameters of the metaheuristics interact
in highly non-linear ways [156]. Moreover, there are usually a large amount of pa-
rameterisation choices, but only little knowledge about the effect of the parameters.
Thus, the problem of finding the best set of parameters is very hard. The stochastic
behaviour of metaheuristics also hinders the design of the tuning strategies. The
main drawbacks of parameter tuning are the following:

• Parameters are not independent, but trying all different combinations syste-
matically is practically impossible.

• The process of parameter tuning is time consuming, even if parameters are
optimised one by one regardless of their interactions.

• For a given problem, the selected parameter values are not necessarily optimal
for all the stages of the optimisation, even if the effort made for setting them
was significant.

Several studies [91] have concluded that the usage of static set of parameters during
a metaheuristic run seems to be inappropriate. The main drawback of parameter
tuning is that there is no guarantee that a fixed set of parameters leads to optimal
performance because the demands of optimisation algorithms change during an op-
timisation run from exploration in early stages to exploitation in later stages. Since
different parameter settings are needed to emphasise either exploration or exploita-
tion, it follows that optimal parameter settings might vary over time. In fact, it has
been empirically and theoretically demonstrated that different values of parameters
might be optimal at different stages of the optimisation [14, 223].
Several metaheuristics as Simulated Annealing and Evolution Strategies provide self-
adaptive parameters to deal with the requirements of each optimisation stage. Since
they have been of great value in several fields, it seems promising to incorporate
these ideas into other metaheuristics. Moreover, it would be of a great value to
integrate these ideas in a general way, i.e. not taking into account the meaning
of the controlled parameters. In this way, a large number of metaheuristics might
profit from the designed strategies.
Parameter control strategies allow changing the parameter values during the meta-
heuristic runs. Thus, the aim of parameter control is to design a control strategy
that selects the parameters to use at each stage of the optimisation. Several strate-
gies that adapt the parameters of the algorithms have been designed. Most of

14

1.2. Optimisation Strategies

them [223, 252] depend on the formulation of the metaheuristic, and on some pro-
perties of the controlled parameters, so they can not be applied in a straightforward
manner to other metaheuristics and/or parameters. Hyperheuristics are popular
general methods which can be applied to perform the parameter control. The main
advantage of hyperheuristics is that they are independent of the metaheuristics and
parameters that they control.

A hyperheuristic can be viewed as a heuristic that iteratively chooses between a set
of given low-level (meta)-heuristics in order to solve an optimisation problem [40].
Hyperheuristics operate at a higher level of abstraction than traditional heuristics,
because they have no knowledge about the problem domain. The motivation behind
the approach is that, ideally, once a hyperheuristic algorithm has been developed,
several problem domains and instances could be tackled by only replacing the low-
level (meta)-heuristics. Thus, the aim of using a hyperheuristic is to raise the level
of generality at which most current (meta)-heuristic systems operate. Since the
main motivation of hyperheuristics is to design problem-independent strategies, a
hyperheuristic is not concerned with solving a given problem directly as is the case of
most heuristics. In fact, the search is on a (meta)-heuristic search space rather than
a search space of potential problem solutions. The hyperheuristic solves the problem
indirectly by recommending which solution method to apply at which stage of the
solution process. Generally, the goal of raising the level of generality is achieved at
the expense of reduced - but still acceptable - solution quality when compared to
tailor-made (meta)-heuristic approaches.

The low-level approaches set might consist of a metaheuristic with several different
configurations of its parameters. Therefore, a hyperheuristic can be also viewed as
a method to implement the parameter control. However, they go further, because
they might also make possible the integration and coordination of several different
metaheuristics with different characteristics.

1.2.2 Stagnation Avoidance

In many problems or specific problem instances some metaheuristics may have a
tendency to converge towards local optima or other suboptimal regions. The like-
lihood of this occurrence depends on the shape of the fitness landscape [47]. For
this reason, several methods have been designed with the aim of dealing with local
optima stagnation [111]. Some of the simplest techniques are based on performing
a restart of the approach when stagnation is detected [171]. In other cases, a com-
ponent which inserts randomness or noise in the search is used [54]. Maintaining
some memory, with the aim of avoiding exploring the same regions several times, is
also a typical approach [112]. Finally, population-based strategies intrinsically try

15

CHAPTER 1. Introduction

to maintain the diversity of a solution set. In such strategies by recombining the set
of solutions, larger areas of the decision space might be explored.

In the particular case of EAs, premature convergence appears when the population
reaches such a suboptimal state that the genetic operators can no longer produce
offspring that outperform their parents [4]. The impact of premature convergence is
quite similar to the problem of stagnating in a local optimum. Several specific mea-
sures have been analysed with the aim of avoiding premature convergence. Some of
the most popular ones are incorporating incest prevention [96], increasing the mu-
tation rate [209], generating random offspring [209], or using self-adaptive selection
pressure schemes [4].

Another novel and promising choice is the usage of multiobjectivisation. Multi-
objectivisation was introduced in [146] to refer to the reformulation of originally
mono-objective problems as multi-objective ones. A multi-objective optimisation
strategy must be applied to solve a problem that has been multiobjectivised. Mul-
tiobjectivisation changes the fitness landscape of the optimisation problem, so it
can be useful to avoid premature convergence and/or local optima stagnation [121].
Consequently, multiobjectivisation might facilitate the resolution of the considered
problem. However, it can also produce a harder problem [34]. Among the benefits
of multiobjectivisation it is important to remark that it is independent of the con-
sidered optimisation strategy, i.e. several optimisation strategies might be applied
with the same multiobjectivisation scheme.

Multiobjectivisation can be carried out following two general schemes. The first
one is based on decomposing the original objective function, while the second one is
based on adding new objective functions. The addition of alternative functions can
be performed by considering problem-dependent or solely problem-independent in-
formation. In addition, some multiobjectivisation schemes require the specification
of some additional parameters. This hinders the parameter setting of the approach.
However, since multiobjectivisation has allowed the achievement of high-quality re-
sults in several problem domains [159, 188, 245], it constitutes a promising approach
as a method to avoid local optima stagnation.

1.2.3 Performance Metrics

The usage of stochastic optimisation strategies implies that in each run results with
different quality might be obtained. This highly hinders the process of measuring the
performance of the involved strategies, so performing fair comparisons among such
optimisation strategies is even more difficult. In this dissertation the Run-Length
Distributions (RLDs) [98] have been one of the tools used to perform the comparisons
among the applied strategies. RLDs, also named run-time distributions, or time-to-

16

1.2. Optimisation Strategies

target plots, display on the ordinate axis the success ratio and on the abscissa axis
the running time. The success ratio is defined as the probability that an algorithm
will find a solution at least as good as a given target fitness value within the given
running time. RLDs were proposed in [98] and have been analysed and recommended
by several researchers [128]. RLDs have also been used to assess the performance of
parallel solvers [208]. In this regard, the relative performance between two different
solvers (parallel or not) have been measured in this work considering the times or
evaluations required by each one of them to attain a given success ratio and a given
target quality value.
Moreover, in order to provide results with statistical confidence suitable statistical
analyses must be performed. In this dissertation, the statistical comparisons have
followed the guidelines presented in [80, 215]. First, a Kolmogorov-Smirnov test
is performed in order to check whether the values of the results follow a normal
(gaussian) distribution or not. If so, the Levene test checks for the homogeneity
of the variances. If samples have equal variance (positive Levene test), an ANOVA
test is done; otherwise a Welch test is performed. For non-gaussian distributions,
the non-parametric Kruskal-Wallis test is used to compare the medians of the data.
A confidence level of 95% has been considered in every performed statistical test,
which means that the differences are unlikely to have occurred by chance with a
probability of 95%.

Multi-objective Metrics

The main goal of multi-objective solvers is to approximate the Pareto set. As in
mono-objective optimisation, the notion of performance involves maximising the
quality of the achieved solutions, while minimising the time required to obtain such
solutions. The outcome of multi-objective solvers is not a single solution, but a
set of trade-offs. For these reasons, the definition of quality is substantially more
complex than for mono-objective optimisation. In fact, the optimisation goal of
multi-objective solvers involves multiple objectives [255]:

• The distance of the resulting non-dominated set to the Pareto Front should
be minimised.

• A good distribution of the solutions found is desirable.

• The extent of the non-dominated front should be maximised.

Several methods to assess the quality of non-dominated sets have been proposed [94,
254]. Such methods can be classified into two main categories [144]: the ones based

17

CHAPTER 1. Introduction

on attainment functions [104], and the ones based on quantitative quality indica-
tors. Additionally, a third category contains the metrics that compare pairs of
non-dominated sets relatively to each other [254].

Definition 8 An attainment function (α) is a mathematical function that mo-
dels the outcome of a multi-objective optimiser. For each objective vector z, α(z) is
the probability that the objective vector z is attained by the optimiser.

The true attainment function is usually unknown. However, an approximation can
be easily estimated empirically. Specifically, the attainment function can be es-
timated from a sample of r independent runs of an optimiser via the empirical
attainment function (eaf):

α(z) ≈ eaf(z) =
1

r
×

r
∑

i=1

I((Ai � {z}) ∨ ({z} ⊆ Ai))

where Ai is the ith approximation set obtained by the optimiser, and I is the indicator
function, which evaluates to one if its argument is true and to zero if its argument
is false.
From a practical point of view, first, the solver is executed r times. Then, for each
objective vector z, the number of generated sets that contain a solution z′ equal to
z or for which the relation z′ � z holds is counted. Finally, such a number divided
by the overall sample size is the desired probability. Attainment functions are very
useful to visualise the quality of the obtained results. However, its usage with more
than three objectives is very complex.
Based on the attainment functions, the attainment surfaces have been defined. An
attainment surface of a given approximation set A is the union of all the tightest
goals that are known to be attainable as a result of A. In some cases, it is interesting
to analyse the set of vectors which are attained with some probability. The k%-
attainment surface divides the objective space in two parts: the goals that have
been attained and the goals that have not been attained with a frequency of at least
k percent. A procedure to calculate them was proposed in [142]. Figure 1.3 shows
three different attainment surfaces. They divide the objective space in several zones:
the zone which has never been attained, the zones which have been attained with a
frequency larger or equal than 10% and 50%, and the zone which has been attained
in every execution.

Definition 9 A unary quality indicator I is a mathematical function that quan-
tify the quality of an approximation set. For an approximation set Ω, I(Ω), is a real
number that represents the quality of Ω.

18

1.2. Optimisation Strategies

Figure 1.3: Attainment surfaces (10%, 50% and 100%)

The quantitative indicator approach summarises the outcome of a run as a number.
The calculated number can then be used as a measure of the quality, so such a mea-
sure can then underpin statistical comparisons between the multi-objective solvers.
The RLDs might also be applied, considering a fixed target value for the quality
indicator.
Several quantitative quality indicators have been proposed [74]. Some of the best
known are the error ratio [239], the generational distance [239], the spread [78], the
hypervolume or S-metric [254], and the unary additive ǫ-indicator [259]. The error
ratio and the generational distance evaluate the closeness of the obtained sets to
the Pareto Optimal Front. The spread is a measure of the diversity of the non-
dominated solutions. Finally, the hypervolume and the unary additive ǫ-indicator
metrics evaluate at the same time the closeness and diversity of the obtained set. In
the following lines a brief definition of each quality indicator is given. In them, the
symbol S refers to the set of solutions which is being evaluated, while PF∗ is used
to denote the Pareto Front of the considered problem.

• The error ratio counts the number of solutions in S which are not member of
PF∗.

• The generational distance is the mean Euclidean distance between the solu-
tions in S, and its closest solution in PF∗.

• The spread measures the extension of the solutions in S.

19

CHAPTER 1. Introduction

Figure 1.4: Hypervolume metric

• The hypervolume is the volume (in the objective space) covered by the solutions
of S. The definition of a reference point (R) is required to calculate such a
volume. Figure 1.4 illustrates the hypervolume metric for an optimisation
problem with two objectives. In such a figure minimisation has been assumed.
The hypervolume is the area of the hatched region.

• The unary additive ǫ-indicator metric measures the smallest amount, ǫ, that
must be used to translate the set PF∗ into S, i.e. it calculates the minimum
summand ǫ to which each solutions from PF∗ can be added in every objective
so that the resulting approximation set is weakly dominated by S. In the cases
where PF∗ is not known a set containing the best known solutions might be
used.

Definition 10 A binary quality indicator I is a mathematical function that
quantify the difference in quality between two sets of objective vectors. For the ap-
proximation sets A and B, I(A,B) is a real number that represents the difference
between the qualities of the considered sets.

Several binary quality indicators have been proposed with the aim of comparing
two sets relatively to each other [254]. Among them, some of the most extended are

20

1.2. Optimisation Strategies

approaches the coverage (C) [254] , the coverage difference (D) [254], and the binary
additive ǫ-indicator [259]. In the following lines a brief definition of such binary
quality indicators is given.

The coverage of a non-dominated set A, respect to a non-dominated set B (C(A,B))
is the fraction of the solutions of B which are dominated by solutions in the set A.
The coverage is calculated in the following way:

C(A,B) = |{b∈B/∃a∈A:a�b}|
|B|

Thus, C(A,B) = 1, means that every solution in the set B are dominated by solu-
tions in the set A. Cases where C(A,B) = 0 represents the situation when none of
the solutions in B are dominated by solutions in A.

The coverage difference of a non-dominated set A, respect to a non-dominated set
B (D(A,B)) is the size of the objective space dominated by the set A, but not
dominated by the set B.

The coverage difference is calculated in the following way:

D(A,B) = hypervolume(A+B)− hypervolume(B)

In this research the recommendations given in [74, 143, 144, 259] have been followed.
The comparisons among multi-objective solvers have been performed mainly in base
of the hypervolume metric and attainment surfaces. The hypervolume has been used
to assess the quality of a set because it is a Pareto-compliant metric, and because
the knowledge of PF∗ is not required. Moreover, since it does not use a reference
set (it only use a reference point), results obtained by other approaches can be easily
compared with the results presented in this dissertation. The same statistical tests
than in the mono-objective cases have been used, but considering the hypervolume
values, instead of the fitness values. Similarly, the RLDs have also been used.

Considering the conclusions drawn in [259], in the cases where it is stated that the
solutions obtained by a scheme A are superior than the ones obtained by a scheme
B in terms of the obtained hypervolume, it means that:

• The hypervolume values obtained by the method A are higher than the ones
obtained the method B.

• Differences are statistically significant.

• Solutions obtained by the method A are not worse than the ones obtained by
the method B in terms of dominances.

21

CHAPTER 1. Introduction

1.3 High Performance Computing

Most applications in scientific and engineering fields are computationally highly in-
tensive. Therefore, in numerous scientific applications, the size of the problems
and/or the amount of required computations implies the usage of highly optimised
algorithms, and parallel systems. In the case of code optimisation, great improve-
ments have been introduced in the last decades in the development of compilers.
Thus, current compilers can perform several automatic optimisations which can
lead to an impressive leverage over the performance. Moreover, much research has
been conducted on algorithmic and data structures design [182]. However, the in-
herent complexity of problems and the high amount of data that must be managed
in several fields still dictate the high computational effort associated with the so-
lution of several problems. Using more powerful Central Processing Units (CPUs)
and hardware devices helps to speed up the execution of the applications, but in this
field there are also some limitations. The history of computing hardware, which in-
volves a significant interest in increasing the component speeds, has been associated
with Moore’s law [185]. Since the invention of the integrated circuit in 1958, the
number of transistors that can be placed inexpensively on an integrated circuit has
increased exponentially, doubling approximately every two years. Such a statement
is directly related to the increase in the speed and power of most electronic devices.
The statement has held for about half of a century. However, since the Comple-
mentary Metal-Oxide-Semiconductor (CMOS) technology is nearer and nearer its
physical limits, this miniaturisation can not continue forever.

High Performance Computing (HPC) [82] appears as an alternative, and refers to
any computing resource that provides more computing power than is normally avai-
lable. The goal is to achieve the maximum amount of computations in the mini-
mum amount of time. For this purpose, the computing resources studied include the
computers, networks, algorithms and environments necessary to make such systems
usable. The concept of parallelism is highly related to high performance computing.
Parallelism is not a new concept and was already extensively used far before the
emergence of computer science [19]. The concept is quite simple. It is based on
gathering several working units and making them collaborate to perform a given
task. This partial definition is very broad. In fact, it encompasses all the computing
parallel systems going from parallel machines to distributed clusters, while also in-
cluding a sequential machine with pipelines. Parallelism initially invaded computers
at the processor level under several aspects. The first one took place during the
age of scalar processors, in the development of coprocessors taking in charge some
specific tasks of the working unit. Other aspects have resided in the processor it-
self. For instance, the inclusion of more complex components in the processors such

22

1.3. High Performance Computing

as pipelines and multiple computation units has provided the ability of executing
several instructions at the same time. Those forms of parallelism are hidden to
the programmer. For this reason, these mechanisms are called intrinsic parallelism.
In contrast, explicit parallelism is not hidden from the programmers. Thus, such
systems require the development of specific parallel software.

Parallel computing techniques are especially applied to large and highly complex
scientific applications [105]. In general, the most important reasons why parallel
computing is of such interest in the research and scientific computing communities
are: time saving, allows to afford larger problems, provides concurrency (i.e. it makes
it possible to perform different tasks at the same time), allows to take advantage of
non-local resources, and offers an alternative to the limitations of serial computing.
Currently, there is neither a single kind of parallel system nor a single kind of parallel
programming paradigm.

The aim of this section is threefold. The first goal is to present the most common
kinds of parallel architectures which can be encountered throughout the world. The
second goal is to provide a classification of the parallel programming models. The
last goal is to present which are the most common metrics used to compare parallel
approaches. The metrics for parallel approximation algorithms are also analysed.

1.3.1 Parallel Computer Architectures

Currently, there are many ways to build parallel systems. Therefore, the number of
possible parallel configurations is huge. Depending of the problem to solve, some
architectures provide better performance than others. Hence, it is important to have
a deep insight of the currently used computer architectures. Several classification of
the parallel computer architectures have been proposed [85, 201, 236]. The Flynn’s
taxonomy [101] is commonly accepted as a reference in the domain. This classifica-
tion is based on the way of manipulating instruction and data streams. It comprises
four main architectural classes:

• Single Instruction Single Data (SISD): these are the conventional systems that
contain one CPU and hence can accommodate one instruction stream that is
executed serially over a single data.

• Single Instruction Multiple Data (SIMD): corresponds to systems that have
several processing units that may execute the same instruction on different
data in lock-step. Therefore, a single instruction manipulates many data items
in parallel. They often have a large number of processing units, ranging usually
from 1024 to 16384. The set of processing units is known as vector processor.

23

CHAPTER 1. Introduction

• Multiple Instruction Single Data (MISD): theoretically in these types of ma-
chines multiple instructions should act on a single stream of data. It is the
only class that has not yet led to real implementations. It seems that the range
of applications corresponding to this particular architecture is quite reduced.

• Multiple Instruction Multiple Data (MIMD): are the systems capable of exe-
cuting multiple instructions on different data at the same time. MIMD systems
may run many different subtasks in parallel in order to shorten the time for the
main task to be executed. There is a large variety of MIMD systems and espe-
cially in this class the Flynn taxonomy proves to be not fully adequate [236].
Therefore, inside this class other subclassifications have been proposed. They
typically distinguish between MIMD systems with shared memory, and MIMD
systems with distributed memory.

Another typical classification of the architectures is based on the radius of the sys-
tem, i.e. the physical distance between the processing units. The classification based
on the radius better reflects the evolution trends:

• Uniprocessor Machines: mainly representing the SISD machines.

• Parallel Machines: built as a single machine containing several processing
units. They include SIMD and MIMD architectures and some combinations
of them.

• Local Clusters: collections of independent computers gathered in the same
place and connected via a local network. Although they are intrinsically MIMD
oriented, SIMD machines might be used at the node level.

• Distributed Clusters/grids/cloud: collections of local clusters, or any other
computing facilities, scattered all around the world and linked together via
the Internet or other non-dedicated networks. As local clusters, they mainly
follow the MIMD model.

Parallel Machines with Shared Memory

Shared memory computers provide all the processors with the ability to access all
memory as a global address space, i.e. multiple processors can operate independently
but they share the same memory resources, as shown in Figure 1.5. Changes in a
memory location performed by one processor are visible to all the other processors.
The great advantage of such systems is that they neither require data distributions

24

1.3. High Performance Computing

Figure 1.5: Shared memory architecture

over the processors nor data messages between them. Communications required bet-
ween the processors are usually performed via the shared memory and can, thus, be
very fast. However, the centralisation of the memory also presents some drawbacks.
First, it implies a very high memory bandwidth. Thus, in order to avoid bottlenecks,
cutting-edge technology must be used in the design of the memory. Moreover, the
concurrent accesses may lead to incoherent results of the running application if it
is not carefully managed. When many processors are integrated, the logic added
with the aim of ensuring the cache coherency might highly reduce the performance
of the system. Thus, the number of processors which can be integrated in a shared
memory machine is not as high as in the machines with distributed memory.

The usage of Non-Uniform Memory Access (NUMA) is very typical in the parallel
machines with shared memory. In such cases, the memory access time depends
on the memory location relative to a processor. By using NUMA, the cost of the
memory is reduced, and more processors can be added in a single machine. How-
ever, the design of the parallel software is more complex because it must take into
consideration that the access time to the memory is not uniform.

Parallel Machines with Distributed Memory

As shown in Figure 1.6, processors in distributed memory systems have their own
local memory, i.e. memory addresses of one processor do not map to another pro-
cessor, so there is no concept of global address space across all processors. Since
each processor has its own local memory, they all operate independently. Changes
made locally by one processor have no effect on the memory of other processors.
In this architecture, the processors are linked together by an interconnection net-
work. Therefore, when a processor needs access to data in another processor, such
a data must be sent across the network. It is usually the task of the programmer to
explicitly define how and when data must be communicated.

25

CHAPTER 1. Introduction

Figure 1.6: Distributed memory architecture

The main advantage of using distributed memory is its scalability. In particular,
the concurrent memory accesses are no longer an issue because only one processor
accesses one memory bank. For the same reason, the problem of the memory band-
width is less critical. Hence, those systems are intrinsically better suited to include
a very large number of processors. However, they also present some drawbacks. The
most obvious one is the necessity of explicitly distributing the data among the pro-
cessors. This usually complicates the development of parallel software. Moreover,
since many applications require lots of communication, a high performance network
might be required. The network is also required for exchanging information to con-
trol the applications. Therefore, the performance of the interconnection network
might be a critical issue to ensure a good performance of the system.

Hybrid Distributed-Shared Memory

In general, the largest and fastest computers in the world employ a combination of
both shared and distributed memory architectures. Several shared memory machines
- with a set of CPUs and a single shared memory - are interconnected through a
network, as depicted in Figure 1.7. Then, it is required to move data from one
shared memory machine to another.

1.3.2 Trends of used Architectures

The previous classicisation has depicted the general schemes that have arisen since
the beginning of parallelism. This section is devoted to describe the currently most
extended configurations. In this regard, the number of architectures which incorpo-
rates multi-core processors has highly increased in the last years. Even computers
not devoted to high performance computing usually consist of several processing

26

1.3. High Performance Computing

Figure 1.7: Hybrid distributed-shared memory architecture

units. The most extended multi-core processors usually incorporate between 2 to 12
cores. The cores usually make use of shared memory. Also, there is some tendency
to incorporate several processors inside the same motherboard. Several machines
with up to four processors in a single motherboard are available. However, the price
of this kind of machines is usually much higher, so they are not so extended in the
non-HPC environments.
When a large number of processing units is required, the most typical approach is
to mix shared and distributed memory in a single environment. This is typically
made with racks that contain node cards containing multi-core chips. The imple-
mentations are of two sorts. The commonly named Beowulf approach involves using
off-the-shelf hardware for the nodes and networks. They are also named Networks of
Workstationss (NOWs), or Clusters of Workstationss (COWs). The latter uses spe-
cific integration facilities with optimised network and software environment. The
first approach is mostly used for creating medium-sized machines, while the last
approach is used by the most powerful parallel machines developed up to this date.

1.3.3 Parallel Programming Models

Once we know that many types of parallel architectures are available, if we want
to process programs and data faster, we must switch from hardware architecture to
a software design that makes concurrent use of multiple processors. Traditionally,
software has been written for serial computation, i.e. to be executed on a single
computer within a single processing unit. In serial processing, programs consist of a
set of instructions which are executed one after the other, since only a single instruc-
tion can be executed at any instant of time. On the contrary, parallel computing
techniques are based on the simultaneous usage of multiple computing resources for

27

CHAPTER 1. Introduction

solving a given problem [28]. The parallel software developers must contend with
problems not encountered in sequential programming, as communication, synchro-
nisation, data partitioning and distribution, load-balancing, fault-tolerance, hetero-
geneity, deadlocks, and race conditions. Thus, the necessity of convenient parallel
programming models as well as parallel libraries and compilers is obvious.
A parallel programming model is a concept that enables the expression of parallel
programs. This allows executing a parallel program in several different architectures.
The implementation of a programming model can take several forms such as libraries
invoked from traditional sequential languages, language extensions, or complete new
execution models. Classifications of parallel programming models can be divided
broadly into two areas: by process interaction and by problem decomposition.
Based on the process interactions, i.e. the mechanisms by which parallel processes
are able to communicate with each other, the next models are seen to exist:

• Shared memory: parallel tasks share a global address space which they read
and write to asynchronously. This requires protection mechanisms such as
locks and semaphores to control the concurrent accesses. The most promi-
nent examples of the shared memory programming model are Open Multi-
Processing (OpenMP) [52, 53, 198] and POSIX Threads [45].

• Distributed memory: parallel tasks exchange data through passing messages
to one another. These communications can be asynchronous or synchronous.
Message Passing Interface (MPI) [177, 199, 221] and Parallel Virtual Machine
(PVM) [83] are the most used libraries that implement the distributed memory
programming model.

• Implicit: in the implicit programming model, no process interaction is visible
to the programmer, instead the compiler and/or runtime is responsible for
performing the interactions.

This classification is highly related to the aforementioned architecture classification.
However, note that they are independent, i.e. a program expressed in a given pro-
gramming model, might be executed in several different parallel architectures. For
instance, a program developed with MPI can usually be executed in a parallel ar-
chitecture with shared memory. Also, a program developed with OpenMP might be
executed in a distributed machine. Usually, this is done by emulating the shared
memory with some external libraries. Thus, modifying the original program is not
required.
The classification based on the problem decomposition is also named programming
paradigm. There are also several classifications based on the performed decom-

28

1.3. High Performance Computing

positions [122, 250]. Based on this classification the next paradigms are usually
identified:

• Task-Farming: this paradigm consists of two types of entities: a master and
multiple workers. First, the master decomposes the problem into small tasks,
and distributes them among the workers. Then, the workers execute each
assigned task, and send the results to the master. Finally, the master gathers
the results, and combines them to constitute the problem solution. Usually,
this paradigm is combined with a dynamic load-balancing scheme. This allows
dealing with processors that have different loads and with heterogeneous sys-
tems. The main drawback of this paradigm is its scalability. When a high
amount of processors are used, the centralised control of the master process
can become a bottleneck to the applications.

• Single-Program Multiple-Data (SPMD): this paradigm is one of the most
commonly used paradigm. Each process execute the same code but on different
part of the data. The main idea is to split the data among the available
processors, but without the interaction of a master process. Usually some
processors require data computed by other processors. Thus, depending on the
problem, a neighbourhood might be defined. Then, processors communicate
from time to time with their corresponding neighbours. Moreover, some global
synchronisation may also be required.

• Data Pipelining: this paradigm is based on decomposing the tasks of the algo-
rithm into several subtasks that can be executed concurrently. The efficiency
of this paradigm depends on the ability of properly balancing the load across
the stages of the pipeline. The communication pattern is usually very simple
because data flows only between adjacent stages.

• Parallel Divide and Conquer: this paradigm is an extension of the well-known
sequential paradigm Divide and Conquer. An instance of a problem is re-
peatedly reduced to a set of smaller subinstances or subproblems. When the
subproblems are small enough, they are solved and the results are subsequently
combined until a complete solution is achieved for the initial problem. Since
each subproblem is independent, they might be assigned to different processing
units. Three generic computational operations can be identified in this model:
split, compute, and join. Depending on the computational cost associated to
each one, different algorithms have been proposed.

• Speculative Parallelism: in this paradigm some processors execute some parts
of the code speculating with the results that other procedures might obtain. In

29

CHAPTER 1. Introduction

some cases their assumptions are invalid, so computed data must be discarded.
However, when their assumptions turn out to be correct, the performed com-
putation might improve the overall performance. This paradigm is usually
applied when the other paradigms can not be used.

• Hybrid paradigms: several parallel algorithms need to mix elements of diffe-
rent paradigms. In such cases, it is said that they follow a hybrid paradigm.
For instance, there are several cases, where data and task parallelism is simul-
taneously applied.

• Other paradigms: the previous paradigms are suitable for exact algorithms.
However, in the cases of approximation approaches, the parallel strategies
might be completely different from the sequential approaches. In metaheuris-
tics, for instance, it is typical to propose parallel approaches that change the
way in which the search space is explored. For this reason, parallel meta-
heuristics are usually classified using different paradigms. Nevertheless, they
usually make use of some of the ideas behind the here presented paradigms.

1.3.4 Metrics in Parallel Systems

Efficient parallel algorithms are required to profit from the usage of parallel systems.
In this regard, for a given problem, the optimum parallel algorithm may be radically
different from the optimum serial algorithm. The design goal of any parallel algo-
rithm is to solve the problem minimising the required time. This is usually achieved
by dividing the global task into independent sub-tasks, or tasks that require little
synchronisation and communication. In general, efficient parallel algorithms result
from the efficient use of process resources and the maximisation of the computation-
communication ratio. In order to measure the performance or efficiency of parallel
programs, several metrics have been proposed [243]. Some of the most common and
widely used metrics are presented in this section.

Speedup

The term speedup is defined as the ratio of the time required to complete the process
with the fastest serial algorithm using one processor to the time required to complete
the same process with the parallel algorithm using p processors. Since the fastest
serial algorithm is not usually known, this definition is relaxed, and the speedup
is calculated taking as reference a given sequential approach. Thus, being T1 the
time invested by the sequential approach, and Tp the time invested by a parallel
algorithm using p processors, speedup is calculated as:

30

1.3. High Performance Computing

Sp =
T1

Tp

(1.1)

Amdahl’s law establishes that the speedup obtainable from a program is determined
by the fraction of the program code that can be parallelised (P):

speedup =
1

1− P
(1.2)

If there are no code sections that can be parallelised (P = 0), the achievable speedup
is 1, i.e. it is not possible to speed up the program execution. If all the code can be
parallelised (P = 1), then, theoretically, the speedup is infinite. If 50% of the code
can be parallelised (P = 0.5), a maximum speedup of 2 might be obtained, meaning
the execution is twice as fast.
The speedup also depends on the number of processors (p) that take part in the
execution. Being S the fraction of code that is serial, the maximum speedup that
can be achieved by a computer with p processors is defined as:

speedup ≤ 1

S + P
p

=
1

S + 1−S
p

(1.3)

This formula clearly shows the limits that affect scalability in parallel programs.
Increasing the size of the sequential part of the problem quickly causes the speedup
to saturate, so when designing efficient parallel algorithms, sequential operations
must be reduced, thus minimising the idle time of each processor.

Efficiency

In general, only ideal parallel systems can achieve a speedup of p for a p-processor
system. This implies that the fraction of serial operations is 0. In practice, the
ideal case can not be achieved since processors can not devote all of their time
to computing the problem. There are overheads embedded in parallel programs
such as inter-processor communication, data communication, synchronisation, etc.
Efficiency is then proposed as a measure of the fraction of time for which processors
are usefully employed:

efficiency =
speedup

p
(1.4)

In the ideal case, speedup is p, so the efficiency is 1. In practice, speedup usually
is less than p and so efficiency is a value between 0 and 1. Since efficiency is
proportional to the speedup, it also decreases quickly as S increases.

31

CHAPTER 1. Introduction

Scalability

Usually, the speedup does not increase linearly when the number of processors in-
creases. A constant speedup tends to be achieved as overheads due to communi-
cation, synchronisation, etc., increase. On the other hand, in many algorithms an
increase in problem size yields to obtain a higher speedup and efficiency for the
same number of processors. These two phenomena are common to many parallel
systems. Scalability analyses examine the behaviour of parallel algorithms with
different number of processors, and different problem sizes. An ideal scalable pa-
rallel system maintains efficiency as the number of processors increases under the
condition that the problem size is also increased.

Parallelism and Approximation Approaches

Previous metrics are very well suited for exact and deterministic approaches. How-
ever, the usage of approximation non-deterministic algorithms highly hinders the
analysis of the performance of the approaches. For instance, a parallel stochas-
tic approach might speed up the achievement of high quality solutions in most of
its executions, but in other ones, it could suffer from stagnation and behave even
worse than a sequential approach. Moreover, since the sequential algorithms are
also stochastic, the analysis is even more difficult. For this reason, the analysis of
the performance of parallel stochastic schemes usually combine the previous metrics,
with several graphics, statistical analysis, and alternative metrics that allow to have
a better understanding of the approach.

Considering the stochastic behaviour of approximation methods, it makes no sense
to evaluate the speedup considering solely the time used to complete an execution.
RLDs have been used to assess the performance of parallel solvers [208]. In this
regard, the speedup of a parallel solver with respect to a sequential approach has
been calculated in this dissertation in the following way. First, a desired quality level
is fixed. Such a quality level might be a fitness value for the mono-objective cases,
or some metric value for the multi-objective cases. Then, the sequential and parallel
solvers are executed several times, fixing as stopping criterion the achievement of
such a quality level. The times required by the sequential model (T1) and by the
parallel model (Tp) to reaching a fixed success ratio are calculated. Finally, the
speedup is calculated using equation 1.1.

32

1.4. Research Questions

1.4 Research Questions

Given the heuristic nature of metaheuristics, and the broad amount of fields in which
metaheuristics have been applied, there are a large amount of open research ques-
tions for its optimal application. In [156] some of the open research topics regarding
EAs have been enumerated. Most of these topics are very general, so they are open
research questions not only in the field of EAs, but also in the more general field of
metaheuristics. The majority of these topics are related with the robustness of meta-
heuristics, with its optimal usage, and with the ways in which stagnation might be
avoided. These topics are closely related with the main difficulties that practitioners
must face up to when applying metaheuristics to large and complex optimisation
problems. In fact, one of the main drawbacks of metaheuristics is the difficulty
associated to its parameterisation. The process of making the parameter setting of
metaheuristics usually takes much user and computational effort [156]. However,
since the performance of metaheuristics highly depends on its parameterisation, it
is important to perform it in a suitable way.
Another currently active research topic is concerned with the usage of multiobjec-
tivisation as a way of improving the behaviour of metaheuristics. The term mul-
tiobjectivisation was introduced in [146] to refer to the reformulation of originally
mono-objective problems as multi-objective ones. This topic is highly related with
the metaheuristic parameterisation, and with the optimal usage of metaheuristics.
In fact, since there are several ways to multiobjectivise a problem, the way in which
multiobjectivisation is performed might be considered as an extra parameter of the
approach. Moreover, a multiobjectivisation scheme might define its own parame-
ters. Thus, when multiobjectivisation is incorporated into a particular approach,
properly tuning the algorithm can be even more time-consuming. In addition, the
usage of multiobjectivisation changes the fitness landscape of the problem, so it can
be useful to avoid stagnation in non-optimal regions.
Finally, the proper usage of metaheuristics in parallel architectures [7] is also an
open research question. There are several parallel models, but up to now, no one
has demonstrated to be superior to the others. The recent proliferation of parallel
processing technologies, even in the non-HPC environments, makes this topic even
more important.
Given the close relation among the aforementioned topics they have been analysed
together. The main motivation of this research has been to develop a parallel model
which can facilitate the usage of metaheuristics, and to solve practical applications
with such a proposal. The main research questions addressed in this research are:

• Is it desirable to dynamically change the parameters values during the meta-
heuristic runs?

33

CHAPTER 1. Introduction

• Can these changes be performed by a general technique, or is it required to
use information of the baseline metaheuristic?

• Is it necessary to incorporate problem-dependent information in order to per-
form the parameter control?

• How can parallel models and parameter control techniques be integrated?

• Can multiobjectivisation techniques be integrated in this model as if they were
an extra parameter of the metaheuristic?

• Can these techniques be successfully applied to practical optimisation pro-
blems that have been analysed with many other metaheuristic approaches?

Some of the previous questions have been in the mind of metaheuristics practitio-
ners for many years. In fact, many research papers have been published about the
addressed topics. They are very important topics because giving answer to them
would greatly facilitate the usage of metaheuristics for new users, and its application
in the industry for novel and motivating optimisation problems. However, they are
so broad topics, that it is expected that they will remain as open research topics
for many years. The aim of the research is to improve the state of the art of the
aforementioned research questions.

1.5 Contributions

The current thesis presents new methods and empirical results which address the
questions discussed in the previous section. The specific contributions comprise:

• A set of new hyperheuristics for multi-point schemes has been designed. Such
metaheuristics are based on using novel scoring and selection methods. The
methods can be applied both for mono-objective and multi-objective optimi-
sation problems. By using this model, metaheuristic practitioners do not need
to manually test a large number of metaheuristics and parameterisations for
discovering the proper algorithms to use. Instead, they can define the set of
configurations which must be tested, and the model tries to automatically de-
tect the best-behaved ones, in order to grant more resources to them. The
model allows not only using different parameterisations of the same meta-
heuristic, but also to integrate different metaheuristics.

34

1.5. Contributions

• A new parallel model which hybridises the island-based model and the de-
signed hyperheuristics has been proposed. This model allows performing the
parameter control of metaheuristics in a parallel way. Moreover, it goes fur-
ther, allowing the integration of different metaheuristics in a general way. The
cooperation among the metaheuristics is performed following the same schemes
that in island-based approaches. The model has been used to solve both mono-
objective and multi-objective optimisation problems. The validation has been
performed by using well known mono-objective and multi-objective optimisa-
tion problems.

• Several novel multiobjectivisation techniques have been designed. Such tech-
niques have made possible to avoid premature convergence and to speed up
the convergence of EAs to high quality solutions with several optimisation
problems. In order to use the designed multiobjectivisations, additional pa-
rameters must be set up. For this reason, such multiobjectivisations have
also been integrated with the designed hyperheuristics. The hyperheuristic
has been able to automatically adapt the parameters, obtaining better results
than with any fixed value.

• Several computationally expensive and real-world problems have also been
tackled in this thesis. In these cases, the aim has been two-fold. On the one
hand, the validation of the hyperheuristics was an objective. On the other
hand, the resolution of such problems was important because of its practical
implications. For this reason, in some of them several novel genetic operators,
neighbourhood definitions, and optimisation methods specifically designed for
such problems have been proposed. In every case, they were integrated with
the designed parallel approaches. The obtained results have been compared
with the best published results for each of them. The usage of the parallel
approach to solve well-known computationally demanding problems have been
useful to draw more general conclusions about the benefits and drawbacks of
the proposal. The following problems have been addressed:

– Antenna Positioning Problem (APP) is an np-Complete problem which
arises in the engineering of mobile telecommunication networks [178].
APP is defined as the problem of identifying the infrastructures required
to establish a wireless network. Some novel metaheuristics and genetic
operators have been defined. The parallel approach has been able to
speedup the achievement of high-quality solutions. In addition, it has
facilitated the usage of the new designed metaheuristics.

35

CHAPTER 1. Introduction

– Frequency Assignment Problem (FAP) is a well-known combinatorial op-
timisation problem of great importance in the telecommunication area. It
is one of the key issues in the design of Global System for Mobile Commu-
nications (GSM) networks. The main aim of FAP is to assign the set of
frequencies that must be used in the different antennas of the network, in
order to minimise the quality loss of signal. For this problem a novel local
search neighbourhood has been defined. The usage of the local search has
provided many benefits both in terms of time saving, and solution qua-
lity. In combination with the parallel designed approach, and with the
multiobjectivisation schemes, it has been able to achieve the currently
best published network configurations for two real-world instances.

– Optimisation of the broadcast operation in Mobile Ad-Hoc Networkss
(MANETs). MANETs are fluctuating, self-configuring networks of mo-
bile hosts, called nodes or devices, connected by wireless links. The broad-
cast operation is very important in this kind of networks. Several algo-
rithms that perform the broadcast operation have been proposed in the
literature. The parallel model has been used to optimise the operation
of the broadcast algorithm named Delayed Flooding with Cumulative
Neighbourhood (DFCN).

– Two-Dimensional Packing Problem (2DPP) is a variant of a packing
problem proposed in the Genetic and Evolutionary Computation Con-
ference (GECCO) 2008 competition session. The proposed problem def-
inition is different from traditional packing problems. In this case, the
aim was to validate the parallel approach, and not to solve a packing
problem. Therefore, the proposals have not been adapted to traditional
packing problems. A novel local search neighbourhood definition was
proposed. The performance of several multiobjectivisation schemes has
also been analysed. The parallel approach combined with the defined
metaheuristics has provided the currently best published results.

• A tool named Metaheuristic-based Extensible Tool for Cooperative Optimi-
sation (METCO) [152] that allows executing the models developed in this
research, as well as many other approaches designed by other researchers has
been developed. The tool allows executing both sequential and parallel mo-
dels. The functionalities of the tool can be extended through the definition
of plugins, while the kind of execution to perform can be specified by using a
configuration file. This means that it is not required to know the internals of
the tool to use it. Finally, it is worthy to mention that several researchers of
different universities are currently using the developed tool.

36

1.6. Overview

1.6 Overview

This dissertation has been divided in four parts:

• Part I: Fundamentals and Backgrounds

This part is devoted to introduce the main concepts used throughout the dis-
sertation, and to present the main contributions of the research. Chapter 2
presents the set of metaheuristics that have been used in this work. The main
recent developments that are highly related to the models designed in this
research are presented in Chapter 3. The main addressed topics are hyper-
heuristics and multiobjectivisation.

• Part II: Problem-Independent Proposals and Validation

This part contains the general algorithmic models designed in this research and
its validation with well-known optimisation problems. Chapter 4 is devoted to
describe the designed hyperheuristics and their parallelisations. In addition,
the new designed multiobjectivisation schemes are explained. The validation
of such schemes is presented in Chapter 5.

• Part III: Practical Applications

This part presents the schemes that have been designed for tackling some
practical and complex optimisation problems. The way of integrating such
schemes with the problem-independent proposals is also described. Chapter 6
describes the schemes and results for three optimisation problems that arise
in the communication field. The schemes and results obtained for a packing
problem are presented in Chapter 7.

• Part IV: Conclusions

This part is devoted to discuss the main conclusions drawn in the current
research. In addition, some lines of future work are summarised.

Finally, an appendix that contains the set of publications which have been produced
as part of the research has been included.

37

Chapter

2

Metaheuristics

This chapter is devoted to describe the set of metaheuristics that has been applied
in this research. The main models for designing parallel metaheuristics are also
presented. In some cases the metaheuristics have been used independently of the
algorithmic novelties proposed in this thesis, i.e., the parallel hyperheuristics and
adaptive multiobjectivisations. In such cases the main aim has been to solve a prac-
tical optimisation problem with the most adequate strategies, so considering other
schemes was mandatory. Anyway, every addressed problem has also been tackled
with the hyperheuristics and multiobjectivisations, so using such metaheuristics has
been very useful to validate the novel proposals. The applied metaheuristics com-
prise a set of well known mono-objective and multi-objective approaches. In addition
to the schemes described in this chapter, some other novel approaches that incorpo-
rate minor variations to well-known algorithms, and several hybrid approaches have
also been used to face specific difficulties of some practical applications. They are
described in the chapters of the corresponding practical optimisation problems.

2.1 Mono-Objective Metaheuristics

2.1.1 Evolutionary Algorithms

Evolutionary computation [93] is a special brand of computing which draws its
inspiration from natural evolutionary processes. EAs are a subset of evolutionary
computation techniques which are inspired by biological evolution. In natural evolu-
tion, a given environment is filled with a population of individuals striving to survive
and reproduce. The fitness of these individuals is determined by the environment
and relates to how well they succeed in achieving their goals. In a macroscopic view

CHAPTER 2. Metaheuristics

Algorithm 1 Evolutionary Algorithm

1: Initialisation: Generate an initial population with N individuals
2: Evaluation: Evaluate all individuals in the population
3: while (not stopping criterion) do
4: Mating selection: select parents to generate the offspring
5: Variation: Apply genetic operators to the mating pool to create a child

population
6: Evaluation: Evaluate the child population
7: Survivor selection: Select individuals for the next generation
8: end while

of evolution, natural selection plays a central role. Given an environment that can
only host a limited number of individuals, and the basic instinct of individuals to
reproduce, selection becomes inevitable if the population size is not grown expo-
nentially. Natural selection favours those individuals that compete for the available
resources most effectively, i.e. those that are best adapted to the environmental con-
ditions. This phenomenon is also known as survival of the fittest. Competition-based
selection is one of the two cornerstones of evolutionary progress.

The other primary force results from phenotypic variations among members of the
population. Phenotypic traits are those behavioural and physical features of an in-
dividual that directly affect its response to the environment, thus determining its
fitness. Each individual represents a combination of phenotype traits that is evalua-
ted by the environment. If it is evaluated favourably, then it is propagated via the
individual’s offspring; otherwise, it is discarded by dying without offspring. Usually,
small random variations in phenotypic traits occur during reproduction from gene-
ration to generation. Through these variations, new combinations of traits occur
and are evaluated. The best ones survive and reproduce, thus evolution progresses.
From a microscopic view of natural evolution, each individual is considered as a dual
entity: its phenotypic properties (outside) which are represented at a low genotypic
level (inside), i.e. an individual’s genotype encodes its phenotype.

EAs belong to the group of population-based metaheuristics. There are many diffe-
rent variants of EAs but the underlying idea to all of these techniques is the same.
Their basic generic framework is shown in Algorithm 1. First, an initial population
withN individuals is created (line 1) and evaluated (line 2). Then, until the stopping
criterion is reached (line 3) a set of steps are repeated. Such a set of steps is usually
referred to as a generation of the EA. The steps are the following. First, the mating
selection operator selects the parents among the members of the population (line 4).
Such members constitute the mating pool. Then, a variation stage (line 5) is applied

40

2.1. Mono-Objective Metaheuristics

Figure 2.1: Flow-chart of an EA

to the mating pool. The most common operators are the crossover and mutation.
Such step creates the offspring pool, which is then evaluated (line 6). Finally, the
survivor selection scheme (line 7) selects the individuals that will constitute the new
population. A flow-chart [93] of the scheme is shown in Figure 2.1.
In order to obtain a particular configuration of an EA several details have to be
specified. Consequently, several variants of EAs are seen to exist. Specifically, the
following components must be selected:

• Method to generate the initial population.

• Selection mechanisms: mating and survivor selection.

• Variation scheme: crossover and mutation operators.

• Encoding of the individuals, and its transformation to the phenotype.

In addition, some parameters must also be set up. The most common ones are the
mutation and crossover probabilities, and the population size. Some specific flavours
of EAs might have additional parameters.
In this research two of the EA components have remained fixed in every experiment.
In the case of the generation of the initial population, a method that assigns random
values to each gene has always been considered. The random assignments have been
based on using a uniform distribution among the accepted gene values. The mating
selection has been based on the well-known binary tournament selection.

41

CHAPTER 2. Metaheuristics

In the case of the remaining components, several choices have been tested. Regarding
the encoding of individuals the following choices have been analysed: encoding based
on real-values, binary string encoding, and two-dimensional chromosomes.
The following survivor selection mechanisms have been used:

• Steady-State Selection (SS-S): In each generation, one offspring is generated.
If it is better than any of the individuals of the population, the worst of them
is replaced by this new offspring.

• Generational with Elitism Selection (GEN-S): In each generation, N − 1 in-
dividuals are generated, being N the population size. All parents, except the
fittest one, are discarded, and they are replaced by the generated offspring.

• Replace Worst Selection (RW-S): In each generation, N individuals are gen-
erated. The N fittest individuals, among parents and the new generated ones,
are selected to survive.

The following mutation operators have been tested:

• Polynomial Mutation (PM) [77]: The selected gene values are changed to a
neighbouring value using a polynomial distribution that has its mean value at
the current value. The variance is a function of the distribution index η. In
every experiment η = 20 has been used. This mutation is used with real-valued
encodings.

• Uniform Mutation (UM) [93]: This operator replaces the values of the cho-
sen genes with random values selected between the specified upper and lower
bounds of such genes, following a uniform distribution. This mutation is used
with real-valued encodings.

• Flip mutation [93]: The values of the chosen genes are flipped. This mutation
is used with the binary string encoding, so the chosen genes are inverted from
1 to 0 or from 0 to 1.

• Specific mutation: In some problems, specific mutation operators that profit
from the features of the considered problem have been defined. They are
explained in the chapters devoted to the corresponding optimisation problems.

Finally, the following crossover operators have been applied:

• One Point Crossover (OPX) [126]: It works by choosing a random gene, and
then splitting both parents at this point and creating the two children by
exchanging the tails. It can be used with real-coded genes as well as with
binary strings.

42

2.1. Mono-Objective Metaheuristics

Figure 2.2: Sub-string Crossover (SSX)

• Uniform Crossover (UX) [229]: This crossover works by treating each gene
independently and making a random choice as to which parent it should be
inherited from. This is implemented by generating a string with L random
variables from a uniform distribution over [0, 1], where L is the number of
genes. In each position, if the value is below a given value (usually 0.5), the
gene is inherited from the first parent; otherwise, it is inherited from the second
parent. The second offspring is created using the inverse mapping. It can be
used with real-coded genes and with binary strings.

• Simulated Binary Crossover (SBX) [76]: This crossover simulates the operation
of the OPX with binary encoding, but it was designed for real-coded genes.
For doing it, a probability distribution similar to the one generated with the
binary OPX is used. Such a distribution can be adapted to the problem with
the parameter ηc. In every experiment ηc = 5 has been used.

• Two-Dimensional Substring Crossover (SSX) [127]: This crossover is used with
two-dimensional chromosomes. First, a gene position is selected as the division
point. Then, the operator randomly decides to do a vertical or horizontal op-
eration, i.e. the chromosome is converted into a one dimensional chromosome
sorting the genes by rows or by columns. Finally, the OPX operator is applied
considering the converted chromosome. SSX is illustrated in Figure 2.2. H1
and H2 are generated by means of a horizontal crossover, while V 1 and V 2 are
generated by the application of the vertical one. In both cases, the position
(3, 2) has been selected as the division point.

• Specific crossover: In some problems, specific crossover operators that profit
from the features of the considered problem have been defined. They are
explained in the chapters devoted to the corresponding optimisation problems.

43

CHAPTER 2. Metaheuristics

The previous description is a unifying view of evolutionary approaches [93]. However,
it its origin, several computer scientist independently invented different evolutionary
methods [183], using different names to refer to them. Evolution Strategiess (ESs)
were introduced in [207] as a method to solve optimisation problems with real-valued
parameters. The idea was further developed by Schwefel [213]. One of the main
contributions of them was the usage of self-adaptation. Specifically, the mutation
was performed using a Gaussian distribution whose variance was coevolved with
the individuals. At the same time, Genetic Algorithms (GAs) were proposed by
Holland [126]. In such a case, the proposal worked on binary strings rather than
on real-valued genes. Another novel contribution was the definition of the genetic
operator. Other well-known schemes are Evolutionary Programming (EP) [102]
which encodes the individuals as finite state machines, and Genetic Programming
(GP) [148], which encodes the individuals as trees. The differences among the
schemes were not based only on the encoding. For instance, in the case of the
original GAs, both crossover and mutation operators were used; while in ESs the
random mutation was the only source of variation. In addition, GAs used a fixed
mutation probability, while in ESs the genes were mutated based on a distribution
which was also evolved.

In the last years the boundaries between the different flavours of evolutionary algo-
rithms have broken down [183]. The reason is that several evolutionary approaches
that merge the ideas of them have emerged. For instance several genetic algorithms
with self-adaptive mechanisms have been proposed [220]. Such proposals incorpo-
rate ideas from GAs, and from ESs, so it is not clear which is the most appropriate
notation to use. For this reason, in this dissertation these algorithms are mainly
referred to as EAs. However, in some parts the terms ESs and GAs are also used to
refer to specific approaches that were originally published using such terms.

Eshelman’s cross generational elitist selection, heterogeneous recombina-

tion, and cataclysmic mutation

The Eshelman’s cross generational elitist selection, heterogeneous recombination,
and cataclysmic mutation (CHC) algorithm is a specific flavour of EA that has
been used in this research. CHC was proposed by Eshelman [95]. It combines a
conservative selection strategy - the RW-S scheme - with a radical highly disruptive
recombination operator that produces offspring that are maximally different from
both parents. In addition, a method to detect convergence is incorporated on the
scheme. When convergence is detected, a restart mechanism is applied. The rest of
the operations follow the normal behaviour of EAs.

In CHC the mating selection is performed in such a way that individuals that are

44

2.1. Mono-Objective Metaheuristics

too similar (Hamming distance below a given threshold) cannot mate each other.
First, each member of the population is copied to the mating pool. Then, they
are randomly paired for recombination. The recombination is made using a special
procedure known as Half Uniform Crossover (HUX). This procedure first copies the
common information for both parents into both children. Then, it translates half
of the diverging information from each parent to each of the children. This is done
with the aim of preserving the maximum amount of diversity in the population,
as no new diversity is introduced during the normal iterations (mutation is not
applied in the normal generations). The threshold that controls the mating selection
is progressively reduced to encourage the production of new solutions when the
population begins to converge. When convergence is finally reached (population
not changed for a number of specified generations) a special mechanism is used to
generate new diversity: the restart scheme. In such a scheme, all the solutions except
the very best ones are significantly modified by applying a mutation operator with
a high mutation rate.
The following components must be fixed by the practitioner:

• N : Population size.

• Cataclysmic mutation: It is usually the flip mutation operator.

• Pm: It represents the probability of the cataclysmic mutation.

• Pc: Crossover probability.

• ConvGen: Number of generations to detect convergence.

2.1.2 Differential Evolution

Differential Evolution (DE) is a population-based metaheuristic proposed by Storn
and Price [227]. Since its inception, DE has earned a reputation as a very effec-
tive global optimiser [205]. The DE algorithm has gradually become more popular
mainly because it has demonstrated good convergence properties and because of its
conceptual simplicity and ease of use [226]. DE originated with the Genetic An-
nealing Algorithm (GAA) [204]. GAA is based on a combination of GAs and SA
techniques. Specifically, it implements a set of annealing procedures that are speci-
fied via several thresholds. DE introduces two main modifications. First, candidate
solutions are encoded with a set of floating-point values instead of bit-string enco-
ding. Moreover, it incorporates the idea of using vector differences for perturbing
the vector population. The idea was applied by designing a novel mutation operator
which is currently known as the differential mutation operator.

45

CHAPTER 2. Metaheuristics

Algorithm 2 Differential Evolution

1: Generate an initial population (P) with N individuals
2: Evaluate all individuals in the population
3: while (not stopping criterion) do
4: for i = 1→ N do

5: Select a random individual different from Pi (Pa)
6: Select a random individual different from Pi and Pa (Pb)
7: Select a random individual different from Pi, Pa and Pb (Pbase)
8: jrand = random integer([1, numGenes])
9: for j = 1→ numGenes do

10: if ((random[0, 1] <= CR) || (j == jrand)) then
11: Offspringi,j = Pbase,j + F * (Pa,j - Pb,j)
12: else

13: Offspringi,j = Pi,j

14: end if

15: end for

16: NewPopi = better(Offspringi, Pi)
17: end for

18: P = NewPop
19: end while

Algorithm 2 shows a general pseudocode of the approach. First, an initial population
withN individuals is created (line 1) and evaluated (line 2). Then, until the stopping
criterion is reached (line 3) a set of steps are repeated. Such a set of steps is usually
referred to as a generation of the DE scheme. The steps are the following. First,
for each individual of the population (Pi) (line 4), three different individuals of the
population are randomly selected (line 5-7). They are named Pa, Pb and Pbase.
Considering such individuals a new offspring is created. The differential mutation
operator is used (line 8-15). The offspring is compared with Pi, and the best of both
individuals is copied to a new population set (line 16). Finally, the new population
set replaces the old population (line 18), and the DE generations continue.
The following parameters must be fixed:

• N: Population Size.

• CR: It represents the crossover factor. It controls the probability of choosing
the mutated value instead of the current value of Pi.

• F: It Controls the amplification of differential variations.

46

2.1. Mono-Objective Metaheuristics

Algorithm 3 Population-based Incremental Learning

1: Initialise probability vector (P)
2: while (not stopping criterion) do
3: Generate population with N individuals according to probability vector P
4: Evaluate all individuals in the population
5: Find the individual with the maximum fitness in the population (max)
6: for i = 1→ numGenes do

7: Update P : Pi = Pi * (1 - LR) + maxi * LR
8: if (random[0, 1] < pm) then
9: Mutate P : Pi = Pi ∗ (1−MUT A) + random(0 or 1) ∗ (MUT A);

10: end if

11: end for

12: end while

2.1.3 Population-based Incremental Learning

Population-based Incremental Learning (PBIL) is a population-based metaheuristic
proposed by Baluja [21]. It combines EAs with competitive learning processes typi-
cally used in artificial neural networks. PBIL abstracts away the crossover operator
and redefine the role of the population. Specifically, it is an extension of the Equilib-
rium Genetic Algorithm (EGA) achieved through reexamination of the performance
in terms of competitive learning. PBIL attempts to create a probability vector from
which samples can be drawn to produce the next generation’s population. There-
fore, it can be seen as an EA in which a probability vector is evolved rather than
individual members. The algorithm is simpler than a standard GA, but in some
cases leads to better results than a standard genetic approach [22].

Algorithm 3 shows a general pseudocode of the approach. First a probability vector
(P) is initialised (line 1). Each position of such a vector represents the probabilities
of generating the different accepted values of a gene. In this research, PBIL has
been used with binary string encoding, so each position represents the probability
of generating a “one” for the corresponding gene. The initialisation assigns the value
0.5 to each position. Then, the search loop is repeated until some stopping criterion
is satisfied (line 2). In each cycle, a population of N individuals is generated (line
3). The generation is performed according to the probability vector P . Then, the
individuals of the population are evaluated (line 4), and the one with maximum
fitness is stored in max (line 5). Afterwards, a learning procedure (line 7), and
a mutation operator (line 8-10) are applied to update each position of P (line 6).
The next generation considers the updated probability vector. Finally, when the
stopping criterion is satisfied, the best solution found so far is returned.

47

CHAPTER 2. Metaheuristics

The practitioner must assign a value to the following parameters:

• N : It represents the population size.

• pm: It represents the probability of mutating each position of P .

• MUT A: It represents the strength of the mutation.

• LR: It represents the strength of the learning procedure, or learning rate.

2.1.4 Local Search with Heuristic Restarts

Local Search with Heuristic Restart (LSHR) extends a local search algorithm by
adding periodically guided perturbations to avoid local minima [165]. In short, it
periodically restarts local search by means of a probability distribution F learned
during the search process. It is used for combinatorial problems. F is a matrix with
dimension M ×N , where M is the number of variables of the problem, and N the
amount of valid values for each variable. The matrix is updated in a similar fashion
as PBIL.

Algorithm 4 shows a general pseudocode of the approach. The probability distribu-
tion F is initialised with uniform probabilities (line 1). Then, an initial solution S
is generated from F by means of a roulette-wheel based procedure (line 2). Then,
the search loop is repeated until some stopping criterion is satisfied (line 3). In each
cycle the following steps are executed. First, a local search is applied on current
solution S (line 4). The best solution found is kept is S∗ (line 5). Then, the ma-
trix F is updated following the same rule than in PBIL. Finally, a new solution is
generated using the new matrix F (line 6).

Algorithm 4 Local Search with Heuristic Restarts

1: initialise(probability matrix F)
2: S∗ ← S ← generateFrom(F)
3: while not time-limit do
4: S ← localSearch(S)
5: S∗ ← best(S,S∗)
6: F ← update(F ,S∗)
7: S ← generateFrom(F)
8: end while

48

2.1. Mono-Objective Metaheuristics

Algorithm 5 Scatter Search

1: Generate an initial population (P) with N individuals
2: Evaluate all individuals in the population
3: RefSet = generateReferenceSet(P)
4: while (not stopping criterion) do
5: SubSet = SubSetGenerator(RefSet)
6: SubSet = combinationMethod(SubSet)
7: RefSet = generateReferenceSet(SubSet ∪ RefSet)
8: end while

2.1.5 Scatter Search

Scatter Search (SS) is a population-based metaheuristic that provides unifying prin-
ciples for joining solutions based on generalised path constructions [111]. It utilises
strategic designs where other approaches resort to randomisation [113]. SS derives
its foundations from strategies originally proposed for combining decision rules and
constraints in the context of integer programming [110]. It works with a small set
composed of the most representative solutions from the population. Such a set
is called the reference set. In order to decide which solutions are included in the
reference set, both quality and diversity metrics are considered. In the used im-
plementation, one solution is included because of its quality (the best one), while
for the rest of the solutions a diversity metric is considered. Specifically, solutions
are selected with the aim of maximising the Euclidean distance among them in
the search space. SS has been successfully applied to several practical optimisation
problems [89, 118].

Algorithm 5 shows a general pseudocode of the approach. First, an initial population
with N individuals is created (line 1) and evaluated (line 2). The best RefSize
solutions, considering both quality and diversity, are included in a reference set
(line 3). Then, until the stopping criterion is reached (line 4) a set of steps are
repeated. Such a set of steps is usually referred to as a generation of the SS scheme.
The steps are the following. First, a subset generation method is applied (line 5).
It creates all possible subsets of size two from the reference set. The next step
is to apply the solution combination method (line 6). In the used implementation,
solutions are combined in a pair-wise way, so the combination method is analogous to
the crossover operation. Finally, a new reference set is created by selecting the best
RefSize solutions, considering both the new generated solutions and the original
reference set. The solution returned at the end of the execution is the best one
included in the reference set.

49

CHAPTER 2. Metaheuristics

Algorithm 6 Iterated Local Search

1: σ0 = generateInitialSolution();
2: σ = localSearch(σ0);
3: UpdateBestSolution(σ)
4: while (not stopping criterion) do
5: σ′ = Perturbation(σ, history)
6: σ′′ = LocalSearch(σ′)
7: σ = acceptanceCriterion(σ, σ′′, history)
8: UpdateBestSolution(σ′′)
9: end while

2.1.6 Iterated Local Search

Iterated Local Search (ILS) [161] is a neighbourhood exploration paradigm whose
essence can be given in a nut-shell: one iteratively builds a sequence of solutions
generated by an embedded heuristic (usually a local search), leading to better so-
lutions than if one were to use repeated random trials of that heuristic. The idea
was initially proposed by Baxter [25] but it has been rediscovered by many au-
thors leading to many different names like Iterated Descent [24], Large-step Markov
Chain [174], or Chained Local Optimisation [173]. There are two main points that
make an algorithm an iterated local search:

• There must be a single chain that is being followed.

• The intensification step occurs in a reduced space defined by the output of a
black-box heuristic. Such a block box heuristic is usually a local search.

ILS is a simple and generally applicable metaheuristic which iteratively apply a local
search to the current solution. ILS improves the performance of local searches by
allowing them to escape local-optima and continue the search for possible better
solution. The success of ILS lies in the biased sampling of this set of local optima.
Algorithm 6 shows a general pseudocode of the approach. At the start of the algo-
rithm, an initial solution (σ0) is generated (line 1). Afterwards, a new solution (σ)
is generated by applying local search (line 2), and the best solution is updated if
required (line 3). Then, the search loop is repeated until some stopping criterion is
satisfied (line 4). In each cycle, a diversification step is applied by perturbing σ, to
obtain σ′ (line 5). Intensification is then performed around σ′ by applying a local
search to produce a new solution σ′′ (line 6). If σ′′ satisfies an acceptance criterion,
it replaces σ and the next cycle is carried out from this new solution (line 7). The
best solution found so far is updated in each cycle if required (line 8). Finally, the
best found solution is returned.

50

2.1. Mono-Objective Metaheuristics

In order to obtain a particular configuration of ILS several details have to be speci-
fied. Specifically, the next components must be established:

• Method to generate the initial solution. Usually, very simple methods are used
for the generation of the initial solution.

• Local Search Method. Several schemes have been tested in the literature.
In this research a Hill Climbing method has always been used. During the
local search, the complete neighbourhood is generated. From the obtained
neighbours, the best one is selected. The process is repeated from the chosen
solution. The process finishes when the local search reaches a local optimum
or based on a maximum execution time.

• Perturbation strategy. ILS should lead to good biased sampling as long as
the perturbations are neither too small nor too large. If they are too small,
one will often fall back to the same local optimum. If on the contrary the
perturbations are too large, the generated solution will be random, so a random
restart type algorithm is obtained. Since deterministic perturbations may lead
to short cycles, randomised perturbations have been used. In addition, the
perturbation scheme might depend on the history of the execution. In the
schemes developed in this research the strength of the perturbation method is
increased when stagnation is detected. The perturbation strategies are detailed
in the chapters devoted to the practical optimisation problems.

• Acceptance criterion. The acceptance criterion is in charge of picking which
solution between σ and σ′′ is used in the next cycle. In this research, a fixed
rule that involves selecting the best one has always been applied. Most of the
work using ILS has been of this type [161]. In other works, such a decision
also considers the history of the execution.

2.1.7 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a modern metaheuristic introduced by
Mladenović and Hansen [184]. It has been successfully applied to several practi-
cal optimisation problems [33, 168]. Its basic idea is to systematically change the
neighbourhood structure with the aim of avoiding stagnation. VNS is based on three
simple facts [111]:

• A local minimum with respect to one neighbourhood structure is not necessary
so with another.

51

CHAPTER 2. Metaheuristics

Algorithm 7 Variable Neighbourhood Search

1: σ = generateInitialSolution();
2: while (not stopping criterion) do
3: Generate random solution σ′ ∈ N s

k(σ)
4: σ′′ = Local Search(NLS

l (σ′))
5: if (f(σ′′) < f(σ)) then
6: σ = σ′′;
7: end if

8: UpdateBestSolution(σ′′)
9: end while

• A global minimum is a local minimum with respect to all possible neighbour-
hood structures.

• For many problems local minima with respect to one or several neighbourhoods
are relatively close to each other.

The core of the VNS is based on using two kind of schemes: shake and local search.
Intensification is achieved by the local search while the shaking of the neighbourhood
structure acts as a diversification mechanism. In order to develop an effective VNS
algorithm, two kinds of neighbourhood structures are required: N s

k(x) and NLS
l (x).

The first one is used for shaking, while the second one is used for local search.
Multiple neighbourhood of each kind might be used. For this reason, a subscript
has been added in the notation of the neighbourhoods.
Algorithm 7 shows a general pseudocode of the approach. First, an initial solution
is generated (line 1). Then, until the stopping criterion is satisfied (line 2), a set of
iterations are repeated. In each iteration the following steps are executed. First, the
shaking procedure is executed (line 3). It lies in selecting a random solution from
N s

k . The way in which k is selected depends on the implementation, but usually, the
value of k is initialised to one, and incremented on each cycle. Then, a local search
procedure is executed (line 4). It also depends on the implementation. Usually a
Variable Neighbourhood Descent (VND) is used. In such a case, every NLS

l (x) is
checked in a deterministic way. If the new generated solution improves the current
one, such a solution is updated (lines 5-7). Finally, the best found solution is updated
if required (line 8).
The components which must be fixed by the practitioner are the following:

• Method to generate the initial solution.

• The set of neighbourhoods for shaking: N s
k .

52

2.1. Mono-Objective Metaheuristics

• The set of neighbourhoods for intensification: NLS
l .

• The local search procedure.

2.1.8 Simulated Annealing

Simulated Annealing (SA) is a trajectory-based optimisation technique used to ad-
dress discrete and, to a lesser extent, continuous optimisation problems. It was in-
dependently proposed by Kirkpatrick et al. [141] and by Cerný [238]. Subsequently,
is has been successfully applied to many optimisation problems [2, 115]. SA is so
named because of its analogy to the process of physical annealing with solids [111].
In such a process a crystalline solid is heated and then allowed to cool very slowly
until it achieves its most regular possible crystal lattice configuration. The heat
causes the atoms to become unstuck from their initial positions and wander ran-
domly through states of higher energy. The slow cooling gives them more chances
of finding configurations with lower internal energy.

SA establishes the connection between this type of thermodynamic behaviour and
the search for global optima. Specifically, it makes use of the Boltzmann distribution
from statistical mechanics, i.e. the distribution of energies in an idealised many par-
ticle system. One of the key features of SA is that it provides a mean to escape local
optima by allowing moves which worsen the objective function value. Such moves
are accepted with a probability that depends on a parameter of the approach which
represents the temperature. The probability of accepting such moves is inspired on
the Boltzmann distribution.

Algorithm 8 shows a general pseudocode of the approach. The algorithm works it-
eratively and keeps a single tentative solution at any time. First, an initial solution
is generated (line 1) and stored as the best solution (line 2). Usually, very simple
methods are used for the generation of the initial solution. A parameter that repre-
sents the temperature (t) is initialised (line 3). Usually, a high value is used. Then,
until the stopping criterion is reached (line 4) a set of iterations are repeated (line
6) with a fixed temperature value. By analogy with the thermodynamic process,
each iteration of the SA attempts to replace the current solution by a new gener-
ated solution. Such solution (σn) is picked randomly from the neighbourhood of σ
(line 7). The best solution found so far is updated if required (line 8). The generated
solution might replace σ depending on an acceptance criterion (lines 9-14). Such
an acceptance criterion depends on the current temperature and on the fitness of
the generated solution. When the iterations have been completed, the temperature
that controls the Boltzmann distribution is decreased (line 16). Such a step is usua-
lly named the cooling process. Several cooling processes have been defined [228].

53

CHAPTER 2. Metaheuristics

Algorithm 8 Simulated Annealing

1: σ = generateInitialSolution();
2: UpdateBestSolution(σ)
3: t = startingTemperature;
4: while (not stopping criterion) do
5: while ((notStoppingcriterion) and (t > temperatureLimit)) do
6: for i = 1→ maxIterations do

7: Generate a solution σn ∈ N(σ)
8: UpdateBestSolution(σn)
9: ∆ := f(σ)− f(σn);

10: if ∆ ≥ 0 then

11: σ = σn;
12: else if random([0, 1]) ≤ e

∆
t then

13: σ = σn;
14: end if

15: end for

16: t = α ∗ t;
17: end while

18: t = startingTemperature;
19: σ = σb;
20: end while

In this research, a static cooling process has been considered. The same steps are
repeated until the temperature is lower than a threshold (line 5). When the tem-
perature is lower than the threshold, it is reset to its initial value (line 18), and the
local search continues starting from the best known solution (line 19). When the
stopping criterion is reached, the best solution found so far is returned.
The practitioner must assign a value to the next parameters:

• MaxIterations: It represents the number of iterations performed with a fixed
temperature value.

• StartingTemperature: It represents the initial temperature, and the value to
which the temperature is reset when is lower than a specified limit.

• TemperatureLimit: It represents the threshold for the minimum accepted tem-
perature. When the temperature is lower than this value, it is reset.

• α: It represents the cooling factor.

54

2.1. Mono-Objective Metaheuristics

Algorithm 9 Greedy Randomised Adaptive Search Procedure

1: while (not stopping criterion) do
2: σ = Greedy Randomised Construction()
3: σ′ = Local Search(σ)
4: UpdateBestSolution(σ′)
5: end while

2.1.9 Greedy Randomised Adaptive Search Procedure

Greedy Randomised Adaptive Search Procedure (GRASP) is a very popular multi-
start metaheuristic especially suited for combinatorial optimisation problems [111].
It was proposed by Feo and Resende [97]. GRASP typically consists of iterations
made up from successive constructions of a greedy randomised solution, and subse-
quent iterative improvement. The iterative improvement is usually performed with
a local search strategy. It has been successfully applied to several practical optimi-
sation problems [27, 155].

Algorithm 9 shows a general pseudocode of the approach. A set of iterations are
repeated until the stopping criterion is satisfied (line 1). The iterations consist of
two steps. First, a greedy randomised construction procedure is executed (line 2).
Such a phase builds a feasible solution with a stochastic approach. The construction
is performed in the following way. First, an empty solution is considered. Then, at
each step, a set with all elements that can be incorporated to the partial solution
under construction without destroying feasibility is calculated. The elements of the
set are sorted considering a greedy function that usually represents the increase in the
fitness function due to the incorporation of each element to the partial solution. The
best elements are inserted in a restricted candidate list (rcl). Finally, an element
of rcl - randomly selected - is incorporated to the partial solution. The elements of
rcl are selected with the same probabilities independently of their involved fitness
increase. The process finishes when no elements can be inserted without destroying
the feasibility. The solutions returned by the construction phase are not guaranteed
to be locally optimal. For this reason, such a solution undergoes a second stage,
based on applying a local search procedure (line 3). Finally, considering the new
generated solution, the best solution is updated if required (line 4).

The components which must be fixed by the practitioner are the following:

• Local search procedure.

• Size of rcl (|RCL|).

55

CHAPTER 2. Metaheuristics

2.2 Multi-Objective Metaheuristics

2.2.1 Multi-Objective Evolutionary Algorithms

The application of EAs in multi-objective optimisation has received a growing in-
terest in the last decades [74]. Such approaches are named Multi-Objective Evolu-
tionary Algorithms (MOEAs). They follow the same scheme that the presented for
the mono-objective evolutionary approaches (Algorithm 1). However, the different
components are designed with the aim of obtaining an approximation of the Pareto
Front. Most research in this area has concentrated on the selection stage due to the
need to integrate vectorial performance measures in such a phase. As in the case of
mono-objective EAs, several different schemes have been proposed [108].
Early applications to Multi-Objective Optimisation Problems (MOPs) were mainly
preference-based approaches, i.e. the objectives were weighted and mono-objective
EAs were applied [74]. Vector Evaluated Genetic Algorithm (VEGA) was the first
EA capable of finding multiple trade-off solutions in a single run. Therefore, it can
be considered as the first MOEA. It was proposed by Schaffer [212]. Goldberg
suggested a sketch for MOEAs based on the concept of domination [114]. Since
then, several approaches have been proposed:

• Non-Dominated Sorting Genetic Algorithm (NSGA) [224], proposed by Srini-
vas and Deb.

• Niched Pareto Genetic Algorithm (NPGA) [129], proposed by Horn et al..

• Multi-Objective Optimisation Genetic Algorithm (MOGA) [103], proposed by
Fonseca and Flemming.

• The weighted-sum approach [133], proposed by Ishibuchi and Murata.

• Strength Pareto Evolutionary Algorithm (SPEA) [258], proposed by Zitzler
and Thiele.

• Pareto Archived Evolution Strategy (PAES) [145], proposed by Knowles and
Corne.

• Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [78], proposed by
Deb et al.

• Strength Pareto Evolutionary Algorithm 2 (SPEA2) [257] proposed by Zitzler
et al.

56

2.2. Multi-Objective Metaheuristics

• Indicator-Based Evolutionary Algorithm (IBEA) [256], proposed by Zitzler
and Künzli.

• Multi-Objective Cellular Genetic Algorithm (MOCell) [189], proposed by Ne-
bro et al.

Among the previous schemes the next ones have been used in this research: NSGA-II,
SPEA2, IBEA, and MOCell. In the following sections, a description of each one of
them is presented.

Non-Dominated Sorting Genetic Algorithm II

NSGA-II [78] is a non-dominated sorting based MOEA. Two of the most impor-
tant characteristics of this algorithm are the following. First, it uses a fast non-
dominated sorting approach. Second, it applies a selection operator which combines
previous populations with new generated ones, ensuring elitism in the approach.
Both aforementioned features are guided by the crowded comparison operator (≥n).
This operator assigns two attributes to every individual i of the population: the
non-domination rank (irank) and the local crowding distance (idistance). The non-
domination rank makes use of the Pareto Dominance concept. The procedure to
calculate it is as follows. First, the set of non-dominated individuals of the popula-
tion are assigned to the first rank. Then, the process is repeated considering only
the individuals that do not have a rank assigned. The rank assigned at each step
is increased by one. The process ends when all individuals in the population have
their corresponding rank established.
The local crowding distance is used to estimate the density of solutions surrounding
a particular individual. First, the size of the largest cuboid enclosing the individual i
without including any other individual that belongs to its rank is calculated. Then,
the crowding distance is calculated as the mean side-length of the cuboid. It is
worthy to mention that the local crowding distance of the boundary individuals of
every rank is assigned to an infinite value.
Finally, the partial order given by ≥n is the following:

i ≥n j if ((irank < jrank) or ((irank = jrank) and (idistance > jdistance))) (2.1)

Algorithm 10 shows the pseudocode of the approach. First, an initial population
withN individuals is created (line 1) and evaluated (line 2). Then, until the stopping
criterion is reached (line 3) a set of steps are repeated. The steps are the following.
First, the fitness of every individual in the population is calculated (line 4). In the

57

CHAPTER 2. Metaheuristics

Algorithm 10 Non-Dominated Sorting Genetic Algorithm II

1: Initialisation: Generate an initial population (P) with N individuals
2: Evaluation: Evaluate all individuals in the population
3: while (not stopping criterion) do
4: Fitness assignment: Calculate fitness values of individuals in Pt. Use only

the non-domination rank in the first generation, and the crowded comparison
operator in other generations.

5: Mating selection: Perform binary tournament selection on Pt in order to
fill the mating pool.

6: Variation: Apply genetic operators to the mating pool to create a child
population CP .

7: Evaluation: evaluate individuals in CP .
8: Survivor selection: Combine P and CP , selecting the best individuals using

the crowded comparison operator to constitute the new P .
9: end while

first generation it calculates the rank of each individual. In the following generations
both the rank, and the crowding distances are calculated. Then, the mating pool is
created, i.e. a set of N parents are selected (line 5). They are selected by means of
binary tournaments. The tournaments consider the fitness calculated in the previous
step. Then, the variation stage is applied (line 6). The crossover and mutation
operators are used to generate the child population (CP). Such child population
is evaluated (line 7). Finally, the survivor selection scheme (line 8) lies in selecting
the best N individuals between P and CP . The crowded comparison operator is
used to perform the comparisons. The next generation considers the new generated
population.
The following components must be assigned by the practitioner:

• N : It represents the population size.

• Mutation operator and mutation probability (pm).

• Crossover operator and crossover probability (pc).

Strength Pareto Evolutionary Algorithm 2

SPEA2 is a well-known MOEA proposed by Zitzler et al. [257]. It incorporates the
usage of an external archive to manage the best found solutions. SPEA2 establishes
an order among the individuals using a fine-grained fitness assignment strategy. Such
strategy assigns to each individual a fitness value that is the sum of its strength raw

58

2.2. Multi-Objective Metaheuristics

Algorithm 11 Strength Pareto Evolutionary Algorithm 2

1: Initialisation: Generate an initial population (P) with N individuals
2: Initialisation: Create an empty archive P .
3: while (not stopping criterion) do
4: Evaluation: Evaluate all individuals in the population.
5: Fitness assignment: Calculate the fitness values of individuals in P and P .

For each individual i, calculate the raw fitness iraw, and the density estimation
idensity.

6: Environmental Selection: Create a new archive (NP) with the non-
dominated individuals in P and P . If |NP | > N reduce NP . Otherwise,
if |NP | < N , fill NP with dominated individuals in P and P , considering
their fitness. Establish NP as the current archive.

7: Mating selection: Perform binary tournament selection on P to fill the
mating pool.

8: Variation: Apply genetic operators to the mating pool and set P to the
resulting population.

9: end while

fitness plus a density estimation. The density information (idensity) is incorporated
to discriminate among individuals which have identical raw fitness values. In order
to calculate the raw fitness, the strength istrength of each individual i is calculated as
the number of solutions that it dominates, considering the population (P) and the
archive (P):

istrength = |{j|j ∈ P ∪ P ∧ i � j}| (2.2)

Then, the raw fitness iraw is calculated as follows:

iraw =
∑

j∈P∪P ,j�i

jstrength (2.3)

Algorithm 11 shows the pseudocode of the approach. First, an initial population
with N individuals (line 1) and an empty archive (line 2) are created. Then, until
the stopping criterion is reached (line 3) a set of steps are repeated. The steps are
the following. First, the current population is evaluated (line 4). Then, the fitness
assignment strategy is used to calculate the fitness of the individuals in the popula-
tion and archive (line 5). In each generation the non-dominated individuals of both
the population and the archive are used to update the archive; if the number of non-
dominated individuals is greater than the desired archive size, a truncation operator
based on calculating the distances to the k-th nearest neighbour is used. Otherwise,

59

CHAPTER 2. Metaheuristics

if the number of non-dominated solutions is lower than the desired archive size,
the best dominated individuals of the old archive or population are used to fill the
archive. All this procedure is known as Environmental Selection (line 6). Then,
the mating pool is created (line 7). The N parents are selected by means of binary
tournaments. Finally, the variation stage is applied (line 8) to generate the new
population. The next generation considers the new generated population.
The following components must be assigned by the practitioner:

• N : It represents the population size.

• N : It represents the desired archive size.

• Mutation operator and mutation probability (pm).

• Crossover operator and crossover probability (pc).

Indicator-based Evolutionary Algorithm

IBEA [256] is a MOEA proposed by Zitzler and Künzli that allows defining the
optimisation goal in terms of a binary quality indicator. This measure is used directly
for fitness calculation. IBEA allows the usage of different binary quality indicators.
In this thesis the binary multiplicative ǫ-indicator [259] has been used. There exist
two versions of IBEA, the basic one and the adaptive version. In the adaptive
version, objectives values are normalised, and the indicator values are adaptively
scaled. The basic approach is similar, but no scaling or normalisation is performed.
Both versions of the algorithm have been used.
Algorithm 12 shows the pseudocode of the adaptive version. First, an initial popu-
lation with N individuals is created (line 1) and evaluated (line 2). Then, until the
stopping criterion is reached (line 3) a set of steps are repeated. First, the fitness
of individuals in the population is calculated (line 4). The objective values must be
normalised and the indicator values calculated (lines 4.1). The formula in line 4.2 is
used to calculate the fitness value of each individual. The fitness function depends
on a scaling factor k. Then, the environmental selection is performed (line 5). Du-
ring the environmental selection the worst individual, i.e. the individual with lowest
fitness is removed. This step is repeated until the population size does not exceed
N . Each time an individual is removed, the fitness of the remaining individuals is
recalculated. The mating pool is constituted by performing a binary tournament
selection with replacement over the current population (line 6). Finally, a variation
process over the individuals in the mating pool is performed (line 7) and the new
individuals are attached to the current population.

60

2.2. Multi-Objective Metaheuristics

Algorithm 12 Indicator-based Evolutionary Algorithm (Adaptive Version)

1: Initialisation: Generate an initial population (P) with N individuals
2: Evaluation: Evaluate all individuals in the population
3: while (not stopping criterion) do
4: Fitness assignment: calculate the fitness values using the quality indicator.

1. Calculate indicator values I(x1, x2) using the normalised objective values
f ′
i and determine the maximum absolute value c = maxx1,x2∈P |I(x1, x2)|.

2. ∀x1 ∈ P , F (x1) =
∑

x2∈P\{x1}−e−I({x2},{x1})/(c·k).

5: Environmental selection: until the size of P does not exceed N , remove
the individual with the smallest fitness value, and recalculate the fitness value
of the remaining individuals.

6: Mating selection: Perform binary tournament selection with replacement
on P in order to fill the temporary mating pool P ′.

7: Variation: Apply recombination and mutation operators to the mating pool
P ′ and add the resulting offspring to P .

8: end while

The following components must be assigned by the practitioner:

• N : It represents the population size.

• k: It represents the fitness scaling factor.

• Mutation operator and mutation probability (pm).

• Crossover operator and crossover probability (pc).

Multi-objective Cellular Genetic Algorithm

MOCell is a Cellular Genetic Algorithm (CGA) proposed by Nebro et al. [189]. In
CGAs, each member of the population is assigned to a point on a grid. Recombina-
tion and selection considers solely the neighbours of a given individual. In addition,
the considered version includes an external archive to store the non-dominated so-
lutions found so far. This archive is bounded and uses the crowding operator of
NSGA-II to keep the diversity of the inserted solutions.
The asynchronous version named aMOCell4 [190] has been used. Algorithm 13
shows the pseudocode of the approach. First, an initial population with N indi-
viduals is created (line 1) and evaluated (line 2). The non-dominated individuals

61

CHAPTER 2. Metaheuristics

Algorithm 13 Multi-objective Cellular Genetic Algorithm

1: Initialisation: Generate an initial population (P) with N individuals
2: Evaluation: Evaluate all individuals in the population
3: updateArchive(P)
4: while (not stopping criterion) do
5: for individual ← 1 to N do

6: neighbours ←getNeighborhood(population, position(individual))
7: neighbours.add(position(individual))
8: parent1 ←selection(neighbours)
9: parent2 ←selection(archive)

10: offspring←recombination(Pc, parent1, parent2)
11: offspring←mutation(Pm, offspring)
12: evaluate(offspring)
13: evaluateFitness(offspring)
14: updateArchive(offspring)
15: replacement(position(individual), offspring)
16: end for

17: end while

are included in the archive (line 3). Then, until the stopping criterion is reached
(line 4) a set of steps are repeated. Specifically, for each member of the population
(line 5), the following steps are executed. First, the neighbours of the individual are
calculated (line 6). The individual itself is included in the list of neighbours (line 7).
Then, two parents are selected. The first one is chosen from the neighbourhood
(line 8), while the second one is chosen from the archive (line 9). The selection is
performed with a binary tournament. An offspring is created by using recombina-
tion (line 10), and mutation (line 11). Then, the offspring is evaluated (line 12),
and its fitness is calculated considering the NSGA-II crowding operator (line 13).
The new individual is used to update the archive (line 14). Finally, the replacement
scheme is executed. The new offspring is compared with the current one, replacing
it if better. In the case of both solution be non-dominated, the worst individual in
the neighbourhood (considering the crowding operator) is replaced by the current
one. The next generation continues with the new generated population.
The following components must be assigned by the practitioner:

• N : It represents the population size.

• Mutation operator and mutation probability (pm).

• Crossover operator and crossover probability (pc).

62

2.2. Multi-Objective Metaheuristics

Algorithm 14 Evolution Strategy with NSGA-II

1: Initialise population P of µ individuals
2: Evaluate all individuals in the population
3: Initialise variance to σ0 for each individual I ∈ P
4: while (not stopping criterion) do
5: P ′ = ∅
6: for each I = (x1, ..., xn, σ) ∈ P do

7: σ′ = σeN(0,∆)

8: Create I ′ = (N(x1, σ
′), N(x2, σ

′), ..., N(xn, σ
′), σ′)

9: Evaluate I ′

10: P ′ = P ′ ∪ {I ′}
11: end for

12: P = P ∪ P ′

13: Calculate front F1 as Non-dominated individuals of P
14: for i = 2 to n do

15: Generate fronts Fi as Non-dominated individuals of P \ (F1 ∪ ... ∪ Fi−1)
16: end for

17: Sort solutions in each Fi (i = 1, . . . , n) using the crowding distance
18: Delete the worst µ individuals in population P
19: end while

Evolution Strategy with NSGA-II

The Evolution Strategy with NSGA-II (ESN) algorithm is based on the hybridisa-
tion of Evolution Strategies and NSGA-II. The algorithm uses the standard Evolu-
tion Strategies’ steps [15], replacing the selection process by the NSGA-II selection
scheme. The mutation process implemented was the standard (µ+ λ) process [16],
although in this research every configuration has used λ = µ.

Algorithm 14 shows the pseudocode of the approach. First, a population with µ
individuals is created (line 1), and evaluated (line 2). The variance that controls the
mutation operator is initialised in each individual (line 3). Then, until the stopping
criterion is reached (line 4) a set of steps are repeated. First, an empty set that
represents the new offspring set is created (line 5). Then, each individual of the
population (line 6) undergoes the mutation step. In the mutation step, both the
variance value (line 7), and the rest of the genes (line 8) are mutated. The new
genes are created by using a random value from a Gaussian distribution centred
in the current value, and with the corresponding variance. The new offspring is
evaluated (line 9), and inserted in the offspring set (line 10). Finally, the population
and offspring are joined (line 12), and the selection scheme of NSGA-II is executed

63

CHAPTER 2. Metaheuristics

(lines 13-18). The process continues with the new generated population.
The following components must be assigned by the practitioner:

• µ: It represents the population size.

• σ0: Initial value of the variance.

2.2.2 Multi-Objective Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a population-based metaheuristic proposed
by Kennedy and Eberhart [140]. In this kind of algorithms the members of the
population are dubbed particles. It was first intended for simulating social behaviour
as a representation of the movement of organisms in a bird flock or fish school. Many
philosophical aspects of PSO and swarm intelligence have been studied [87].
Several multi-objective versions of PSO have been proposed. In this research the
proposal of Coello et al. [59] has been used. Such a version combines PSO with the
archiving strategy of PAES [145]. Algorithm 15 shows a pseudocode of the approach.
First, an initial swarm with N particles is created (line 1) and evaluated (line 2).
The velocities are initialised to zero in each dimension (line 3), and the repository
is populated with the non-dominated particles (line 4). Each particle is stored as
the best solution found so far in the corresponding location (lines 5-7). Then, until
the stopping criterion is reached (line 8) a set of steps are repeated. Specifically,
for each member of the swarm (line 9), the following steps are executed. First, a
leader particle is selected from the repository (line 10). In order to select the leader,
the density calculation from PAES is used. Specifically, a roulette-wheel selection
is applied to favour particles in less populated regions. Then, the velocity (line 11)
and position (line 12) of the particle are updated using the standard equations
of PSO but using the leader particle selected from the repository, instead of best
neighbour as it is usual. The new generated particle is evaluated (line 13). Then,
the repository is updated with the new particle. The updating mechanism of PAES
is used. Finally, the particle best position is updated if required. Specifically, if
the new particle dominates the current contents of best position, it is updated. In
addition, in the cases where the new particle and the contents of best position are
not comparable (no dominations between them), one of them is randomly selected
to keep stored as the best one.
The following components must be assigned by the practitioner:

• N : It represents the population size.

• Div: It represents the number of divisions performed in the search space to
calculate the density information.

64

2.2. Multi-Objective Metaheuristics

Algorithm 15 Multi-Objective Particle Swarm Optimisation

1: Initialise the swarm (S) with N particles
2: Evaluate all individuals in the swarm
3: Initialise the velocity of each particle to 0
4: Update repository with non-dominated particles
5: for i = 1 to N do

6: Store objectives and position of Si as PBestObjetivesi and PBestPositioni

7: end for

8: while (not stopping criterion) do
9: for = 1 to N do

10: Select Leader (L) from the repository
11: Update velocity of Pi using the PSO standard equations and L as the

selected neighbour.
12: Update NewPosition using the PSO standard equations
13: Evaluate NewPosition
14: Update Repository with NewPosition
15: Update PBestObjectivei and PBestPositioni

16: end for

17: end while

2.2.3 Non-dominated Sorting Differential Evolution

Several methods have been proposed to adapt the DE scheme to multi-objective
optimisation. In this research, the Non-dominated Sorting Differential Evolution for
Multiobjective Optimisation (NSDEMO) proposed by Iorio and Li [131] has been
used. NSDEMO is a multi-objective differential evolution based on NSGA-II. The
algorithm behaves as the NSGA-II approach, but it replaces the mating selection
and variation stage of the NSGA-II with the one of the DE scheme. In particular,
the classic differential mutation operator is used.

Algorithm 16 shows the pseudocode of the approach. First, an initial population
with N individuals is created (line 1) and evaluated (line 2). Then, until the stop-
ping criterion is reached (line 3) a set of steps are repeated. The steps are the
following. First, the fitness of every individual in the population is calculated using
the NSGA-II crowding operator (line 4). Then, the offspring is created (line 5-17)
by using the differential evolution mutation operator. The offspring is evaluated
(line 18). Finally, the survivor selection scheme (line 19) is executed. The best
N individuals between the current population and the offspring are selected. The
crowded comparison operator is used to perform the comparisons. The next gene-
ration considers the new generated population.

65

CHAPTER 2. Metaheuristics

Algorithm 16 Non-dominated Sorting Differential Evolution

1: Initialisation: Generate an initial population (P) with N individuals
2: Evaluation: Evaluate all individuals in the population
3: while (not stopping criterion) do
4: Fitness assignment: Calculate fitness values of individuals in Pt using the

crowding operator.
Offspring creation:

5: for i = 1→ N do

6: Select a random individual different from Pi (Pa)
7: Select a random individual different from Pi and Pa (Pb)
8: Select a random individual different from Pi, Pa and Pb (Pbase)
9: jrand = random integer([1, numGenes])

10: for j = 1→ numGenes do

11: if ((random[0, 1] <= CR) || (j == jrand)) then
12: CPi,j = Pbase,j + F * (Pa,j - Pb,j)
13: else

14: CPi,j = Pi,j

15: end if

16: end for

17: end for

18: Evaluation: evaluate individuals in CP .
19: Survivor selection: Combine P and CP , selecting the best individuals using

the crowded comparison operator to constitute the new P .
20: end while

The following parameters must be fixed:

• N: Population Size.

• CR: It represents the crossover factor. It controls the probability of choosing
the mutated value instead of the current value of Pi.

• F: It Controls the amplification of differential variations.

2.3 Memetic Algorithms

Memetic Algorithms (MAs) are population-based metaheuristics composed of an
evolutionary framework and a set of local search procedures which are activated

66

2.3. Memetic Algorithms

Algorithm 17 Memetic Algorithm

1: Initialisation: Generate an initial population with N individuals
2: Evaluation: Evaluate all individuals in the population
3: while (not stopping criterion) do
4: Mating selection: select parents to generate the offspring
5: Variation: Apply genetic operators to the mating pool to create a child

population
6: Evaluation: Evaluate the child population
7: Individual learning: Perform individual learning process in the population

with a probability pl
8: Survivor selection: Select individuals for the next generation
9: end while

within the generation cycle of the external framework [191]. Its definition was pro-
posed by Moscato [186]. The first implementation was given in [197]. They are
of great value because they perform some orders of magnitude faster than tradi-
tional genetic algorithms in some problem domains [106]. These algorithms have
been applied both for mono-objective [194] and multi-objective problems [218]. In
this research, several memetic algorithms have been used. They have combined the
population-based metaheuristics previously presented in this chapter with simple
local search algorithms based on hill climbing.

Algorithm 17 shows the scheme of a basic MA for an EA. First, an initial population
is created (line 1), and evaluated (line 2). Then, until the stopping criterion is
reached (line 3) a set of steps are repeated. Such steps are similar to a generation of
an EA. However, an individual learning stage (line 7) has been added. The learning
step is usually applied on each generation with a probability pl. In [132] the effect
of the probability pl was analysed. Authors concluded that the performance of MAs
can be improved by dynamically changing the probability pl. In other cases [106]
the learning process has been performed in every generation. For the problems
considered in this research, the initial experiments showed that using the local search
in every generation was preferable. The reason is that in the considered approaches
the individuals obtained after the variation phase may not have high enough quality
components. In addition, they could be easily improved by the individual learning
process. Thus, the best results were obtained by applying the learning process in
each generation. Therefore, our approaches have considered the configuration pl = 1
in every case. The rest of the memetic algorithms used in this research has been
similar to it, i.e., the learning process has been executed in every generation after
the variation stage of the considered population-based metaheuristics.

67

CHAPTER 2. Metaheuristics

MAs which are based on EAs are also referred to in the literature as Baldwinian
Evolutionary Algorithms and Lamarckian Evolutionary Algorithms. They differ in
the way in which the individual learning is incorporated into the approach [248].
On the one hand, the Lamarckian learning forces the genotype to reflect the result
of improvement in the learning by placing the locally improved individual back into
the population to compete for reproduction. On the other hand, the Baldwinian
learning modifies the fitness of the individuals to reflect the improvement after the
learning process. However, the improved genotype is not encoded back into the
population. Both kinds of approaches have been successfully applied with different
optimisation problems [153]. Such kinds of learning processes can be generalised to
other metaheuristics. In this research, Lamarckian learning has always been used,
i.e. the solution (individuals, particles, etc.) are changed to reflect the improvement
after the learning process.

Attending to other features, several classifications of MAs have been proposed. Con-
sidering the classification exposed in [193], MAs can be categorised in several gener-
ations. The first generation of MAs refers to basic hybrid algorithms that combine a
population-based global search with an individual learning process. The MAs used
in this research belong to this generation. The second generation of MAs include
a particular case of hyperheuristic among other approaches. In this case, different
local search procedures are simultaneously considered. They will compete based on
their past merits in generating local improvements through a reward mechanism.
The algorithm decides which procedure is selected to proceed for future local refine-
ments. In this research novel hyperheuristics have been proposed. However, they
have not been used to select among different local search schemes, but to select
among different parameters and metaheuristics. Finally, in third generation MAs,
in contrast to second generation MAs, the pool of memes is dynamically generated
during the optimisation process, instead of specifying it a priori. They have not
been considered in this work.

2.4 Parallel Metaheuristics

Solving practical optimisation problems typically involves highly constrained design
optimisation tasks with high computational costs. Metaheuristics often offer the only
practical approach to solving complex problems of realistic dimensions. However, the
limits of what may be solved in reduced computing times are still reached rapidly for
many problem settings [68]. Therefore, the high computing time of metaheuristics
constitutes a major handicap for their expansion.

The desire to reduce the execution time naturally leads to considering the use of

68

2.4. Parallel Metaheuristics

parallel and distributed processing techniques. Moreover, the performance of meta-
heuristics often depends on the particular problem setting and instance characteris-
tics. Consequently, a major issue in metaheuristics design is not only how to build
them for maximum performance, but also how to make them robust. Parallel meta-
heuristics aim to address both issues. Thus, parallel approaches aims not only to
achieve time saving by distributing the computational effort but also to get benefit
from the algorithmic aspects by the cooperation between different schemes [240].
This way, a parallel metaheuristic seeks to find as good or better solutions in less
time as a serial implementation using less resources and/or searching more of the
solution space in the same amount of execution time, i.e. increased efficiency and
effectiveness.
Several parallel metaheuristics have been presented in the literature. Crainic and
Toulouse presented recently a state of the art survey of parallel metaheuristics [68].
They classified parallelisation strategies according to the source of parallelism:

• Low-level parallelism: The source of parallelism is found within an iteration of
the metaheuristic. The implementation depends on the considered metaheuris-
tic. The aim is to speedup computations, without any attempt at achieving a
better exploration or higher quality solutions.

• Decomposition: Parallelism comes from the decomposition of the decision va-
riables into disjoint subsets. The particular metaheuristic is applied to each
subset. The set of visited solutions using this parallel implementation is diffe-
rent from that of the sequential implementation, so the comparisons methods
should consider the invested times, and obtained solutions simultaneously.

• Concurrent strategies : Several concurrent searches are performed simultane-
ously. Each concurrent thread may or may not execute the same metaheuristic.
In addition, they may communicate during the search or only at the end to
identify the best overall solution. The latter are known as independent search
methods, while the former are often called cooperative multi-thread strate-
gies. As in the previous case, the set of visited solutions using this parallel
implementation is different from that of the sequential implementation.

Several taxonomies for the parallelisation of specific metaheuristics have also been
presented. They do not differ significantly from the previous taxonomy. Cantù-Paz
proposed a classification for parallel GAs [48]. Three main types of parallel GAs
are distinguished. The global single-population master slave GA is identical to the
low-level parallelism previously presented. Two other categories classify the parallel
GAs according to the size of the populations that evolve in parallel, and to the

69

CHAPTER 2. Metaheuristics

degree of communication. They are called coarse-grained and fine-grained paralleli-
sation strategies. Considering the proposed implementations, both of them can be
considered as concurrent strategies. However, some extension of them [58] might be
considered as hybrid approaches that combine parallelisation by decomposition and
parallelisation by concurrent strategies.

Another taxonomy for parallel EAs was proposed by Coello. Three major parallel
computational paradigms were identified [58]: master-slave, diffusion, and island.
They map directly to the taxonomy of Cantù-Paz. In the master-slave model, objec-
tive function evaluations are distributed among the slave processors while a master
processor executes the evolutionary operators. The master-slave model is similar to
the global single-population master slave GA. The diffusion model deals with one
conceptual population, except each processor holds only one to a few individuals.
The evolutionary operators occur only within neighbourhoods, which depends on
the model topological structure and design. The diffusion approach is similar to the
fine-grained parallelisation strategy. Finally, the island-based models conceptually
divide the overall population into a number of independent and separate subpopu-
lations, i.e. there are small, separate, and simultaneously executing EAs (one per
processor or island). Each island evolves in isolation for the majority of the execu-
tion, but occasionally, some individuals can be migrated between neighbour islands.
The island model is the coarse-grained model.

2.4.1 Island-based Model

In this research, the proposed parallel strategy starts from the island model. As it
has been mentioned, this model receives different names depending on the strate-
gies that are applied in the islands. For instance, in PSO the name multi-swarm
technique is usually utilised. In the case of GAs, multi-deme is often used. In this
research the name island-based model is used independently of the strategies applied
on the islands.

The island-based model, when compared to the other parallel proposals, brings two
main benefits: it maps easily onto the parallel architectures (thanks to its distributed
and coarse-grained structure), and it extends the search area (due to multiplicity
of islands) so it might prevent from sticking in local optima. Coello analysed the
kind of island-based models that had been proposed for multi-objective optimisa-
tion with EAs [58]. The analysed approaches can also be used with mono-objective
optimisation. Moreover, they are not limited to EAs. Coello identified four basic
island-based schemes: all islands execute identical metaheuristics and parameters
(homogeneous), all islands execute different metaheuristics and/or parameters (het-
erogeneous), each island evaluates different objective function subsets, and each

70

2.4. Parallel Metaheuristics

island represents a different region of the genotype or phenotype domains. The first
two variants are usually known as standard island models. In them, each island’s
population represents solutions to the same problem but are evolving in isolation.
In the third variant, each island focuses on some of the considered objectives. It
is used only for MOPs. The last variant isolates each processor to solve specific,
non-overlapping regions of genotype/phenotype domain space. In the last variant,
each island probably generates values outside its constrained region: such values
can be deleted from the population or they can be sent to the appropriate island.
In every case, each island’s population is evolved in isolation. However, the islands
exchange individuals occasionally. This exchange of individual is called migration.
The standard island models, where each processor identifies the complete search
space, appears a more easy-to-implement and efficient method [240], although nei-
ther case guarantees optimality. In general, the simplicity for the implementation
of standard island-based schemes lies in the fact that in the parallel approach, the
islands execute similar algorithms to the ones used in a corresponding sequential
implementation.
In island-based models the specification of the migration stage is particularly im-
portant because it allows the cooperation among islands. Therefore, the migration
policy must be carefully designed to ensure the best possible convergence. In [49]
some of the most common migration stages were analysed. In order to configure
the migration stage, it is necessary to establish the migration topology (where to
migrate the individuals) and the migration rate (how many individuals - |Inm| -
are migrated and how often). In synchronous schemes migrations are performed at
fixed generations. In asynchronous models a probability of migration is established.
Each time a generation finishes, a migration is performed with such a probability.
In this thesis, asynchronous models have been used. In addition, individuals which
are going to be migrated and those which are going to be replaced must be selected.
Such a selection is performed by the use of the migration scheme (or selector) and
the replacement scheme (or selector), respectively.
Regarding the migration topologies, the next ones have been used:

• All to all connected topology (all): In this topology each island connects and
sends its individuals to all the remaining ones.

• Ring topology (ring): In this topology each island connects to exactly two
other islands constituting a logical ring. Considering that there are np islands,
labelled from 0 to np − 1, each island γ sends its individuals to the island
(γ + 1) mod np, and receives individuals from the island (γ + np − 1) mod np.

Several migration and replacement schemes have also been tested. In the case of
mono-objective approaches, the two most important migration and replacement

71

CHAPTER 2. Metaheuristics

schemes are the random and fitness-based strategies [49]. In the random migration
scheme, random individuals from the population are selected. In the fitness-based
or elitist strategy, the best ones are selected. In the random replacement strategy
the individuals to replace in the destination island are randomly selected. Finally,
in the fitness-based replacement strategy, the worst individuals of the population
are selected. Such schemes can be combined to constitute four different migration
stages. A comparison among them was presented in [49].
In the case of multi-objective approaches, the most used migration and replacement
schemes are summarised in [240]. The most frequently used migration schemes are
the following:

• Random: |Inm| individuals are selected randomly from the population.

• Elitist random (eli-rand): |Inm| non-dominated individuals are randomly
selected. If the number of non-dominated individuals is lower than |Inm|,
every non-dominated individual is selected.

• Elitist niching (eli-nich): |Inm| non-dominated uniformly distributed indi-
viduals are selected. As in the previous case, if the number of non-dominated
individuals is lower than |Inm|, every non-dominated individual is selected.

The most frequently used replacement schemes are the following:

• Random: The individuals to be replaced are randomly selected.

• None: The population size is increased during a generation, so replacement is
not required.

• Elitist random (eli-rand): The individuals to be replaced are randomly se-
lected among the dominated individuals. If there are no enough dominated
individuals, some of the immigrants are discarded.

• Elitist ranking (eli): The individuals to be replaced are selected from the
worst ranked fronts of the population.

• Elitist 100% ranking (eli100): The population and immigrants are first com-
bined. Then, the elitist ranking replacement scheme is applied.

• NSGA-II Crowding (nsga-ii-crowd): The population and immigrants are
first combined. Then, the crowding operator is used to select the individuals
that survive.

72

2.4. Parallel Metaheuristics

Other replacement schemes are based on selecting individuals that are very similar to
the immigrants. The aim of such replacement selectors is to maintain the diversity of
the population. Based on such ideas the Elitist Hamming-based replacement scheme
(ham) was proposed for binary-encoded individuals. First, it checks whether or not
the immigrant has a higher fitness than all the individuals of the destination island.
If so, the immigrant replaces the individual with the lowest Hamming distance to
it, considering the decision space. Otherwise, the immigrant is discarded.

73

Chapter

3

Recent Developments in Optimisation

This chapter is devoted to present a survey of the state of the art of some of the
recent developments in optimisation. It is focused on the schemes that have been
considered in this research. Specifically, two main topics have been covered: hyper-
heuristics, and multiobjectivisation. In both cases the main principles and motiva-
tions that guide their designs are presented. In addition, a summary of the main
taxonomies, best-known approaches, and main practical applications are exposed.
In the case of hyperheuristics both mono-objective and multi-objective schemes have
been considered.

3.1 Hyperheuristics

3.1.1 Principles and motivation

Hyperheuristics are a set of approaches which are motivated - in part - by the goal of
automating the design of heuristic methods that solve hard computational optimi-
sation problems. In the context of optimisation, the term hyperheuristic was firstly
used by Cowling [67]. The main distinguishing feature of hyperheuristics is that
they operate on a search space of heuristics or metaheuristics, rather than directly
on the search space of solutions to the problem that is being solved [38]. An underly-
ing research challenge is to develop more generally applicable search methodologies.
There are two fundamental ideas behind the notion of hyperheuristics:

• The process of selecting or designing efficient hybrid heuristics is a search
problem in itself.

CHAPTER 3. Recent Developments in Optimisation

• There is a significant potential to improve search methodologies by the incor-
poration of learning mechanisms that can adaptively guide the search.

These ideas have inspired different types of hyperheuristics, so several methods that
automate the usage and/or design of heuristics have been proposed in the litera-
ture. There are two clear categories of methods. On the one hand, hyperheuristics
based on heuristic selection try to identify and select which among a set of low-
level heuristics or metaheuristics are the most appropriate ones to solve a particular
optimisation problem instance. On the other hand, the hyperheuristics based on
heuristic generation have the aim of automating the generation of heuristics to solve
a particular problem. They usually combine simple components to generate a more
complex heuristic. Considering it, Burke et al. proposed the following definition of
hyperheuristic [38].

Definition 11 A hyperheuristic can be defined as a search method or learning
mechanism for selecting or generating heuristics to solve computational search pro-
blems.

In this research, several innovations regarding hyperheuristics based on selection
of heuristics have been proposed. However, hyperheuristics based on generation of
heuristics have not been considered. Therefore, in this dissertation the term hyper-
heuristic is always used to refer to hyperheuristics based on selection of heuristics.
Considering it, a hyperheuristic can be viewed as a heuristic that iteratively chooses
between a set of given low-level heuristics or metaheuristics in order to solve an opti-
misation problem [40]. Hyperheuristics operate at a higher level of abstraction than
traditional heuristics because they have no knowledge about the problem domain.
The underlying principle in using a hyperheuristic approach is that different meta-
heuristics have different strengths and weaknesses, and it makes sense to combine
them in an intelligent manner. The motivation behind the approach is that, ideally,
once a hyperheuristic algorithm has been developed, several problem domains and
instances could be tackled by only replacing the low-level heuristics or metaheuris-
tics. Thus, the aim of using a hyperheuristic is to raise the level of generality at
which most current heuristic systems operate. In addition, by combining the advan-
tages of each of the involved low-level heuristics, a method that is better than any
of the single low-level approaches might be obtained.
A diagram of a general hyperheuristic framework [40] is shown in Figure 3.1. It shows
a problem domain barrier between the low level heuristics and the hyperheuristic
itself. The data flow received by the hyperheuristic could include the quality of
achieved solutions (average, improvement, best, worst), the resources (time, proces-
sors, memory) invested to achieve such solutions, etc. Based on such information,

76

3.1. Hyperheuristics

Hyperheurist ic

Domain Barrier

Low level metaheurist ics

. . .h2h1 hn

Evaluation Function

Non-domain data f low

Non-domain data f low

Figure 3.1: Hyperheuristic Framework

the hyperheuristic make its decisions. The data flow coming from the hyperheuristic
could include information about which heuristic must be executed, its parameters,
stopping criteria, etc.

Hyperheuristics are highly related to the problem of parameter control [219]. Pa-
rameter control is a special case of parameter setting that allows changing the pa-
rameter values of a metaheuristics during its execution. Several studies [91] have
concluded that the usage of static set of parameters during a metaheuristic run
seems to be inappropriate. The main drawback is that there is no guarantee that
a fixed set of parameters leads to optimal performance. Since different parameter
settings are needed to emphasise either exploration or exploitation, it follows that
optimal parameter settings might vary over time. In fact, it has been empirically
and theoretically demonstrated that different values of parameters might be optimal
at different stages of the optimisation [14, 223]. Thus, the aim of parameter control
is to design a control strategy that selects the parameters to use at each stage of
the optimisation.

Several strategies that adapt the parameters of the algorithms have been designed.
The control strategies can be deterministic, adaptive or self-adaptive [179]. Deter-
ministic strategies modify the parameter values by using a deterministic rule, i.e.
with a fixed schedule. Adaptive parameter control aims to modify the parameter
values based on some feedback from the search behaviour. Finally, self-adaptive
parameter control encodes the parameter values into the solutions and they are sub-
ject to variations following the rules of the metaheuristic in which they are used.
Hyperheuristics are popular general methods which can be applied to perform an
adaptive parameter control. The main advantage of hyperheuristics is that they are
independent of the metaheuristics that they control.

77

CHAPTER 3. Recent Developments in Optimisation

Considering the case of parameter control, hyperheuristics provide two main bene-
fits. First, in the cases where a specific parameterisation is superior to the others
in every stage of the optimisation, the hyperheuristic might automatically detect
it. Thus, the user effort associated to the parameter setting might be decreased.
In addition, different values of parameters might be optimal at different stages of
the optimisation process [134]. In such cases, hyperheuristics might grant more re-
sources to the fittest low-level configurations on each stage of the optimisation pro-
cess. Therefore, the quality of the solutions obtained by the hyperheuristic might
be higher than the quality of the solutions obtained by any of the involved low-
level configurations. On the other hand, the goal of raising the level of generality
is achieved at the expense of reduced - but still acceptable - solution quality when
compared to tailor-made approaches.

Finally, it is important to remark that the aim of hyperheuristics goes beyond the
objectives of parameter control because hyperheuristics might also make possible
the integration of several different metaheuristics with different characteristics. Hy-
perheuristics have been successfully applied in several problem domains [38]. This
proves the generality of the designed schemes. Some of the tested domains have
been: production scheduling, cutting and packing, and vehicle routing.

3.1.2 Classification

Several classifications of hyperheuristics approaches have been proposed in the lit-
erate. In [222] two main categories were identified: hyperheuristics without learning
and hyperheuristics with learning. Hyper-heuristics without learning use several
heuristics according to a predetermined sequence. They are mainly based on the
fact that when a heuristic is blocked on a local optimum, the usage of another
heuristic might avoid the stagnation. Therefore, changing the used heuristics in
a systematic way might lead to a better performance. On the other hand, hyper-
heuristic with learning selects the low-level approaches based on some feedback from
the search behaviour. In such cases, the hyperheuristic selects a promising low level
approach at each decision point based on the information about the effectiveness of
each low level heuristic accumulated in earlier stages of the execution (or in previ-
ous runs). The aim is to assign more resources to the most promising heuristics,
so that better results can be obtained. In [20, 36] the categories in which the hy-
perheuristics are classified are based on the features of the used low-level heuristics.
Specifically, a distinction between those which are constructive and those which are
local search methods is proposed. In [17] the aim of the hyperheuristic is used to
establish the categorisation. It distinguishes between hyperheuristics whose aim is
to choose heuristics, and hyperheuristics whose aim is to build heuristics. Finally,

78

3.1. Hyperheuristics

Figure 3.2: Classification of hyperheuristics proposed by Burke et al.

in [51] four categories are identified:

• Hyperheuristics based on the random choice of low level heuristics.

• Greedy and peckish hyperheuristics.

• Metaheuristic-based hyperheuristics.

• Hyperheuristics employing learning mechanisms to manage low level heuristics.

The classification proposed by Burke et al. [39] is a unifying view of the ones pre-
viously presented. The authors use two dimensions to classify the hyperheuristics:
the nature of the heuristic search space, and the source of feedback. Figure 3.2
shows a diagram of the considered classification. The dimensions are considered to
be orthogonal, i.e., different heuristic search spaces can be combined with different
sources of feedback.

According to the nature of the heuristic search space, the hyperheuristics can be clas-
sified into two clear categories: heuristic selection and heuristic generation. More-
over, a second level in this dimension corresponds to the distinction between con-
structive and perturbation hyperheuristics. This categorisation is concerned with
the nature of the low-level heuristics. Thus, constructive hyperheuristics are the
ones that employ constructive low-level heuristics. A constructive heuristic build a

79

CHAPTER 3. Recent Developments in Optimisation

solution incrementally. It starts from an empty solution, and at each step a new com-
ponent is added to the solution. On the other hand, perturbation hyperheuristics
(also named improvement hyperheuristics) are the ones that employ perturbation or
improvement heuristics. A perturbation heuristic starts with a complete solution,
or with a set of complete solutions. At each step, the heuristic try to improve the
set of current solutions by perturbing them.
Finally, according to the source of feedback, three different categories have been
identified:

• Online learning hyperheuristics are the ones that learn while solving a given
instance of a problem.

• Offline learning hyperheuristics are the ones that learn from a set of training
instances prior to be applied to a new unsolved instance.

• No-learning hyperheuristics are the ones that do not use feedback from the
search process. They usually apply a fixed schedule. Since cooperative search
methods integrate several heuristics, they might be considered in this group.

3.1.3 Mono-objective hyperheuristics

Most of the research in hyperheuristics has been conducted with mono-objective
optimisation problems. Previously to the appearance of the concept of hyperheuris-
tic, several researchers analysed similar concepts, but using different nomenclatures.
In fact, the idea of automating the selection of good heuristics and the adaptive
setting of parameters can be traced back to the 1960s and 1970s. The principles
of hyperheuristics have emerged from researches in several fields that considered
mono-objective approaches [38]:

• Automated heuristics sequencing [100, 150].

• Automated planning systems [116].

• Automated parameter control in EAs [71].

• Automated learning of heuristic methods [181].

• Automated prioritising [136].

Since the first usage of the term hyperheuristic [67], several different implementations
have been proposed. Some of them make use of constructive low-level approaches,
while some of them operate with perturbative techniques. In addition, most of the

80

3.1. Hyperheuristics

techniques operate as single-point schemes, i.e. at each stage of the optimisation
a single solution is managed. However, some multi-point search schemes have also
been proposed.

Considering the single-point schemes that operate with perturbative heuristics, one
of the most-known proposals is the tabu search based hyperheuristic proposed by
Burke et al. [41]. In such a case, each low-level heuristic is a definition of a neighbour-
hood. They are scored based on the previous improvements with a reinforcement
learning scheme. In addition, when a neighbourhood do not produce improvements,
it is inserted into a tabu list. The same hyperheuristic was used with SA [84]. Of-
fline learning methods has also been proposed [233]. The low-level heuristic used
at each stage of the optimisation depends on the solutions obtained with other in-
stances. Alternatively, several methods [67, 139] select the low-level approaches
in very simple ways and decide to accept or reject the changes performed by the
heuristics depending on the obtained fitness values. In some cases the acceptance
strategy is probabilistic [13]. Finally, the choice functions, are a very popular tech-
nique [67, 138]. In such cases, a scoring function is used to assess the performance
of each low-level heuristic. The resources are granted to the low-level heuristic that
maximises such a function. The choice function is the sum of several components.
Some of the components intensify recent performance, while other components pro-
vide diversification. In addition, the choice function approaches also make use of
memory. The methods that are unsuccessfully applied with a given solution are
not used again until the scheme escapes from such a solution. One of the main
drawbacks of the approach is that it requires the setting of several parameters that
highly depend on the problem which is being solved. A more robust approach based
on choice functions was used in [64, 65, 66]. In such proposals the parameters of
the choice functions are dynamically adapted, so no parameters are required. Fi-
nally, in [241], a choice function was also used to score each method. However, the
resources were assigned using a probability function which is based on the assigned
score. In every case, the choice functions have been used with single-point search
methods, and they have been used to select between different neighbourhoods.

Some single-point schemes that operate with constructive techniques have also been
proposed. One of the most known schemes is the proposal of Ahmadi et al. [5]. It
uses a VNS, but the search is in the heuristic space. Other metaheuristics have
also inspired the creation of this kind of hyperheuristics. A tabu search based
hyperheuristic was proposed in [43]. Finally, hill-climbing based hyperheuristic have
also been proposed [11]. It applies a restart mechanism to avoid local optima.

The multi-point strategies that operate with perturbative schemes are not so ex-
tensive. Cowling proposed the usage of an indirect GA [63]. Each individual in
the population gives a sequence of heuristic choices that indicates which low level

81

CHAPTER 3. Recent Developments in Optimisation

heuristic to apply at each step. The proposal was extended to incorporate adaptive
length chromosomes [120]. Similar approaches but considering the ACO algorithm
were proposed in [37, 56]. Considering the cooperative search methods as parallel
hyperheuristics without learning, several schemes have been proposed [68]. How-
ever, in such schemes there is no learning. Therefore, the research in such a topic is
no so extensive.

Finally, some multi-point schemes that operate with constructive heuristics have also
been proposed. Most of them are based on using EAs [210]. As with the perturbative
schemes, each individual in the population gives a sequence of heuristic choices that
indicates which low level heuristic to apply at each step. However, in these cases
the methods are constructive.

In addition, some hybrid schemes have also been proposed. In [107], a single-point
hill-climbing scheme is applied. Some of the low-level heuristics are perturbative,
while some of them are constructive techniques. Moreover, some parallel approaches
have been proposed in work-in-progress papers [26, 206]. However, they have not
been extensively tested.

3.1.4 Multi-objective hyperheuristics

The proposals of hyperheuristics for multi-objective optimisation are not so ex-
tensive [38]. Considering the schemes that operate with constructive techniques,
the proposals are straightforward extensions of mono-objective techniques. Most of
them are based on considering a well-known MOEA with the same individual repre-
sentation as in mono-objective hyperheuristics [72, 237]. They usually operate with
the NSGA-II approach. However, in some cases, other multi-objective algorithms
have also been tested [195].

In the case of multi-objective hyperheuristics that operate with perturbative low-
level heuristics, the first approach was proposed by Burke et al. [42]. The approach
was further developed in [44]. It is an extension of the tabu search scheme proposed
for mono-objective optimisation [41]. The proposal identifies which are the most
appropriate neighbourhoods for each of the considered objectives, i.e. each one of
the objective are independently analysed. Then, at certain points during the search,
the approach selects the most appropriate neighbourhood heuristic in order to push
the solution in the desired direction. Therefore the idea is to choose at each iteration
the heuristic that is suitable for the optimisation of a given individual objective.
Several different methods for selecting the desired direction were proposed.

Finally, it is important to remark that, since our knowledge, at the beginning of this
research there were no any multi-point hyperheuristic for multi-objective optimisa-
tion problems.

82

3.2. Multiobjectivisation

3.2 Multiobjectivisation

3.2.1 Principles and Motivation

Multiobjectivisation is the process of reformulating a mono-objective optimisation
problem as a multi-objective one. Then, it is solved with a multi-objective method
in order to provide a solution to the original mono-objective problem. The idea of
transforming a mono-objective problem into a multi-objective one was firstly pro-
posed by Louis and Rawlins in 1993 [160]. They demonstrated the advantages of
using Pareto-based selection for a deceptive mono-objective problem. Since then,
there was no much attention to such an idea for almost a decade. Knowles et al.
continued the research in 2001 [146]. The authors demonstrated that the decom-
position of the original objective into several components might remove some local
optima. It was the first time that the term multiobjectivisation was used. A small
segment of researchers have explored the inner workings of this new technique in the
years since its introduction in 2001. Thus, several proofs, principles and methods
have emerged [158].

Research has uncovered several ways in which multiobjectivisation leads to improved
performance [158]. First, multiobjectivisation can escape from local optima through
avoiding confounding interactions within the search space. The process is called
the breakage of epistasis. It implies that multiobjectivisation allows traversing re-
gions of the space that would have been otherwise difficult to traverse. In addition,
multiobjectivisation might increase the recognition of important fitness improve-
ments. Changes in the variable space might produce an improvement in one of
the new generated objectives. Such improvement might be easily detected with
multi-objective techniques, but not with mono-objective approaches. Finally, mul-
tiobjectivisation might consider the preservation of diversity as an objective. It is
known that diversity is a key issue in the performance of EAs, and other population-
based approaches [235]. Since multiobjectivisation affects the way in which diversity
is maintained, it might lead to improve the obtained solutions.

It has been demonstrated that the usage of multiobjectivisation makes easier the
resolution of optimisation problems in some domains. For instance, in [192] multi-
objectivisation was successfully used to solve single-source shortest paths problems.
However, it can also produce harder problems [34, 121]. Regarding the optimisation
approaches used for multiobjectivised problems, initially some simple hill climbers
were tested. For instance, in [146] a Pareto Hill Climber was used, while in [121] the
performance of several multi-objective hill climbers were analysed. However, more
complex methods as MOEAs, which can be effective in overcoming local optima,
have reported better solutions in some domains [157].

83

CHAPTER 3. Recent Developments in Optimisation

3.2.2 Best-known Approaches

Multiobjectivisation can be carried out following two general schemes: decomposi-
tion and aggregation. The first one is based on decomposing the original objective
into several components. Then, each one of the components is used as an objec-
tive. Thus, the main objective is only implicitly represented through its decomposed
parts, which become objectives. The Pareto Front of the new defined problem should
contain a solution with the original optimal value. Usually, the sum of the consi-
dered components is equal to the original objective. This ensures that the Pareto
Front contains the optimal mono-objective solution. This approach was firstly tested
in [146]. A more complete analysis was presented in [121]. It has also been used to
solve complex practical optimisation problems [137].
The second type of multiobjectivisation is based on adding a new objective func-
tion. Such a function is used in conjunction with the original fitness function. The
incorporated objectives are usually referred to as helper-objectives [135]. The helper-
objectives guide the search towards solutions containing good building blocks, and
help the algorithm to escape from local optimal [159]. It is important to remark
that, since the original fitness function is kept as an objective, the Pareto Front of
the multiobjectivised problem always contains a solution with the original optimal
value. Helper-objectives can be defined as novel objectives [117] or as decomposed
parts of the main objectives [135]. In addition, they can be generated by con-
sidering problem-dependent [245] or problem-independent information [188]. The
main advantage of the second approach is its generality. The considered helper-
objectives usually depend solely on the own individual. However, in some novel
schemes the added objectives also depend on other individuals of the population or
archive [55, 188].
In the cases where problem-independent objectives are considered, the aim is usually
to better preserve the diversity. In such cases, multiobjectivisation usually decreases
the selection pressure of the original approach. Therefore, when used in combination
with EAs or other population-based metaheuristics, some low quality individuals
could survive in the population with a higher probability. However, if properly
configured, in the long term these individuals could help to avoid stagnation in local
optima, so higher quality solutions might be obtained.
Several options have been proposed to define problem-independent helper-objectives
[3, 35, 234]. Some of them are based on using the Euclidean distance on the decision
space as a direct measure of the diversity:

• Distance to Closest Neighbour (DCN): The distance to the closest neighbour
of the population has to be maximised.

84

3.2. Multiobjectivisation

• Average Distance to Individuals (ADI): The average distance to all individuals
of the population has to be maximised.

• Distance to Best Individual (DBI): The distance to the best individual of the
population, i.e. the one with the highest fitness, has to be maximised.

Other authors propose the usage of objectives which may preserve diversity without
using a direct measure for diversity [3]. Among them, the following ones have been
defined:

• Random: A random value is assigned as the second objective to be minimised.
Smaller random values may be assigned to some low-quality individuals that
would get a chance to survive.

• Inversion: In this case, the optimisation direction of the original objective
function is inverted and is used as the helper-objective. This approach highly
decreases the selection pressure.

• Time stamp: The helper-objective is calculated as a time stamp of when an
individual is generated. Each individual in the initial population is stamped
with a different time stamp represented by a counter which gets incremented
every time a new individual is created. From the second population all new
generated individuals get the same time stamp that is set to the population
size plus the generation index. This time stamp must be minimised.

Note that among these options, DCN and ADI take more time to calculate than the
others, because they need to look at O(N2) distances. Since in real-world applica-
tions the evaluation time is usually high, the time required to calculate distances is
usually negligible compared to the time required to evaluate the candidate solutions.
In [35], the behaviour of several problem-independent helper-objectives in dynamic
environments was analysed. It revealed the superiority of the distance-based helper-
objectives.

85

Part II

Problem-Independent Proposals

and Validation

Chapter

4

General Algorithmic Proposals

This chapter is devoted to present the main problem-independent algorithmic pro-
posals of this research. The developments can be divided into two groups. The first
group consists of a set of novel sequential and parallel hyperheuristics. Proposals
for mono-objective and multi-objective optimisation problems have been developed.
The second group consists of a set of innovations for multiobjectivisation. The
proposals of the second group make use of the new designed hyperheuristics.

4.1 Innovation in hyperheuristics

Several hyperheuristics have been proposed in the literature. However, few re-
searches that consider multi-point perturbative low-level approaches have been con-
ducted. In fact, only some papers have been found for mono-objective optimisation.
Most of them have been used to select among different local search neighbourhoods.
Moreover, to our knowledge, no research has been conducted for multi-objective op-
timisation problems. According to the taxonomy proposed by Burke et al. [38], the
hyperheuristics proposed in this research are online, based on selection of heuristics,
and they work with perturbation strategies. Different approaches have been defined
for dealing with mono-objective and multi-objective optimisation problems. The
same ideas have been behind the design of both kinds of approaches.

4.1.1 Mono-objective hyperheuristic

The proposed mono-objective hyperheuristics are based on the usage of choice func-
tions [67]. In such hyperheuristics, a scoring function is used to assess the perfor-
mance of each low-level configuration. The low-level configurations are single-point

CHAPTER 4. General Algorithmic Proposals

perturbative schemes. At each decision point the resources are granted to the low-
level configuration that maximises such a function. In addition, the choice function
approaches also make use of memory. The methods that are unsuccessfully ap-
plied with a given solution are not used again until the scheme escapes from such a
solution. In order to avoid the usage of additional parameters, the internal parame-
ters might be dynamically adapted [64]. The adaptation is based on modifying the
capabilities of intensification or diversification depending on whether the low-level
approaches are able to improve on the current solution or not. Choice functions have
been traditionally used for selecting among a set of neighbourhood definitions. The
adaptation was based in the fact that in some cases local optima might be found. In
such stages, the parameters of diversification were reinforced, while in other stages,
intensification was reinforced.

In this research, the desire has been to select among multi-point perturbative meta-
heuristics. Experimentally, it was discovered that in many problems independently
of the quality of the metaheuristics, they usually improved on the initial solutions.
Therefore, using a tabu memory to avoid the usage of methods unsuccessfully ap-
plied in previous stages made no sense. In addition, due to this behaviour, the way
in which the parameters were controlled in the original choice functions was not ade-
quate. Therefore, low-quality solutions were found with the original choice functions
methods. For this reason, new hyperheuristics based on the idea of choice functions,
but considering the aforementioned drawbacks, were defined. Some of the new
schemes have incorporated the idea of using probabilistic selection schemes [241].

The first defined hyperheuristic (mono weight) is based on using a scoring strategy
and a probabilistic selection strategy for picking the low-level configuration that
must be executed. Once a strategy is picked, it is executed until a local stopping
criterion is achieved. Then, another low-level configuration is selected, and it is
executed taking as initial population the last population of the previously selected
approach. This process continues until a global stopping criterion is reached.

At the beginning of the execution, each low-level strategy is executed one time. The
order in which they are selected is randomly determined. After this initial stage,
the selection of the low-level strategy that must be executed operates as follows.
First, the scoring strategy assigns a score to each low-level configuration. This score
estimates the improvement that each low-level metaheuristic or configuration can
achieve when it starts from the currently obtained solutions. In order to perform
such an estimate, the previous fitness improvements achieved by each configuration
are used. The improvement (imp) is defined as the difference, in terms of the fitness
value, between the best achieved individual and the best initial individual. Consi-
dering a configuration conf , which has been executed j times, the score - s(conf) -
is calculated as a weighted average of its latest k improvements (Equation 4.1). In

90

4.1. Innovation in hyperheuristics

such an Equation, imp[a][b] represents the improvement achieved by the configura-
tion a in its execution number b. Depending on the value of k, the adaptation level
of the hyperheuristic can be set. The weighted average assigns greater importance
to the latest executions.

s(conf) =

min(k,j)
∑

i=1

(min(k, j) + 1− i) · imp[conf][j − i]

min(k,j)
∑

i=1

i

(4.1)

The stochastic behaviour of the involved low-level metaheuristics may lead to vari-
ations in the results achieved by them. Therefore, it might be appropriate to make
some selections based on a random scheme. The hyperheuristic can be tuned by
means of the parameter β, which represents the minimum selection probability that
should be assigned to a low-level configuration. Being nh the number of involved
low-level configurations, a random selection following a uniform distribution is per-
formed in β ·nh per cent of the cases. In the rest of the cases, a selection probability
proportional to the obtained score is assigned to each low-level configuration. There-
fore, the probability of selecting each configuration conf is given by:

prob(conf) = β + (1− β · nh) ·













s(conf)
nh
∑

i=1

s(i)













(4.2)

An additional way of selecting the low-level approaches has been considered. In such
a case, the selection probability is not proportional to the obtained score. Instead,
the low-level approach that maximises the scoring function is picked. As in the
previous case, a random selection following a uniform distribution is performed in
β · nh per cent of the cases. This hyperheuristic is named eli-mono weight.
Prior to the experimental analysis, a theoretical analysis of the approach was per-
formed. In order to facilitate the analysis it was initially performed considering low-
level approaches with deterministic behaviours. However, since the hyperheuristics
were going to be applied with stochastic configurations, the implications of using
stochastic configurations were also analysed. In addition, with the aim of facilitating
the analysis, it was assumed that no random assignments were performed (β = 0).
Although very simple approaches were considered, important conclusions could be
drawn. Such study is presented in the following lines.

91

CHAPTER 4. General Algorithmic Proposals

 0

 10

 20

 30

 40

 50

 1 4 16 64 256 1024 4096

Im
pr

op
er

 A
ss

ig
nm

en
ts

 (
%

)

k

Figure 4.1: Assignments to ConfBad for the trivial problem

First, a trivial optimisation problem and two artificial low-level configurations were
defined. The problem has only one variable (x1), and the function to minimise is
calculated as f(x1) = x1. The first low-level configuration (ConfGood) makes the
transformation newx1 = x1 − x1

100
. The second one (ConfBad) makes the trans-

formation newx1 = x1 − x1

1000
. Hence, ConfGood behaves better than ConfBad,

for any input. Note that, the best assignment of resources lies in granting all the
resources to ConfGood.

In order to analyse the impact produced by the parameter k, the hyperheuristic
mono weight was executed with such a problem and configurations with several
values of k. Figure 4.1 shows the percentage of resources granted to confBad for
each value of k. It can be appreciated that the intermediate values of k are the worst-
behaved values. Figure 4.2 shows, for the worst value of k (2048), the evolution of
the assignments to both configurations. At the beginning most of the resources
are granted to confGood. However, in the long term, the differences among the
granted resources are not so big. The reason is that, when the historical knowledge
begins to be discarded, the data saved for the different configurations corresponds
to very different stages of the optimisation. In such stages, the hyperheuristic get
confounded and many resources are assigned to confBad - note the changes in the
slopes after 2500 assignments. In the cases where small values of k are used, every
data belongs to the same stage - or at least they are discarded quickly - so this

92

4.1. Innovation in hyperheuristics

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
on

fig
ur

at
io

n
A

ss
ig

nm
en

ts

Global Assignments

ConfGood Assignments

ConfBad Assignments

Figure 4.2: Evolution of assignments for the trivial problem (k = 2048)

problem does not appear. Finally, when k is set to a very large value, no data is
discarded, so the effect is also minimised. Therefore, with the given hyperheuristics,
it seems that it is more likely to obtain good quality solutions by using very large
or very small values of k.

In some problems it might happen that the relative performance of the approaches
depends of the stage of the optimisation. For instance, considering two low-level
approaches (conf1 and conf2), it might happen that initially conf1 is superior to
conf2, while when a given fitness is achieved, conf2 begins to behave better than
conf1. In such cases, using low-values of k is preferable because when using large
values of k the hyperheuristic would assign the resources to conf2 for a larger period.
Therefore, using k = 1 seems appropriate in such cases. In fact, note that in such
cases, the hyperheuristic might get better values than any of the considered low-level
approaches.

However, when stochastic approaches are considered, using low values of k might
produce some drawbacks. For instance, consider again a case with two low-level
configurations. The first configuration conf1 produces a very high improvement
with a very high probability, but in some corner cases it does not produce any
improvement. The second configuration always produces a very low improvement.
In such a case, if k = 1 is considered, the resources might not be granted correctly.
The reason is that after the appearance of a corner case, all the resources will be

93

CHAPTER 4. General Algorithmic Proposals

granted to conf2. This would not happen for larger values of k. If the probability
of appearance of corner cases is not very low, the value of k should be increased.
Therefore, depending on the features of the problem and on the features of the
low-level configurations, the best-behaved value of k is expected to change.

On the other way some analyses regarding eli-mono weight were also performed.
In general, the approach mono weight tends to distribute the resources among
more configurations, while eli-mono weight tends to focus on few configurations.
For instance, consider a case with two configurations. The first configuration (conf1)
always produces an improvement equal to 90, while the second one (conf2) always
produce an improvement equal to 10. In such case, the eli-mono weight would
assign all the resources to conf1, while mono weight would assign the 90% of the
resources to conf1. Thus, in such a case, the elitist selection scheme is more appro-
priate. However, in other cases, using a probabilistic selection might be more ade-
quate. For instance consider a case in which the first configuration usually behaves
correctly, but in some cases it attains a poor improvement. In addition, the second
configuration usually behaves poorly, but in some cases it behaves better than the
first configuration. In such a case, eli-mono weight might get confounded and
might assign most of the resources to the second configuration. On the other hand,
the mono weight approach would distribute the resources between both configu-
rations, probably assigning more resources to the first configuration. Thus, in cases
where the hyperheuristic might get confounded, since eli-mono weight tends to
focus on fewer configurations, it might end with very poor quality solutions.

This analysis shows that depending on the features of the problems, and on the fea-
tures of the low-level approaches, the adequate selection strategy and the adequate
adaptation level - value of k - varies. In fact, it can be found corner cases in which
even a random selection scheme might be better than the assignment performed by
the hyperheuristic. This could happen for instance if the behaviour of each low-level
configuration in a given stage is not useful to determine its behaviour in posterior
stages. However, this is not likely to happen with the metaheuristics because usua-
lly the changes in the behaviour of the approaches are not so abrupt. Therefore,
an experimental evaluation of the designed approaches is mandatory to analyse its
behaviour with typical optimisation problems and typical metaheuristics.

4.1.2 Multi-objective hyperheuristic

In the case of multi-objective optimisation, measuring the quality of the solutions
is more complex. As it has been described, there are several metrics that have been
devised for assessing the quality of the obtained solution sets. The hypervolume
metric is one of the most extended approaches. One of its main strength is that it is

94

4.1. Innovation in hyperheuristics

a Pareto-compliant metric. Moreover, the knowledge of the Pareto Front of the pro-
blem is not required to perform the calculation. For this reason, the mono weight
hyperheuristic was extended to muli-objective optimisation, substituting the im-
provements in fitness by improvements in hypervolume. In order to calculate the
improvements the following procedure is used. First, when a low-level approach be-
gins to execute, the hypervolume of its initial population is calculated. In order to
calculate the hypervolume a reference point is required. In this research a reference
point with all its coordinates equal to 1 have been used. Prior to the calculation of
the hypervolume, all the solutions are normalised considering a set of coordinates
given by the practitioner. If some solutions are worse than the given normalisation
point, they are discarded. The previous operation assumes minimisation. In the
cases of objectives that must be maximised, they are inverted. The same procedure
is used to calculate the hypervolume at the end of the execution. The difference
between the calculated values is stored as the obtained improvement.

Therefore, in the proposed multi-objective hyperheuristic (hv weight) the scor-
ing strategy estimates the improvement in hypervolume that each low-level meta-
heuristic or configuration can achieve when it starts from the currently obtained
solutions. In order to perform such an estimate, the previous hypervolume improve-
ments achieved by each configuration are used. Considering a configuration conf ,
which has been executed j times, the score - s(conf) - is calculated as a weighted ave-
rage of its latest k hypervolume improvements (Equation 4.3). In such an Equation,
hvImp[a][b] represents the hypervolume improvement achieved by the configuration
a in its execution number b. Depending on the value of k, the adaptation level of
the hyperheuristic can be set. As in the mono-objective case, the weighted average
assigns greater importance to the latest executions.

s(conf) =

min(k,j)
∑

i=1

(min(k, j) + 1− i) · hvImp[conf][j − i]

min(k,j)
∑

i=1

i

(4.3)

The stochastic behaviour of the involved low-level metaheuristics may lead to vari-
ations in the results achieved by them. Therefore, it might be appropriate to make
some selections based on a random scheme. The same approach as in the mono-
objective case has been used. Therefore, the probability of selecting each configura-
tion conf is given by:

95

CHAPTER 4. General Algorithmic Proposals

prob(conf) = β + (1− β · nh) ·













s(conf)
nh
∑

i=1

s(i)













(4.4)

An additional way of selecting the low-level approaches has been considered. In such
a case, the resources are not granted proportionally to the obtained score. Instead,
the low-level approach that maximises the scoring function is picked. As in the
previous case a random selection following a uniform distribution is performed in
β · nh per cent of the cases. This hyperheuristic is named eli-hv weight.

4.1.3 Dynamic-mapped Island-based Model

The previous hyperheuristics has been parallelised by integrating the approach in
an island-based model. The basic operation of the island model remains intact.
Therefore, in the designed scheme, the overall population is divided into a number
of independent and separate subpopulations which are associated to an island. Each
island evolves in isolation for the majority of the execution - using a population-based
metaheuristic-, but occasionally, some individuals are migrated between neighbour
islands.
In the standard island-based model, there exists a static mapping among the islands
and configurations, i.e., each island executes the same configuration during the com-
plete run. In a homogeneous island-based model, there is only one configuration
that is executed by every worker island. In a heterogeneous island-based model, the
configurations executed by worker islands are different. However, in the new de-
signed model, a dynamic mapping among the islands and configurations is applied.
Thus, configurations executed in each island vary during the run. This mapping
is performed using the new designed hyperheuristics. When a new configuration is
selected for executing in an island, it continues with the last found population. This
might produce some drawbacks in the cases when approaches without elitism are
used. For such cases, an archive is kept in the island. Therefore, the new selected
configuration can start with high-quality solutions.
In order to manage the dynamic mapping, i.e., to apply the hyperheuristic principles,
a new special island, called master island, is introduced into the scheme. In order
to implement it, two kinds of stopping criteria are defined. First, a global stopping
criterion is established. This is similar to the one established in the standard island-
based model. When this global stopping criterion is reached, every worker island
sends its local solution to the master and the run ends. Moreover, a local stopping

96

4.1. Innovation in hyperheuristics

criterion is set for the execution of the configurations on the worker islands. When a
local stopping criterion is reached, the island execution is stopped. Then, the local
results are sent to the master island. At this point, the master island applies the
hyperheuristic with the aim of deciding which low-level configuration is going to be
executed in the idle island.

An additional change was performed with the aim of adapting the hyperheuristic to
parallel environments. In island-based models, the migration stage might completely
change the quality of the considered populations. Since the hyperheuristic evaluates
the performance of the approaches by considering the members of the population,
it must take into consideration the effect caused by the immigrants. Specifically,
the improvements obtained during the migration stage are measured and they are
deducted from the overall obtained improvement. In this way, the migration stage
is kept, but the effect over the hyperheuristic is minimised.

It is also important to note that in this work, the same stopping criterion has been
established in every island. This facilitates the operation of the hyperheuristic,
because it does not need to consider the time used by each low-level approach. In
addition the hyperheuristic have completely ignored the features of the processors
used in the islands. In the cases where a homogeneous environment is used, this is
not a problem. However, in heterogeneous cases the resources might not be assigned
in a correct way.

4.1.4 Other tested hyperheuristics

Several alternative ways of performing the assignment of resources were tested while
developing the previously presented methods. Such approaches did not obtain the
quality of the previously detailed hyperheuristics, or suffered from other kind of
drawbacks. Although extensive analyses have not been performed with them, they
are described here, and their main weaknesses are detailed.

In the case of the mono-objective approaches, two alternative methodologies were
tested. The first one is an extension of some of the ideas used with the choice func-
tions of Cowling [67]. In such choice functions there is a component that measures
the synergies of using two low-level approaches consecutively. This idea produced
a good behaviour in the cases where local search neighbourhood were controlled,
probably because the transformations produced by some neighbourhood could be
complemented with the ones performed by other ones. However, in the case of
controlling metaheuristics the benefits could not be reproduced. In addition, a si-
milar idea was tested with the parallel scheme. In this case, the hyperheuristic
(mono syn) tries to detect how well a low-level approach operates in parallel with
another approach. mono syn assigns two different scores to each configuration. The

97

CHAPTER 4. General Algorithmic Proposals

first score is called the independent score (is) and represents the independent per-
formance of each configuration. It is calculated as s in mono weight. The second
score is called the cooperation between pairs (cp) and represents the performance
of a low-level approach in the presence of other metaheuristics. The improvements
achieved during the execution by a metaheuristic m1, executed in parallel with a
metaheuristic m2, are saved in the set imp[m1][m2]. Given two metaheuristics m1

and m2, which have been executed in parallel j times, the score cp(m1,m2) is cal-
culated as a weighted average of the last k improvements achieved by m1, in the
presence of m2.

cp(m1,m2) =

min(k,j)
∑

i=1

(min(k, j) + 1− i) · imp[m1][m2][j − i]

min(k,j)
∑

i=1

i

Given a metaheuristic m1 and the set of currently assigned metaheuristics m set =
{h1, h2, ..., hn}, the score cs(m1) is calculated as the maximum cp of any of its com-
ponents, i.e., cs(m1) = max{cp(m1, h1), cp(m1, h2), ..., cp(mn, hn)}.
When every island is idle, the hyperheuristic must grant the resources among the
available configurations. The first assignment is performed as in mono weight,
but substituting s by is, i.e., the selection probability of the configuration conf is
given by:

prob(conf) = β + (1− β ∗ nh) ∗













is(conf)
nh
∑

i=0

is(i)













For the remaining assignments, the global cooperation cs is also considered. cs is
used with a probability γ. Thus, considering that hh is the set of configurations
assigned to any of the islands, the selection probability of the configuration conf is
given by:

prob(conf) = β + (1− β ∗ nh − γ) ∗













is(conf)
nh
∑

i=0

is(i)













+ γ ∗













cs(conf)
nh
∑

i=0

cs(i)













98

4.2. Innovations in multiobjectivisations

One of the main drawbacks of the hyperheuristic is that it assumes that every island
finishes at the same time. This forces to select the same stopping criterion in every
island. If the finalisation of one island is delayed, the remaining processors keep
idle until it finishes. Moreover, the results obtained by it did not outperform the
ones obtained by mono weight, so the higher complexity of the approach is not
well-grounded.
Finally, a hyperheuristic based on performing an exponential regression (mono exp)
was devised. In this case, at the finalisation of each low-level approach both the im-
provement, and the fitness of the best individual of the initial population are stored.
The score of each low-level approach is estimated by performing an exponential
regression considering the stored data, and the best individual of the current popu-
lation. However, the stochastic behaviour of the low-level approaches might produce
high changes in the estimated score. Therefore, for cases in which the variation of
the obtained solutions is large, this hyperheuristic is not adequate.
In the case of multi-objective hyperheuristics the hyperheuristics mono syn and
mono exp were adapted by substituting the fitness improvements by hypervolume
improvements. They suffered from the same drawbacks than the mono-objective
approaches. Additionally, a scheme based on the coverage metric was developed.
The score was based on calculating how many new non-dominated solutions had
been generated by the approach. It obtained good quality solutions when few low-
level configurations were used, in some cases. However, the main drawback is that
assessing the quality of an approach considering only the number of solutions inserted
and not its quality is not adequate in many cases. Therefore, many non-adequate
cases were also found.

4.2 Innovations in multiobjectivisations

In this research some new multiobjectivisation schemes have also been devised.
Moreover, they have been integrated with the previously presented hyperheuristics.
This section is devoted to present the new designed schemes.

4.2.1 Multiobjectivisation with parameters

Several ways of multiobjectivisation have been proposed in the literature. In this
research an extension of the schemes proposed by Toffolo et al. [234] has been pro-
posed. Such kind of schemes belongs to the group where the calculation of the added
helper-objective depends on other individuals of the population or archive [188]. Spe-
cifically some innovations for the multiobjectivisations based on Euclidean distance
have been devised. Such multiobjectivisations are the following ones:

99

CHAPTER 4. General Algorithmic Proposals

• DCN: The distance to the closest neighbour of the population has to be max-
imised.

• ADI: The average distance to all individuals of the population has to be
maximised.

• DBI: The distance to the best individual of the population, i.e. the one with
the lowest fitness, has to be maximised.

Such approaches have been executed with several problems and with different kind
of metaheuristics in the literature. They have produced benefits in many cases.
However, in other cases, optimising the multiobjectivised problems has been harder.
Experimentally, it was identified that in some cases the cause of the poor perfor-
mance, was that poor-quality individuals were kept in the population just because
they were very far from the rest of the individuals in the search space. This can be
useful in some cases to maintain a good diversity, but if the quality of the individuals
is too low, maintaining them might not produce any benefit and might delay the
convergence speed.
Considering such a drawback, but at the same time taking into account the desire of
maintaining a good diversity, a new helper-objective was defined. The new approach
can be applied with DCN, ADI and DBI. They are named dcn-thr, adi-thr and
dbi-thr. The following explanation is done considering the dcn case.
The new helper-objective is named dcn-thr because it incorporates the usage of a
threshold ratio (th ∈ [0, 1]) which must be specified by the user. The threshold ratio
is used to avoid the survival of individuals with a very low quality. Being bestF it
the fitness value of the best individual of the population, and shift a value that
ensures that bestF it− shift ≥ 0 in the whole execution, the threshold value (v) is
defined for minimisation problems as:

v =
(bestF it− shift)

th
+ shift (4.5)

In the case of a maximisation problem, the threshold value is defined as:

v = (bestF it− shift) · th+ shift (4.6)

The helper-objective of individuals whose fitness value is worse than v is assigned
to 0. As a result, individuals that are not able to achieve the fixed threshold are
penalised. In the special case where th = 0, individuals are never penalised. Thus,
dcn-thr with th = 0 has the same behaviour than the dcn function.
Figure 4.3 (left-hand side) shows the behaviour of the dbi and the dcn functions
when they are integrated with SPEA2 and NSGA-II. The maximisation of the

100

4.2. Innovations in multiobjectivisations

Figure 4.3: Behaviour of the metaheuristics without threshold (left-hand side) and
with threshold (right-hand side)

original and the artificial objective functions are assumed. It can be observed that
every candidate solution is tagged with a label that indicates its corresponding
ranking assigned by NSGA-II (left side of every solution). By this way, the label
Ri means that the corresponding candidate solution belongs to the rank number
i. Moreover, the corresponding raw fitness assigned by the SPEA2 is also shown
at the right side of every candidate solution. The right-hand side of Figure 4.3
shows the effect of incorporating the threshold to the dbi and dcn functions. The
broken line represents the value of v. It can be noted that every candidate solution
which does not fulfil the minimum quality level established by the threshold ratio
is shifted in the objective space. Specifically, a value equal to 0 is assigned to the
corresponding alternative objective. The effect of the shift is that the corresponding
candidate solution will usually belong to a worse rank in the case of the NSGA-II.
In the case of the SPEA2, a highest raw fitness will be assigned to the corresponding
candidate solution. Therefore, the survival probability of the candidate solution will
be usually decreased. By using an adequate value of th, poor quality individuals can
be discarded, but at the same time, the objective of maintaining a high diversity in
the population is considered.

4.2.2 Adaptive Multiobjectivisation

The experimental analysis of the new defined helper-objectives shown that in many
cases they might produce a high improvement when compared to the original ap-

101

CHAPTER 4. General Algorithmic Proposals

Figure 4.4: Shifted Ackley function with two variables

proach. The behaviour of the threshold is somewhat similar to the one considered in
sa. In sa by accepting worsening moves higher quality solutions might be obtained.
However, not every worsening move is accepted. Figure 4.4 shows the shifted Acke-
ley function with two variables. Such a function is multimodal. In the case of using
a completely elitist approach that does not accept worsening moves, the execution
would probably end with a local optimum. However, with the incorporation of mul-
tiobjectivisation, the probabilities of escaping might be larger. The main drawback
is that depending on the fitness landscape, the proper values of the threshold vary.
For instance, if the deep of the holes had been larger, a low value of th would be
preferred. Moreover, the best-behaved values of th might even depend on the stage
of the optimisation, because the different parts of the fitness landscape might have
different properties. Therefore a fixed value of th might not be adequate.
For this reason, the proposed multiobjectivisation was integrated with the mono-
objective hyperheuristics previously presented. In this way, a set of configurations
with different values of th might be used as the low-level approaches. In the cases
where different values of th are adequate for the different optimisation stages, the
hyperheuristic might detect it, and it might vary the way in which the resources are
granted during the run. Anyway, even for cases in which the same value is adequate
for every stage of the optimisation process, using the hyperheuristic is preferable.
The reason is that the user and computational effort might be minimised.

102

Chapter

5

Validation with Benchmark Optimisa-

tion Problems

This chapter is devoted to describe the set of experiments that has been carried out
to validate the proper performance of the problem-independent techniques proposed
in this research. An analysis of the designed hyperheuristics and multiobjectivisation
schemes is presented. The validation is performed with a set of well-known mono-
objective and multi-objective benchmark problems.

5.1 Mono-objective Benchmark Problems

5.1.1 Problems Description

Testing mono-objective algorithms in a systematic way is very important. Experi-
mental comparisons between algorithms imply the question of which problems should
be used. Three different approaches are usually considered to perform the compari-
sons among mono-objective solvers [92]:

• Using problem instances from an academic benchmark repository.

• Using problem instances created by a problem instance generator.

• Using real-life problem instances.

The main advantage of using academic benchmarks problems is that the main pro-
perties of the optimisation problems are usually known. Therefore, it might be
possible to relate the performance of the approach to such features. However, since
the number of considered problems is usually not too large, and several features of
the problems are ignored, drawing general conclusions is not easy [90]. In addition,

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.1: Main features of f1-f11 problems

Problem Modality Separable Ease Range Optimum
dim. by dim.

f1 U Y Y [−100, 100]D -450
f2 U N N [−100, 100]D -450
f3 M N Y [−100, 100]D 390
f4 M Y Y [−5, 5]D -330
f5 M N N [−600, 600]D -180
f6 M Y Y [−32, 32]D -140
f7 U Y Y [−10, 10]D 0
f8 U N N [−65.536, 65.536]D 0
f9 U N Y [−100, 100]D 0
f10 U N N [−15, 15]D 0
f11 U N Y [−100, 100]D 0

benchmark problems are usually not time consuming - at least compared to real-
world problems - so a larger amount of tests can be done. Among the features that
are usually considered, the most used ones are the following:

• Modality: An objective function is multimodal when it has multiple local
optima, while is said to be unimodal if it has a single optimum.

• Deception: A function is deceptive if it has at least two optima - a global
one, and a local one - and the majority of the search space favours the local
optimum.

• Separability: An objective is separable if it can be expressed as product of
functions, each one of them depending on one variable.

• Ease of optimisation dimension by dimension, i.e. if the function can be opti-
mised by considering each parameter independently of the others.

There have been several attempts to define test suites or toolkits for building test
suites. For instance, the so-called DeJong test suite [73], which consists of five test
functions, was very popular during several years. However, some more novel test
functions that incorporate additional features have been defined. Among them, some
of the most popular ones [90] are the OneMax, the Sphere Model, the Schwefel’s
function, and the Generalised Rastrigin’s function. Recently, in a special issue of

104

5.1. Mono-objective Benchmark Problems

the journal Soft Computing, a test suite with 19 functions was proposed [162]. One
of the main advantages is that they are scalable test functions, so the practitioner
can select the amount of variables (D) of the optimisation problems. The functions
are named f1-f19. The functions f1-f11 are shifted versions of some popular test
functions. The functions f12-f19 are combinations of the others. In this work, the
experimental comparison with benchmark problems has considered the functions
f1-f11. Table 5.1 summarises the main features of the test functions.

5.1.2 Experimental Evaluation of the Mono-objective Hy-

perheuristics

In this section the experimental evaluation performed with the mono-objective hy-
perheuristics proposed in this research is presented. Since the adaptive multiob-
jectivisation presented in this research also uses such hyperheuristics, this analysis
is complemented with the one performed in the following sections. The main aim
of the experimental evaluation has been to demonstrate that the defined mono-
objective hyperheuristics can automatically distribute the computational resources
in an intelligent way among a set of low-level heuristics, and to demonstrate that in
some cases, the hyperheuristic might even outperform the best low-level considered
approaches. In addition, the adaptation level and the different kind of selection
schemes have been compared. Finally, several experiments devoted to analyse the
behaviour of the parallel version of the hyperheuristic have been performed. In this
case, an analysis of the influence that the migration stage has over the performance
of the parallel approach has been carried out. The scalability of the parallel proposal
has also been analysed. The study has been carried out with the f problems. The
number of variables (D) has been fixed to 500.
The same computational environment has been used in every experiment of this
chapter. Tests have been run on a debian gnu/linux computer with four amd R©
opteron TM (model number 6164 he) at 1.7 ghz and 64 gb ram. The compiler that
has been used is gcc 4.4.5. The optimisation schemes have been implemented using
METCO. Finally, it is important to remark that since experiments have involved
the use of stochastic algorithms, each execution has been repeated 30 times.

First Experiment: Performance vs. Amount of Low-level Approaches

In order to execute a hyperheuristic, a set of low-level approaches (or configurations)
must be defined. The performance of the proposal might depend on the amount of
low-level approaches. For this reason, the first experiment has been devoted to re-
late the performance of the hyperheuristic to the amount of considered low-level

105

CHAPTER 5. Validation with Benchmark Optimisation Problems

configurations. Experiments with up to 128 low-level configurations have been car-
ried out. The low-level configurations have been based on using the mono-objective
EA presented in Chapter 2. The applied survivor selection mechanism has been the
GEN-S. A fixed variation scheme has been considered. Specifically, the UM and
the SBX operators have been used. A direct encoding based on real-valued genes
has been considered. In every case, the probability of crossover has been fixed to
1, while the population size has been fixed to 5. Finally, in order to define several
low-level configurations, several values of pm have been considered.

In order to better inspect the behaviour of the hyperheuristic, the results obtained by
the low-level approaches must be analysed. For this reason, the low-level approaches
were firstly independently executed. In such executions, the stopping criterion was
fixed to a total number of 2.500.000 function evaluations. Figure 5.1 and 5.2
show the median of the fitness obtained with different values of pm for each of the
considered benchmark problems. In every case the low values of pm have been more
adequate. In fact, the obtained functions are monotonically increasing. The reason
is that the used mutation is very disruptive, so the usage of low pm values is more
adequate.

In order to facilitate the analysis of the hyperheuristic, the probabilities considered
for the low-level configurations have been in the range [1

D
, 1]. Specifically, in order to

define a set of C low-level configurations, C values evenly distributed in the specified
range have been considered. In this way, adequate and non-adequate strategies are
combined, so it is very easy to check whether the hyperheuristic is assigning the
resources correctly or not. It is important to remark that in some cases, the best
values of pm might depend on the stage of the optimisation process. However, since
the mutation operator is highly disruptive, this is not expected to happen for the
highest values of pm. In fact, the scheme with pm = 1 is a random search. Anyway,
in order to avoid inconsistencies in the analysis, comparisons have not only taken
into account the way in which the resources have been granted, but also the obtained
quality.

Two adaptive schemes have been considered. The first one assigns the resources
using the hyperheuristic mono weight. The local stopping criterion has been
fixed to 10.000 evaluations, i.e. each 10.000 evaluations the hyperheuristic selects
which low-level configuration must keep executing. In order to decide the values of
the parameters of the hyperheuristic some preliminary executions were performed.
The value of β was fixed in a way that the 10% of the decisions performed by the
hyperheuristic follows a uniform distribution, i.e. β ∗ nh = 0.1. The value of k
was fixed to 5. The second scheme (random) has been based on assigning the
resources randomly. As in the first scheme, the decisions are taken each 10.000
evaluations. In both cases, the global stopping criterion was fixed to a total number

106

5.1. Mono-objective Benchmark Problems

-500

 0

 500

 1000

 1500

 2000

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F1

-428

-426

-424

-422

-420

-418

-416

-414

-412

-410

-408

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F2

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F3

-350

-300

-250

-200

-150

-100

-50

 0

 50

 100

 150

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F4

-180

-175

-170

-165

-160

-155

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F5

-140

-139.5

-139

-138.5

-138

-137.5

-137

-136.5

-136

-135.5

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F6

Figure 5.1: Median of the fitness considering different mutation probabilities (F1 -
F6)

107

CHAPTER 5. Validation with Benchmark Optimisation Problems

 0

 10

 20

 30

 40

 50

 60

 70

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F7

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

 4.5e+11

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

F
itn

es
s

Pm

Median of fitness - F11

Figure 5.2: Median of the fitness considering different mutation probabilities (F7 -
F11)

108

5.1. Mono-objective Benchmark Problems

-400

-200

 0

 200

 400

 600

 800

 1000

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F1

HV_Weight

Random

-420

-400

-380

-360

-340

-320

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F2

HV_Weight

Random

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F3

HV_Weight

Random

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F4

HV_Weight

Random

-100

 0

 100

 200

 300

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F5

HV_Weight

Random

-140

-138

-136

-134

-132

-130

-128

-126

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F6

HV_Weight

Random

Figure 5.3: Median of the fitness considering different number of configurations (F1
- F6)

109

CHAPTER 5. Validation with Benchmark Optimisation Problems

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F7

HV_Weight

Random

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F8

HV_Weight

Random

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F9

HV_Weight

Random

 0

 200

 400

 600

 800

 1000

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F10

HV_Weight

Random

 0

 200

 400

 600

 800

 1000

 2 4 8 16 32 64 128

F
itn

es
s

Low-level configurations

Median of the Fitness - F11

HV_Weight

Random

Figure 5.4: Median of the fitness considering different number of configurations (F7
- F11)

110

5.1. Mono-objective Benchmark Problems

Table 5.2: Percentage of saved evaluations with mono-weight (F1 - F6)
F1 F2 F3 F4 F5 F6

2 conf. 46.00% 45.60% 46.34% 47.60% 46.93% 44.57%
4 conf. 69.60% 67.20% 63.45% 70.56% 69.35% 69.51%
8 conf. 80.80% 78.00% 77.91% 80.80% 80.97% 81.78%
16 conf. 81.52% 79.20% 76.75% 81.60% 82.00% 85.36%
32 conf. 76.85% 74.48% 73.06% 81.48% 76.80% 83.06%
64 conf. 69.60% 65.72% 69.91% 70.00% 71.20% 71.36%
128 conf. 32.82% 44.00% 60.24% 42.55% 45.08% 38.09%

Table 5.3: Percentage of saved evaluations with mono-weight (F7 - F11)
F7 F8 F9 F10 F11

2 conf. 48.19% 44.35% 45.20% 46.55% 44.97%
4 conf. 67.46% 68.69% 70.00% 69.47% 68.00%
8 conf. 74.80% 79.09% 79.43% 78.00% 79.67%
16 conf. 73.38% 82.18% 83.13% 81.52% 81.89%
32 conf. 65.44% 81.85% 80.75% 77.91% 81.25%
64 conf. 56.61% 76.82% 70.95% 69.13% 71.60%
128 conf. 23.70% 70.80% 48.00% 42.35% 47.79%

of 2.500.000 function evaluations. Figures 5.3 and 5.4 show, for each benchmark
problem, the median of the fitness achieved at the end of the executions. Results
are shown both for the mono weight and the random selection methods. Tests
with up to 128 low-level configurations have been carried out. The advantages of
using mono weight are clear. Thus, assigning the resources using the designed
methodology is better than assigning them in a random way.

In addition, it is important to remark that in most of the cases as the number of
configuration increases, the obtained fitness gets worse. The reason is that when
many configurations are used it is more difficult to discriminate among suitable and
non-suitable configurations. Moreover, in such cases a larger amount of evaluations
are used in the initial stage where every low-level approach is executed. In addition,
due to the way in which the low-level configurations have been defined, in every
scheme there is at least one adequate low-level approach. Therefore, the obtained
quality decreases as more configurations are added. It is important to remark that
this might not happen in every case. For instance, a model with few configurations

111

CHAPTER 5. Validation with Benchmark Optimisation Problems

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - F1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - F2

Figure 5.5: Resource sharing with 16 configurations (F1 - F2)

in which none of them are adequate, will behave worse than a model with many
configurations, in which some of them are suitable for the problem. For this reason,
the addition of alternative configurations might increase or decrease the quality of
the obtained results. Anyway, even in the cases in which many configurations have
been used, the mono weight model has obtained better results than the random
approach. In fact, the statistical analyses have confirmed that the solutions obtained
with mono weight have been better than the ones obtained with the random
approach in every case.

The previous analysis has demonstrated some of the advantages of mono weight.
However, it is also important to quantify the improvement. Tables 5.2 and 5.3 show
the percentage of evaluations that can be saved by using the mono weight model
instead of the random approach. It has been calculated considering the number
of evaluations required to achieving a 50% of success ratio with each one of the
models. The desired fitness has been calculated in the following way. First, the
median of the fitness obtained by the mono weight and random models at the
end of the executions have been calculated. The lowest value has been considered as
the desired quality level. This ensures that both models attain the desired quality
level. The saved percentages show that by using the mono weight approach, a
large amount of resources can be saved. In fact, in some cases, more than 80%
of resources can be saved. The reason of obtaining so large percentages is that
some of the configurations are completely disruptive, so by avoiding them, a large
quantity of resources can be saved. Moreover, such configurations might be used
in some stages with the aim of avoiding premature convergence, improving on the
obtained results. When many configurations have been used, the saved evaluations
have not been so large. The reason is that in such cases the initial stage where

112

5.1. Mono-objective Benchmark Problems

Table 5.4: Factor of additional evaluations performed with mono-weight (F1 -
F6)

F1 F2 F3 F4 F5 F6
2 conf. 1.05 1.07 1.16 1.05 0.66 1.09
4 conf. 1.09 1.11 1.42 1.10 0.66 1.14
8 conf. 1.15 1.17 1.29 1.13 0.73 1.18
16 conf. 1.23 1.26 1.16 1.24 0.78 1.27
32 conf. 1.34 1.46 1.69 1.41 0.89 1.39
64 conf. 1.77 1.94 2.11 1.81 1.81 1.77
128 conf. 3.95 4.31 4.22 3.47 3.73 3.45

Table 5.5: Factor of additional evaluations performed with mono-weight (F7 -
F11)

F7 F8 F9 F10 F11
2 conf. 1.06 1.02 1.08 1.05 1.03
4 conf. 1.14 1.04 1.11 1.09 1.09
8 conf. 1.24 1.13 1.14 1.20 1.13
16 conf. 1.40 1.11 1.21 1.22 1.20
32 conf. 1.60 1.33 1.33 1.34 1.38
64 conf. 2.02 1.71 1.73 1.70 1.71
128 conf. 5.32 3.01 3.20 3.73 3.27

each configuration is executed one time is larger, so more resources are granted to
non-adequate strategies.

The mono weight approach has obtained better results than the random scheme
in terms of the obtained fitness. This indicates that more resources are granted to the
most suitable low-level approaches in every case. The sharing of resources has been
measured for the model that considers 16 low-level configurations. Figure 5.5 show
the percentage of resources granted to each low-level configuration for the problems
f1 and f2. The sharing for the rest of the problems is not shown because it was
similar in every case. It can be appreciated that a higher amount of resources are
granted to the low-disruptive configurations. This means that the hyperheuristic is
detecting which are the most suitable configurations, and more resources are granted
to them.

The increase on the generality of the hyperheuristics is usually achieved at the

113

CHAPTER 5. Validation with Benchmark Optimisation Problems

-180

-179.99

-179.98

-179.97

-179.96

-179.95

-179.94

 1.2e+06 1.6e+06 2e+06 2.4e+06

F
itn

es
s

Low-level configurations

Median of the Fitness - F5

Mono_Weight

Pm = 0.002

−
18

0.
00

−
17

9.
95

−
17

9.
90

−
17

9.
85

Boxplots at 2.500.000 evaluations − F5

F
itn

es
s

Mono_Weight Pm = 0.002

Figure 5.6: Fitness for F5 with different configurations

expense of reduced solution quality when compared to the best low-level approaches.
For this reason, it is also important to quantify the relative performance with respect
to the best low-level configuration. In order to give a measure of the impact produced
by the hyperheuristics, the factors between the evaluations required to obtain a 50%
of success ratio, with the mono weight model and with the best sequential low-
level approach have been calculated. The desired quality level was fixed as in the
previous experiment. Tables 5.4 and 5.5 show such a value for each problem and for
the different number of considered configurations. It can be observed that, as it was
expected, in most cases the hyperheuristic requires a larger amount of evaluations
than the corresponding best low-level approach. Moreover, the factors increase as
more configurations are considered. However, in every case the factor is much lower
than the number of low-level configurations. Since the testing of each low-level
configuration can be avoided by using the hyperheuristic, the overall computing and
user effort saved is very large.

In the theoretical analysis, it was shown that in some cases, the hyperheuristics might
obtain better values than any of the involved low-level approaches. The previous
experimental analysis shows that mono weight required fewer evaluations than
the best sequential approach in f5, demonstrating that, in practice, it also happens.
In such a case the hyperheuristic has been better than the best low-level approach,
when less than 32 configurations have been used. In the case of using two low-level
configurations the number of evaluations required by the hyperheuristic has been
much lower than the evaluations required by the best low-level approach. Figure 5.6
shows the evolution of the median of the fitness for the best low-level approach, and

114

5.1. Mono-objective Benchmark Problems

for mono weight. The boxplots at the end of the executions are also shown. It
can be appreciated that the hyperheuristic attains better values. In fact, most of
the executions are near to the optimal value. Therefore, the synergy of combining
a low-disruptive configuration with a high-disruptive configuration is clear. The
statistical tests do not confirm the superiority of the hyperheuristic with a stopping
criterion of 2.500.000 function evaluations. However, in the case of using as stopping
criterion the execution of 4.000.000 function evaluations, the statistical tests confirm
the superiority of mono weight.

Second Experiment: Adaptation level

Previous analyses have shown the advantages of using mono weight with the pa-
rameterisation k = 5. It is interesting to analyse the robustness of the approach with
respect to the value of k. In order to check it, the modelmono weight was executed
with the f tests, but considering the parameterisations k = {1, 5, 10, 100, 1000,∞}.
As it was described in the theoretical analysis, intermediate values (100 and 1000)
are not expected to obtain high-quality solutions. Anyway, it is useful to test them
with the aim of confirming it. In every case, 32 low-level configurations were con-
sidered. They were made up as in the previous experiment. The remaining pa-
rameters of the hyperheuristic were also the same than in the previous experiment.
The medians of the fitness obtained at the end of the executions are shown in ta-
bles 5.6 and 5.7. The model mono weight with low-vales of k has reported much
better results than an assignment based on the random approach in every case.
Other values of k have also reported better values than the random approach in
most of the cases. However, in f7, high values of k are not adequate. The reason is
that the hyperheuristic get confounded by the results obtained in previous stages of
the optimisation. Also, as it was expected, intermediate values of k are, in general,
not adequate when compared to low and high values of k. The parameterisation
k = 1 has been the one that has reported the best values in every case. Moreover,
in most cases, differences with the results obtained by using other values of k have
been statistically significant. Therefore, with such low-level approaches estimating
the score by using the average of several executions is not required. The reasons are
that differences among the configurations are very large, and that a large stopping
criterion has been used. Therefore, the last obtained improvement is a good score,
and there is no need of using a larger value of k.

The model was also executed with other low-level approaches. In such cases, the
previous behaviour could not be reproduced. In the additional experiments, several
cases were found in which the value k = 1 was not the best one. A case in which
this happened is presented in the following lines.

115

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.6: Median of the fitness for different values of k (F1 - F6)
F1 F2 F3 F4 F5 F6

k = 1 -449.98 -420.93 1978.65 -329.98 -179.99 -139.99
k = 5 -449.98 -420.27 2046.16 -329.96 -179.99 -139.99
k = 10 -449.97 -417.53 2155.19 -329.84 -179.98 -139.99
k = 100 -447.70 -411.34 13730.15 -319.79 -179.80 -139.98
k = 1000 -447.72 -410.69 11794.8 -323.82 -179.58 -139.98
k =∞ -449.97 -416.67 2661.7 -329.96 -179.99 -139.99
Random 6101.32 -350.83 48584650 297.99 -141.95 -134.56

Table 5.7: Median of the fitness for different values of k (F7 - F11)
F7 F8 F9 F10 F11

k = 1 0.10 2.19e11 100.06 0.008 98.83
k = 5 0.15 2.26e11 107.67 0.011 111.54
k = 10 0.20 2.36e11 120.91 0.019 124.23
k = 100 587.49 3.44e11 179.82 3.42 174.24
k = 1000 625.78 3.56e11 157.69 3.06 170.42
k =∞ 539.80 2.50e11 117.89 0.01 120.52
Random 73.72 7.18e11 1638.98 596.61 1615.18

The model mono weight was executed by considering 18 low-level configurations.
They were made up by combining three survivor selection schemes, three crossover
operators and two mutation operators. The three tested survivor selection schemes
were: SS-S, GEN-S, and RW-S. The applied crossover operators were: UX, OPX
and SBX. Finally, the tested mutation operators were the UM and the PM. The
parameter β ∗nh was set to 0.1, while the following values of k were tested: 1, 5, 10,
100, 1000,∞. The local stopping criterion was set to 1.000 function evaluations. The
random approach was also executed. In every case, the global stopping criterion
was set to 10.000.000 function evaluations.

In most of the f problems, the model reported results that were very similar to the
ones obtained by best sequential approach. The best-behaved value of k depended
on the considered problem. Figure 5.7 shows, for the f11 problem, the evolution of
the median of the fitness attained with mono weight with the different values of
k. It also shows the evolution of the random approach. Initially, the value k = 1 is
the most adequate. However, in the long term, the mono weight approaches with

116

5.1. Mono-objective Benchmark Problems

 0

 20

 40

 60

 80

 100

 0 2.5e+06 5e+06 7.5e+06 1e+07

F
itn

es
s

Evaluations

Evolution of the Median of the Fitness - F11

k = 1
k = 5

k = 10
k = 100

k = 1000
k = 1000000

Random

Figure 5.7: Evolution of the fitness with mono weight for different adaptation
levels

higher values of k (5 and 10) clearly improve on the results obtained with k = 1.
In fact, the model mono weight with k = 5 and k = 10 has reported statistically
better values than the model with k = 1. This confirms the requirement of consi-
dering the average of the last improvements (and not only the last improvement) in
some problems. The main inconvenient is that the best-behaved value of k depends
on the problem. The main strength is that the results obtained with low values of
k have improved on the results obtained with the random scheme in every case.

Third Experiment: Improving on the results obtained with the best low-

level approach

During the development of the second experiment, several cases were found in which
the hyperheuristic was statistically better than the best considered low-level ap-
proach. In the first experiment it had already happened with f5. In such a case
the cause of the good performance was that by combining low-disruptive schemes,
with high-disruptive schemes, premature convergence was avoided. However, in the
new detected cases premature convergence was not appearing, so the reasons of the
good performance are analysed in this experiment.

One of the models in which mono weight improved on the results obtained by the
best sequential approach was the one exposed in the second experiment. Figure 5.8
shows the boxplots of the fitness obtained at the end of the executions by the best
sequential approach and by mono weight with k = 5. The advantages of using
the hyperheuristic are clear.

117

CHAPTER 5. Validation with Benchmark Optimisation Problems

6
8

10
12

14
16

Boxplots at 10.000.000 evaluations − F11

F
itn

es
s

Best Low−level Mono_Weight

Figure 5.8: Comparison of the best sequential approach and mono weight

In order to deeply analyse the reason of the good behaviour of mono weight, the
behaviour of the low-level approaches was analysed for the different stages of the
optimisation. In the first stage of mono weight, every configuration is executed
one time. After it, the median of the fitness value has been about 800. At this
initial stage, the hyperheuristic does not perform any decision. In the following
stages, the hyperheuristic performs its decisions based on the quality of the low-
level approaches. Thus, an analysis of the behaviour of the sequential low-level
approaches in the subsequent stages has been performed.

Table 5.8 shows for each of the low-level sequential configurations the median of the
fitness achieved when they start from a population with individuals whose fitness
values are close to 800. Executions have been performed taking into consideration
a stopping criterion of 105 evaluations. Figure 5.9 shows the boxplots of the fitness
achieved by the best configurations. It shows the similarities between the best six
configurations. In fact, differences among them are not statistically significant.

After reaching a fitness value close to 46, the behaviour of the configurations is
completely different. Table 5.9 shows that, when starting from a population with
individuals whose fitness values are close to 46, some of the configurations which
behaved poorly in the previous stages are now the best-behaved ones. The shown
fitness values have been obtained taking into consideration a stopping criterion of
105 evaluations. Figure 5.10 shows the boxplots of the fitness achieved by the seven
best configurations. In this case, differences among the best configuration and the
remaining ones are statistically significant.

118

5.1. Mono-objective Benchmark Problems

Table 5.8: Median of the fitness achieved in 105 evaluations with F11 (starting from
800)

Name Mutation Crossover Selection Achieved Fitness
Seq1 PM OPX SS-S 336.53
Seq2 PM SBX SS-S 338.76
Seq3 PM SBX RW-S 339.59
Seq4 PM OPX RW-S 339.94
Seq5 PM UX RW-S 340.56
Seq6 PM UX SS-S 344.60
Seq7 PM SBX GEN-S 404.14
Seq8 PM UX GEN-S 439.76
Seq9 PM OPX GEN-S 443.69
Seq10 UM SBX GEN-S 580.06
Seq11 UM OPX RW-S 615.17
Seq12 UM OPX SS-S 623.82
Seq13 UM SBX RW-S 635.90
Seq14 UM SBX SS-S 638.70
Seq15 UM UX RW-S 643.57
Seq16 UM UX SS-S 647.16
Seq17 UM OPX GEN-S 692.88
Seq18 UM UX GEN-S 697.94

32
0

36
0

40
0

F11 − Starting from fitness 800

F
itn

es
s

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7

Figure 5.9: Boxplots of the fitness achieved in 105 evaluations with F11 (starting
from 800)

119

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.9: Median of the fitness achieved in 105 evaluations with F11 (starting from
46)

Name Mutation Crossover Selection Achieved Fitness
Seq1 PM SBX GEN-S 42.83
Seq2 PM OPX RW-S 43.76
Seq3 PM OPX SS-S 43.89
Seq4 UM OPX RW-S 44.11
Seq5 UM SBX GEN-S 44.41
Seq6 UM OPX SS-S 44.50
Seq7 UM OPX GEN-S 44.91
Seq8 PM OPX GEN-S 45.03
Seq9 PM UX RW-S 45.48
Seq10 PM UX SS-S 45.49
Seq11 PM SBX RW-S 45.51
Seq12 PM SBX SS-S 45.53
Seq13 PM UX GEN-S 45.71
Seq14 UM SBX SS-S 45.86
Seq15 UM UX SS-S 45.87
Seq16 UM UX RW-S 45.87
Seq17 UM SBX RW-S 45.87
Seq18 UM UX GEN-S 45.87

41
42

43
44

45
46

F11 − Starting from fitness 46

F
itn

es
s

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7

Figure 5.10: Boxplots of the fitness achieved in 105 evaluations with F11 (starting
from 46)

120

5.1. Mono-objective Benchmark Problems
−

42
3

−
42

1
−

41
9

−
41

7

Boxplots at 2.500.000 evaluations − F2

F
itn

es
s

Eli−Mono_Weight Mono_Weight

6
8

10
12

Boxplots at 10.000.000 evaluations − F11

F
itn

es
s

Eli−Mono_Weight Mono_Weight

Figure 5.11: Comparison of elitist and probabilistic selection schemes

Therefore, the relative performance among the low-level approaches depends on the
stage of the optimisation. The mono weight model has been able to grant more
computational resources to the best approach in each stage of the optimisation.
Therefore, it has been able to improve on the results obtained by every low-level
approach.

Fourth Experiment: Probabilistic vs. Elitist Selection

An experiment with the aim of comparing the probabilistic and elitist selection
schemes was also performed. Several configurations of the eli-mono weight and
mono weight hyperheuristics were executed. In most of the cases, the executions
that used eli-mono weight obtained slightly better values than the ones that
used mono weight. The reason is that mono weight tends to distribute the
resources among more configurations, while eli-mono weight tends to focus on
few configurations. In most cases, such type of assignment clearly provides advan-
tages. However, in other cases, the hyperheuristic is confounded and assigns a high
number of resources among non-suitable configurations. In such cases, the loss of
performance is large. Two opposite cases are presented. In the first one the hyper-
heuristic was configured as in the first experiment. Specifically, 32 configurations
were used, and it was applied to the f2 problem. Figure 5.11 shows - in the left -
the boxplots of the results obtained by eli-mono weight and by mono weight.
It shows that by using an elitist selection scheme, better fitness values can be ob-
tained. In addition, executions that considered the low-level configurations applied

121

CHAPTER 5. Validation with Benchmark Optimisation Problems

in the second experiment were also carried out. In this case it was applied to the
f11 problem. Figure 5.11 shows - in the right - the boxplots of the results obtained
by eli-mono weight and by mono weight. The probabilistic selection scheme
obtains better results. Thus, the most suitable selection scheme depends on the
problem and low-level approaches. Moreover, in both cases, differences have been
significant. Anyway, in both cases good quality values have been obtained compared
with the random approach. Therefore, by properly specifying the kind of selection
better values can be obtained, but independently of the kind of selection high quality
results have been obtained.

Fifth Experiment: Performance of the parallel hyperheuristic

This section is devoted to present the experiments that have been performed with
the aim of exploring the performance of the parallel version of the hyperheuristics.
Specifically, a hyperheuristic that considered 16 configurations - the same as in the
first experiment - was executed in parallel. The same parameterisation as in the
case of the first experiment was used. Specifically, the value of k was fixed to 5,
and the value of β was fixed in a way that the 10% of the decisions performed
by the hyperheuristic followed a uniform distribution, i.e., β ∗ nh = 0.1. Finally,
the local stopping criterion was fixed to 10.000 function evaluations and the global
stopping criterion to 2.500.000 function evaluations. Thus, the only change was the
specification of the number of processors to use.

Since it is known that the migration stage might affect the performance of island-
based models, the aim of the first analysis has been to measure the impact that the
migration stage has over the performance. The hyperheuristic was executed with
4 processors considering several types of migration stages. Specifically, 12 different
migrations stages were considered. They were made up by combining two migration
selectors, three exchange selectors and two topologies. The migration selectors were
the elitist, the improvements and the random. The elitist approach selects
the best individuals of the population. The improvements approach selects indi-
viduals that are better than any individual of its previous population. If such an
individual does not exist, no migration is performed. The random selector picks
up the individuals randomly. The considered exchange selectors were the random,
and the elitist. The random approach selects the individual to exchange ran-
domly. The elitist approach discards the worst individuals among the current
population and the immigrants. Finally, the tested topologies were the all and the
ring. Some preliminary tests were performed with the aim of setting the rest of
the parameters of the migration stage. The number of individuals to migrate was
fixed to 1, while the probability of migration was fixed to 100%, i.e. after every

122

5.1. Mono-objective Benchmark Problems

Table 5.10: Speedup of the parallel approach (4 islands) with mono-weight and
different migration stages (F1 - F6)

F1 F2 F3 F4 F5 F6
elitist-elitist-all all 2.60 3.82 2.55 3.28 2.71 3.70
improvements-elitist-all all 3.20 3.66 3.14 3.71 3.26 3.77
random-elitist-all all 3.11 3.50 3.14 3.57 3.16 4.05
elitist-random-all all 2.73 3.96 2.90 3.42 2.74 3.85
improvements-random-all all 3.38 3.71 2.95 3.85 3.43 3.83
random-random-all all 0.17 0.04 0.41 0.11 0.13 0.12
elitist-elitist-ring 3.01 3.66 3.01 3.61 3.11 3.70
improvements-elitist-ring 3.30 3.63 3.01 3.76 3.49 3.70
random-elitist-ring 3.41 3.63 3.01 3.71 3.11 3.66
elitist-random-ring 3.12 3.73 3.07 3.70 3.37 3.77
improvements-random-ring 3.30 3.60 3.18 3.72 3.53 3.54
random-random-ring 0.39 0.81 0.51 0.38 0.39 0.33

Table 5.11: Speedup of the parallel approach (4 islands) with mono-weight and
different migration stages (F7 - F11)

F7 F8 F9 F10 F11
elitist-elitist-all all 2.71 2.87 2.84 2.66 2.85
improvements-elitist-all all 3.07 3.19 2.90 2.80 2.98
random-elitist-all all 3.01 2.87 3.00 3.11 3.04
elitist-random-all all 2.85 2.85 2.90 2.79 2.84
improvements-random-all all 3.20 3.17 3.36 3.11 3.11
random-random-all all 0.71 0.34 0.14 0.14 0.11
elitist-elitist-ring 3.03 2.98 3.14 3.04 3.12
improvements-elitist-ring 3.17 2.95 3.15 3.15 3.22
random-elitist-ring 3.72 3.17 3.22 3.46 3.14
elitist-random-ring 3.27 3.09 3.15 3.11 3.19
improvements-random-ring 3.42 3.24 3.28 3.23 3.25
random-random-ring 0.73 0.48 0.33 0.38 0.35

generation the migration stage was executed.

In order to measure the performance of the parallel approach, the sequential version
of mono weight that considered 16 configurations was used to perform the com-

123

CHAPTER 5. Validation with Benchmark Optimisation Problems

parison. Tables 5.10 and 5.11 show the speedup factors obtained with the different
models for each one of the f problems. The factors have been calculated using the
evaluations required by each model to achieving a 50% of success ratio. The quality
level has been fixed in a similar way than in previous experiments. The calculated
speedup factor assumes that in the parallel approaches the number of evaluations is
np times higher than the evaluations carried out by the sequential approaches in the
same time. This is the typical behaviour when island-based models are applied to
real-world problems. Thus, considering that SeqEval and ParEval are the number
of evaluations required to obtaining the desired success ratio for a sequential and a
parallel approach, the speedup factor has been calculated as:

speedup =
SeqEval

ParEval
· np (5.1)

The calculated speedup factors reveal that the migration stage has some effect over
the speedup. The schemes that use a random migration selector with a random
exchange selector were not able to accelerate the achievement of high quality solu-
tions. The reason is that they might replace the best individuals with low-quality
individuals. The rest of the migration stages obtained acceptable speedup factors.
The migration stages improvements-random-ring and improvements-elitist-
ring obtained high speedup factors in every case. In addition, the amount of data
sent with such an approach over the network is lower than with the other migration
stages. Thus, they have been selected to perform a scalability analysis.
First, such models were executed with the same parameterisation than in the pre-
vious experiment, but considering up to 32 islands. The models did not scale. The
reason was that since several islands get idle at the same time, the hyperheuristic
tends to use the same approach in many islands. When the selection is not ade-
quate a lot of resources are wasted. For this reason, the local stopping criterion
was reduced to 500 function evaluations. In this case, better speedup factor were
obtained. In addition some experiments that considered the all topology and up
to 32 islands were also executed. They saturated the network, so the all topology
was not scalable with problems with so many variables. Such a topology was also
used with lower migration probabilities. The calculated speedup factor revealed that
such a setting was not adequate.
Figures 5.12 and 5.13 show the speedup factors obtained with the selected migration
stages, and with the stopping criterion fixed to 500 function evaluations. A linear
speedup could not be obtained. The reason is that since the global population is
much larger than in the sequential case, the way in which the fitness landscape is

124

5.1. Mono-objective Benchmark Problems

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F1

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F2

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F3

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F4

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F5

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F6

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

Figure 5.12: Scalability analysis for the best migration stages (F1 - F6)

125

CHAPTER 5. Validation with Benchmark Optimisation Problems

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F7

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

 0

 5

 10

 15

 20

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F8

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F9

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F10

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 16 32

S
pe

ed
up

Processors

Scalability of Mono_Weight - F11

Improvements-Random-Ring_One

Improvements-Elitist-Ring_One

Figure 5.13: Scalability analysis for the best migration stages (F7 - F11)

126

5.1. Mono-objective Benchmark Problems

explored is very different. In fact, with the performed migration stage, the model
is similar to a sequential scheme that creates in each generation an offspring set
much larger than the population. Anyway, in any of the cases as more processors
have been added, the speedup factors have increased. The most outstanding case
with 32 processors appeared with f8. In such a case the speedup factor was 17.25.
The problem that produced the worst case with 32 processors was f5. The obtained
speedup factor was 8.37. Thus, with few processors it is very easy to obtain adequate
speedup factors. However, for larger number of processors the migration stage must
be carefully selected, and the obtained speedup is not linear.

5.1.3 Experimental Evaluation of Schemes Based on Multi-

objectivisation

This section shows the experimental evaluation performed with the schemes based on
multiobjectivisation. First, the advantages of using the multiobjectivisation schemes
based on Euclidean distances are explored. Then, an analysis of the benefits of
including a threshold for the fitness in the multiobjectivised approaches is performed.
Specifically, the performance of the new dcn-thr scheme is analysed. Finally, the
adaptive multiobjectivisation is evaluated.

First Experiment: On the advantages of multiobjectivisation

The first analysis has been devoted to measure the performance of multiobjectivisa-
tion. A comparison between mono-objective and multiobjectivised approaches has
been performed. In the case of the mono-objective optimisation, the basic EAs pre-
sented in Chapter 2 has been used. Three different survivor selection mechanisms
have been considered: SS-S, GEN-S, and RW-S. For the multiobjectivised ap-
proaches, NSGA-II has been applied. The multiobjectivisation has been performed
with three different mechanisms: dcn, adi, and dbi. In both cases, the variation
stage has been based on using the UM with pm = 1

D
, and the SBX with pc = 1.

The f problems have been tested with 50 and 500 variables (D). Each algorithm
has been executed with a population size N of 5, 10, and 20 individuals. Finally,
the stopping criterion has been fixed to a total number of 5000 ·D evaluations.
Table 5.12 shows, for each population size, the best mono-objective and multiobjec-
tivised approaches considering D = 50. Comparisons have been made in terms of
the median of the fitness achieved at the end of each execution. The same informa-
tion is shown in Table 5.14 considering D = 500. In both cases, the superiority of
the GEN-S and the dcn strategies is clear. However, for some problems, they are
not the best-behaved schemes.

127

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.12: Best mono-objective and multi-objective approaches - D = 50
F1 F2 F3 F4 F5 F6

Mono 5 gen-s gen-s gen-s gen-s gen-s gen-s
Mono 10 gen-s gen-s gen-s gen-s gen-s gen-s
Mono 20 gen-s gen-s gen-s rw-ea gen-s gen-s
Multi 5 dcn dcn dcn dcn dcn dcn
Multi 10 dcn dcn dcn dcn dcn dcn
Multi 20 dcn dcn dcn dcn dcn dcn

F7 F8 F9 F10 F11
Mono 5 gen-s gen-s gen-s gen-s gen-s
Mono 10 gen-s gen-s gen-s gen-s gen-s
Mono 20 gen-s gen-s gen-s gen-s gen-s
Multi 5 dcn adi dcn dcn dcn
Multi 10 dcn dcn dcn dcn dcn
Multi 20 dcn dcn dcn dcn dcn

Table 5.13: Median of the error for the best approaches - D = 50
F1 F2 F3 F4 F5 F6

Mono 5 < 1 · 10−6 1.76 155 < 1 · 10−6 2.25 · 10−2 3.00 · 10−3

Multi 5 < 1 · 10−6 0.567 155 < 1 · 10−6 1.10 · 10−2 1.00 · 10−3

Mono 10 < 1 · 10−6 1.63 344 < 1 · 10−6 1.50 · 10−2 2.00 · 10−3

Multi 10 5.00 · 10−4 1.05 152 1.00 · 10−3 1.00 · 10−2 4.00 · 10−3

Mono 20 6.00 · 10−3 2.01 338 8.60 · 10−2 2.10 · 10−2 1.60 · 10−2

Multi 20 3.00 · 10−3 1.64 197 1.00 · 10−3 1.90 · 10−2 9.00 · 10−3

F7 F8 F9 F10 F11
Mono 5 4.57 · 10−3 1.44 · 109 7.24 1.84 · 10−4 6.80
Multi 5 1.37 · 10−3 4.50 · 108 4.65 3.11 · 10−5 4.46
Mono 10 2.59 · 10−3 1.02 · 109 7.77 1.16 · 10−4 7.05
Multi 10 2.55 · 10−3 6.49 · 108 5.62 4.69 · 10−4 6.12
Mono 20 1.82 · 10−2 1.34 · 109 17.9 5.40 · 10−3 19.8
Multi 20 3.70 · 10−3 8.77 · 108 6.92 1.47 · 10−3 8.00

128

5.1. Mono-objective Benchmark Problems

Table 5.14: Best mono-objective and multi-objective approaches - D = 500
F1 F2 F3 F4 F5 F6

Mono 5 gen-s rw-ea gen-s gen-s gen-s gen-s
Mono 10 gen-s rw-ea gen-s gen-s gen-s gen-s
Mono 20 gen-s rw-ea gen-s gen-s ss-ea gen-s
Multi 5 dcn adi dcn dcn dcn dcn
Multi 10 dcn dcn dcn dcn dcn dcn
Multi 20 dcn dcn dcn dcn dcn dcn

F7 F8 F9 F10 F11
Mono 5 gen-s gen-s gen-s gen-s gen-s
Mono 10 gen-s gen-s gen-s gen-s gen-s
Mono 20 gen-s gen-s gen-s gen-s gen-s
Multi 5 dcn dcn dcn dcn dcn
Multi 10 dcn dcn dcn dcn dcn
Multi 20 dcn dcn dcn dcn dcn

Table 5.15: Median of the error for the best approaches - D = 500

F1 F2 F3 F4 F5 F6
Mono 5 3.00 · 10−3 16.7 1.32 · 103 3.00 · 10−3 8.00 · 10−3 3.00 · 10−3

Multi 5 < 1 · 10−6 11.4 1.26 · 103 3.00 · 10−3 < 1 · 10−6 1.00 · 10−3

Mono 10 2.00 · 10−3 14.1 1.47 · 103 3.95 · 10−2 < 1 · 10−6 3.00 · 10−3

Multi 10 5.00 · 10−3 18.1 1.48 · 103 1.00 1.00 · 10−3 4.00 · 10−3

Mono 20 6.50 · 10−2 15.4 1.78 · 103 9.28 · 10−1 8.00 · 10−3 1.70 · 10−2

Multi 20 3.70 · 10−2 22.3 1.87 · 103 8.95 · 10−2 4.50 · 10−3 1.30 · 10−2

F7 F8 F9 F10 F11
Mono 5 4.02 · 10−2 1.93 · 1011 75.3 1.84 · 10−3 74.0
Multi 5 1.37 · 10−2 1.41 · 1011 44.9 3.46 · 10−4 44.4
Mono 10 2.57 · 10−2 1.83 · 1011 84.2 1.32 · 10−3 82.4
Multi 10 2.99 · 10−2 1.58 · 1011 63.0 4.60 · 10−3 61.9
Mono 20 1.77 · 10−1 2.04 · 1011 2.08 · 102 6.24 · 10−2 2.08 · 102
Multi 20 3.83 · 10−2 1.73 · 1011 77.8 2.76 · 10−2 76.3

129

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.16: Percentage of saved evaluations by the best multiobjectivisation
F1 F2 F3 F4 F5 F6

D = 50 26.1% 45.9% 40.0% -28.9% 33.3% 32.6%
D = 500 26.9% -7.7% 25.0% -21.2% 29.4% 28.0%

F7 F8 F9 F10 F11
D = 50 29.2% 45.5% 31.0% 23.5% 33.3%
D = 500 25.9% 38.7% 29.4% 35.3% 29.4%

Mono-objective and multiobjectivised techniques have been compared in terms of
the achieved fitness. The median of the error achieved by the best mono-objective
and multiobjectivised approaches, for each population size, is given in Table 5.13,
considering D = 50. The error has been defined as the difference between the
achieved fitness and the optimal fitness. It has been calculated considering an ac-
curacy equal to 1 · 10−6. Moreover, a statistical analysis between the best mono-
objective approach and the best multiobjectivised one has been carried out for each
population size. For cases in which differences have been statistically significant,
data of the best of both algorithms is shown in bold. Table 5.15 shows the same
information for the case of D = 500. For both values of D, algorithms with lower
population sizes have obtained lower errors. In addition, the superiority of the mul-
tiobjectivised approaches has been clearly demonstrated. However, in some cases
the best mono-objective approach has obtained statistically better results than the
best multiobjectivised technique. From a total number of 66 statistical tests, in 41
of them the best multiobjectivised approach has been statistically superior to the
best mono-objective approach. The best mono-objective algorithm has been sta-
tistically superior in 9 tests. Finally, 16 statistical tests have shown no significant
differences between both strategies. In addition, it is important to know which kinds
of problems are more adequate to be solved by multiobjectivised approaches. Mul-
tiobjectivisation has provided more benefits when it has been applied to a unimodal
problem. In fact, for a fixed population size, the best multiobjectivised approach has
been statistically better than the best mono-objective algorithm in a 76.2% of the
cases in which unimodal problems have been considered. This ratio has decreased
to a 37.5% when multimodal problems have been taken into account.

The previous analysis has demonstrated the validity of multiobjectivisation in terms
of the achieved quality level. However, it is important to quantify the improvement
that can be achieved by using multiobjectivisation, in terms of the invested num-

130

5.1. Mono-objective Benchmark Problems

ber of evaluations. Comparisons have been performed considering the evaluations
required to obtain a 50% of success ratio for achieving a quality level. The quality
level has been fixed so that all executions have been able to achieve it. The num-
ber of evaluations required to achieve a 50% of success ratio have been calculated
for the best-behaved mono-objective and multiobjectivised approaches, regardless
of the population size. Table 5.16 shows the percentage of saved evaluations by
the best multiobjectivised approach in relation to the best mono-objective one. A
negative value means that the mono-objective algorithm has converged faster than
the corresponding multiobjectivised strategy to the fixed quality level. Once again,
the superiority of multiobjectivisation can be noted. The best-behaved multiob-
jectivised approach has provided benefits in 19 cases from a total number of 22.
Moreover, in the majority of the cases, the percentage of saved evaluations has been
large. In fact, in some cases, about a 45% of evaluations have been saved.

Second Experiment: On the usage of thresholds

The second experiment has focused on analysing the novel approach based on mul-
tiobjectivisation with parameters. Specifically, the considered benchmark problems
have been multiobjectivised with the dcn-thr strategy. The aim of the analysis has
been to discover the relationship between the values of the threshold ratio th, and
the quality of the obtained results. The multiobjectivised versions of the benchmark
problems have been solved with the NSGA-II. The parameterisation has been as
follows. The number of decision variables D has been fixed to 500. Since lower er-
rors have been obtained with lower population sizes in the previous experiments, the
population size has been fixed to 5 individuals. The following values have been used
for the threshold ratio th: 0, 0.2, 0.4, 0.6, and 0.8. Finally, the stopping criterion
has been fixed to a total number of 2 · 107 evaluations.

Table 5.17 shows, for each benchmark problem, the threshold ratio of the configu-
ration which has obtained the best median of the fitness in 1.25 · 106 evaluations.
It also shows the threshold ratios of those configurations which have not been sta-
tistically different than the best one. There has been no value which has been able
to be among the best ones for every problem. Thus, in order to decide the proper
value to use, a priori information of the problem to solve is required.

In order to measure the impact over the performance, the RLDs have been used.
The quality level has been fixed as the median of the fitness achieved by the best
configuration in 1.25 · 106 evaluations. Table 5.18 shows, for each threshold value,
the number of evaluations required to obtain a success ratio of 50%, when the
aforementioned quality level has been taken into account. Considering the number
of evaluations required by suboptimal approaches, the importance of correctly fixing

131

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.17: Statistical comparison among different threshold values
F1 F2 F3 F4 F5 F6

Best Threshold 0 0.8 0.2, 0.4 0.4, 0.6 0 0, 0.2

F7 F8 F9 F10 F11
Best Threshold 0.2 0, 0.2 0.8 0 0.8

Table 5.18: Number of evaluations required to achieve a fixed quality level
0 0.2 0.4 0.6 0.8

F1 1.25 · 106 2.2 · 106 3.05 · 106 4.7 · 106 6.05 · 106
F2 1.35 · 106 1.35 · 106 1.4 · 106 1.4 · 106 1.25 · 106

F3 1.75 · 106 1.25 · 106 1.35 · 106 1.7 · 106 1.8 · 106
F4 2.15 · 106 1.45 · 106 1.25 · 106 1.25 · 106 1.5 · 106
F5 1.25 · 106 4 · 106 5.15 · 106 6.9 · 106 1.74 · 107
F6 1.25 · 106 1.2 · 106 1.95 · 106 2.5 · 106 3.75 · 106
F7 2.3 · 106 1.25 · 106 2 · 106 3.85 · 106 8.6 · 106
F8 1.25 · 106 1.3 · 106 1.45 · 106 1.4 · 106 1.45 · 106
F9 1.9 · 106 1.85 · 106 1.75 · 106 1.65 · 106 1.25 · 106

F10 1.25 · 106 1.8 · 106 2.4 · 106 3.25 · 106 5 · 106
F11 1.85 · 106 1.85 · 106 1.85 · 106 1.6 · 106 1.25 · 106

the parameter is clear. For instance, considering the problem f5, the number of
evaluations required by the best configuration approximately represents a 7.18% of
the evaluations required by the worst one.

Another open research question is whether the proper value of th depends on the
optimisation stage or not. With the aim of answering this question the following
experiment has been performed. First, four different optimisation stages have been
defined. To define such stages the median of the fitness values achieved by the best
configuration in 2.5·105, 5·105, 7.5·105, and 1·106 evaluations have been considered.
Then, for each calculated value, 30 individuals with a quality similar to such a value
have been generated. In order to generate the 30 individuals, the best configuration
has been executed 30 times. For each one of these 30 executions, the generated
individual has been the first one that has achieved an original objective value lower
than the fixed value for the corresponding stage.

132

5.1. Mono-objective Benchmark Problems

Table 5.19: Statistical comparison among different threshold values by stages - F4
Stage 0 Stage 1

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
0 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↓
0.2 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↓
0.4 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔ ↔
0.6 ↔ ↔ ↔ ↔ ↔ ↑ ↑ ↔ ↔ ↔
0.8 ↑ ↑ ↑ ↔ ↔ ↑ ↑ ↔ ↔ ↔

Stage 2 Stage 3
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↑ ↑ ↑ ↑
0.2 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.4 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.6 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.8 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔

Table 5.20: Statistical comparison among different threshold values by stages - F5
Stage 0 Stage 1

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
0 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↑ ↑ ↑
0.2 ↔ ↔ ↔ ↑ ↑ ↔ ↔ ↔ ↑ ↑
0.4 ↔ ↔ ↔ ↔ ↑ ↓ ↔ ↔ ↔ ↔
0.6 ↔ ↓ ↔ ↔ ↔ ↓ ↓ ↔ ↔ ↔
0.8 ↔ ↓ ↓ ↔ ↔ ↓ ↓ ↔ ↔ ↔

Stage 2 Stage 3
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↑ ↑ ↑ ↑ ↔ ↑ ↑ ↑ ↑
0.2 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.4 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.6 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.8 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔

Afterwards, the NSGA-II has been tested with different values of the threshold
ratio for each considered stage. Considering each one of the stages, each one of the
executions of the NSGA-II has included one of the 30 individuals generated by the

133

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.21: Statistical comparison among different threshold values by stages - F11
Stage 0 Stage 1

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
0 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.2 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.4 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.6 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.8 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

Stage 2 Stage 3
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓
0.2 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔ ↓
0.4 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓
0.6 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓
0.8 ↔ ↑ ↔ ↔ ↔ ↑ ↑ ↑ ↑ ↔

aforementioned method in its initial population. The remaining individuals of the
population have been randomly generated. By this way, the performance of the
NSGA-II with different threshold values can be tested when it starts from different
quality levels. The stopping criterion has been fixed to 5 · 105 evaluations. The
different configurations of the NSGA-II have been compared in terms of the achieved
fitness. Tables 5.19, 5.20, and 5.21 show the comparison among the considered
threshold values for the problems f4, f5, and f11, respectively. For each stage,
they show if the row configuration is statistically better (↑), not different (↔),
or worse (↓), than the corresponding column configuration. For each problem, the
statistical tests show that differences among configurations depend on the considered
optimisation stage. For instance, taking into account the stage number 0 of the
problem f4, the configuration that uses th = 0.8 is better than the one that uses
th = 0. However, in the stage number 3 the configuration with th = 0 performs
better than the configuration with th = 0.8. In the case of the problem f5, th = 0
seems to be the most appropriate value for the whole run because there is not a
better value in any of the analysed stages. For the same reasons, in the problem
f11 the value th = 0.8 seems to be the most appropriate value.

134

5.1. Mono-objective Benchmark Problems

Third Experiment: Adaptive multiobjectivisation

The last experiment has been devoted to analyse the adaptive multiobjectivisa-
tion. The hyperheuristics were executed considering as low-level configurations the
schemes analysed in the previous experiment. Specifically, 11 low-level configura-
tions were defined. The difference among them was the definition of the threshold
value of dcn-thr. The threshold values were evenly distributed in the range [0, 1].

Initial experiments showed that the low values of k were the most adequate ones,
and that differences between mono weight and eli-mono weight were not large.
However, the eli-mono weight obtained slightly better results in most of the
cases. In order to show the benefits of the adaptive multiobjectivisation, eli-
mono weight with k = 5 was executed with the f problems. The stopping crite-
rion was fixed to 2.500.000 function evaluations. The low-level configurations were
also independently executed. Figures 5.14 and 5.15 show the median of the fitness
obtained by the low-level configurations with the different values of th. The median
of the fitness obtained with eli-mono weight is also shown. It can be observed
that in every problem the hyperheuristic has been able to detect which are the best
threshold values. The results attained by the hyperheuristic are very similar to the
ones obtained by the best low-level configuration. In fact, in two of the problems
(f4 and f5) the median obtained by eli-mono weight has been better than the
one obtained by the best low-level configuration. In such cases, differences with the
best sequential approach were not statistically significant. Anyway, the advantages
of using the hyperheuristic are clear.

It is also important to measure the amount of resources that can be saved (or lost)
with the adaptive multiobjectivisation. In order to give a measure of the impact
produced by the hyperheuristics, the factors between the evaluations required to
obtain a 50% of success ratio with the models that use fixed thresholds and with
the eli mono-weight model have been calculated. The desired fitness has been
established as the highest median obtained by the involved models. Tables 5.22
and 5.23 show such values. In some cases large values have appeared. This means
that by using the hyperheuristic a large amount of resources can be saved, when
compared with fixed inappropriate threshold values.

Finally, it is worthy to note that the schemes that used th = 0 obtained, in general,
a competitive median value. In six of the problems the value th = 0 was the best
one, and in the rest of the problems competitive results were attained. Therefore,
the advantage of using the eli-mono weight when compared to the configuration
with th = 0 is not so clear. However, additional tests have shown that in many
cases, the value th = 0 is not adequate. Specifically, the eli-mono weight was
executed with the same low-level configurations than in the previous experiment, but

135

CHAPTER 5. Validation with Benchmark Optimisation Problems

-450

-449.9

-449.8

-449.7

-449.6

-449.5

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F1

DCN-thr
Eli-Mono-Weight

-437

-436

-435

-434

-433

-432

-431

-430

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F2

DCN-thr
Eli-Mono-Weight

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F3

DCN-thr
Eli-Mono-Weight

-330

-329.98

-329.96

-329.94

-329.92

-329.9

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F4

DCN-thr
Eli-Mono-Weight

-180

-179.98

-179.96

-179.94

-179.92

-179.9

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F5

DCN-thr
Eli-Mono-Weight

-140

-139.995

-139.99

-139.985

-139.98

-139.975

-139.97

-139.965

-139.96

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F6

DCN-thr
Eli-Mono-Weight

Figure 5.14: Median of the fitness considering different multiobjectivisations (F1 -
F6)

136

5.1. Mono-objective Benchmark Problems

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F7

DCN-thr
Eli-Mono-Weight

 1.4e+11

 1.45e+11

 1.5e+11

 1.55e+11

 1.6e+11

 1.65e+11

 1.7e+11

 1.75e+11

 1.8e+11

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F8

DCN-thr
Eli-Mono-Weight

 0

 50

 100

 150

 200

 250

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F9

DCN-thr
Eli-Mono-Weight

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F10

DCN-thr
Eli-Mono-Weight

 0

 50

 100

 150

 200

 250

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

Th

Median of the Fitness - F11

DCN-thr
Eli-Mono-Weight

Figure 5.15: Median of the fitness considering different multiobjectivisations (F7 -
F11)

137

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.22: Factor of additional evaluations performed with each th in comparison
to eli-mono-weight (F1 - F6)

F1 F2 F3 F4 F5 F6

th = 0 0.70 0.96 1.25 1.08 0.75 0.85

th = 0.1 1.03 0.96 0.76 1.20 1.56 0.78

th = 0.2 1.23 1.03 0.82 1.28 1.66 1.11

th = 0.3 1.28 1.10 0.95 1.33 1.81 1.29

th = 0.4 1.47 1.13 0.95 1.44 2.14 1.47

th = 0.5 1.60 1.10 1.06 1.44 2.17 1.60

th = 0.6 1.74 1.08 1.01 1.48 2.37 1.67

th = 0.7 1.83 1.07 1.15 1.61 2.79 1.89

th = 0.8 2.11 1.03 1.20 1.71 2.60 2.13

th = 0.9 2.33 1.01 1.53 2.04 3.01 2.50

th = 1 4.71 0.80 3.12 2.80 6.25 5.20

Table 5.23: Factor of additional evaluations performed with each th in comparison
to eli-mono-weight (F7 - F11)

F7 F8 F9 F10 F11

th = 0 1.47 1.00 1.45 0.84 1.41

th = 0.1 0.70 1.02 1.45 1.31 1.41

th = 0.2 1.00 1.05 1.43 1.36 1.42

th = 0.3 1.29 1.05 1.42 1.44 1.40

th = 0.4 1.54 1.04 1.38 1.63 1.34

th = 0.5 1.76 1.06 1.30 1.71 1.25

th = 0.6 1.91 1.10 1.16 1.75 1.18

th = 0.7 2.27 1.06 0.96 2.06 0.94

th = 0.8 2.60 1.13 0.86 2.25 0.84

th = 0.9 3.37 1.24 1.07 2.95 1.05

th = 1 8.92 3.33 4.03 5.10 3.96

Table 5.24: Median of the fitness with a population with 100 individuals (F1 - F6)
F1 F2 F3 F4 F5 F6

th = 0 -445.91 -418.09 4089.29 -314.62 -179.58 -139.76
eli-mono-weight -449.62 -421.70 3460.63 -329.62 -179.96 -139.96

138

5.2. Multi-objective Benchmark Problems

Table 5.25: Median of the fitness with a population with 100 individuals (F1 - F6)
F7 F8 F9 F10 F11

th = 0 0.61 2.096e11 325.27 3.02 333.62
eli-mono-weight 0.11 2.025e11 295.30 0.13 292.28

considering a population with 100 individuals. The NSGA-II with dcn-thr, th = 0
and N = 100 was also executed. Tables 5.24 and 5.25 show the median obtained by
eli-mono weight and by the model with th = 0 in 2.500.000 function evaluations.
In every problem the median obtained by the adaptive scheme is better. Moreover,
the statistical tests confirm the superiority of eli-mono weight for every problem,
except for f8.

5.2 Multi-objective Benchmark Problems

5.2.1 Problems Description

Testing multi-objective algorithms in a systematic way is very important, so there
have been several attempts to define test suites or toolkits for building test suites.
An extensive review of a large amount of multi-objective test problems was pre-
sented in [130]. The authors detected several drawbacks that affected some of the
most-known benchmarks problems. Considering it, they proposed a new toolkit
for creating multi-objective optimisation problems that has become very popular.
Among the problems proposed in the literature, some of the most popular ones are
the following:

• zdt problems [255]: It is a well known suite of six test problems created by
Zitzler et al. The test problems consist of two optimisation objectives. Five
of the problems are real-valued problems, while zdt5 is a binary encoded one.
One of the main drawbacks is that the first objective function only depends
on one parameter. In addition, none of the problems are non-separable.

• dtlz problems [79]: It is a suite of benchmark problems created by Deb
et al. The defined problems are scalable to any number of objectives. The
suite consists of seven non-constrained problems, and two problems with side
constraints. One of the main drawbacks is that none of the problems are
deceptive, and none of the problems are non-separable.

139

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.26: Main features of wfg problems
Problem Obj. Separability Modality Bias Geometry
wfg1 f1:M S U polynomial, convex,

flat mixed

wfg2 f1:M−1 NS U - convex,
fM NS M disconnected

wfg3 f1:M NS U - linear,
degenerate

wfg4 f1:M S M - concave

wfg5 f1:M S D - concave

wfg6 f1:M NS U - concave

wfg7 f1:M S U parameter dep. concave

wfg8 f1:M NS U parameter dep. concave

wfg9 f1:M NS D parameter dep. concave

• Van Veldhuizen’s Test Suite [239]: It is a group of problems defined by different
authors that were extensively used prior to the publications of the zdt and
dtlz problems. Among the problems, there are seven without constraints.
The main drawbacks of the problems are that they are not scalable, and that
they have few parameters. In addition, none of the problems are deceptive.

• wfg toolkit [130]: It is a toolkit proposed by Huband et al. for constructing
well designed multi-objective test problems. Such a toolkit was used to create
nine scalable test problems, known as wfg1 - wfg9, which are nowadays very
popular.

Huband et al. analysed the different features of the optimisation problems that may
affect the behaviour of multi-objective solvers. Most of the analysed features are
similar than the ones studied in mono-objective optimisation: modality, deception
and separability. In addition, other features were identified:

140

5.2. Multi-objective Benchmark Problems

• Pareto front geometry: Usually, practitioners distinguish between convex and
concave Pareto geometries. In addition, the continuity of the Pareto front
is usually analysed. Finally, the Pareto front is said to be degenerate if its
dimension is lower than the objective space in which it is embedded less one.

• Bias: A multi-objective problem has bias if the density variation in the space
of the objectives is low, when an even spread of solutions in the space of the
variables is considered.

Table 5.26 summarises the main features of wfg problems. The properties regard-
ing separability (separable or non-separable), modality (unimodal, multimodal or
deceptive), bias, and geometry of the Pareto Front are presented. It can be ob-
served that they cover several different characteristics. For this reason, the wfg
problems have been selected to test the performance of the defined hyperheuristic.
Both the sequential and parallel version has been analysed.

5.2.2 Experimental Evaluation

In this section the experimental evaluation performed with the multi-objective hy-
perheuristic proposed in this research is presented. The optimisation schemes have
been implemented using METCO. Considering the description exposed in the pre-
vious section, the wfg1-wfg9 multi-objective benchmark problems have been used
to validate the proposal.
The main aim of the experimental evaluation has been to demonstrate that the
defined multi-objective hyperheuristic can automatically distribute the computa-
tional resources in an intelligent way among a set of low-level heuristics, and to
demonstrate that in some cases, the hyperheuristic might even outperform the best
low-level considered approaches. In addition, several experiments devoted to anal-
yse the behaviour of the parallel version of the hyperheuristic have been performed.
In this case, an analysis of the influence that the migration stage has over the per-
formance of the parallel approach has been carried out. In addition, the scalability
of the parallel proposal has been analysed. Since experiments have involved the use
of stochastic algorithms, each execution has been repeated 30 times.

First Experiment: Performance vs. Amount of Low-level Approaches

In order to execute the multi-objective hyperheuristic, a set of low-level approaches
(or configurations) must be defined. The performance of the proposal might depend
on the amount of low-level approaches that are considered. For this reason, the first
experiment has been devoted to analyse the performance of the hyperheuristic when

141

CHAPTER 5. Validation with Benchmark Optimisation Problems

different quantities of low-level configurations have been considered. Experiments
with up to 128 low-level configurations have been carried out. The low-level confi-
gurations have been based on using the NSGA-II approach with a fixed variation
stage. Specifically, the UM and the SBX operators have been used. A direct enco-
ding based on real-valued genes has been considered. In every case, the probability
of crossover has been fixed to 0.9, while the population size has been fixed to 100.
Finally, in order to define several low-level configurations, several values of pm have
been considered.

In order to better inspect the behaviour of the hyperheuristic, the results obtained by
the low-level approaches must be analysed. For this reason, the low-level approaches
were firstly independently executed. In such executions, the stopping criterion was
fixed to a total number of 1.000.000 function evaluations. Figure 5.16 and 5.17
show the median of the hypervolume obtained with different values of pm for each
of the considered benchmark problems. In every case the low values of pm are more
adequate. In fact, if the lowest values of pm are discarded (the ones lower than
1
D
, being D the number of variables) the functions are practically monotonically

decreasing.

In order to facilitate the analysis of the hyperheuristic, the probabilities considered
for the low-level configurations have been in the range [1

D
, 1]. Specifically, in order

to define a set of C low-level configurations, C values evenly distributed in the
specified range have been considered. In this way, it is very easy to check whether
the hyperheuristic is assigning the resources correctly or not. It is important to
remark that in some cases, the best values of pm might depend on the stage of the
optimisation process. In order to avoid inconsistencies in the analysis, comparisons
have taken into account both the quality obtained by the different models and the
way in which the resources have been granted.

Two adaptive schemes have been considered. The first one assigns the resources
using the multi-objective hyperheuristic hv weight. The local stopping criterion
has been fixed to 5.000 evaluations, i.e. each 5.000 evaluations the hyperheuristic
selects which low-level configuration must keep executing. In order to decide the
values of the parameters of the hyperheuristic some preliminary executions were
performed. The value of β has been fixed in a way that the 10% of the decisions
performed by the hyperheuristic follows a uniform distribution, i.e., β ∗ nh = 0.1.
The value of k has been fixed to ∞. The second scheme (random) has been based
on assigning the resources randomly. As in the first scheme, the decisions are taken
each 5.000 evaluations. In both cases, the global stopping criterion has been fixed
to a total number of 1.000.000 function evaluations. Figures 5.18 and 5.19 show,
for each benchmark problem, the median of the hypervolume achieved at the end of
the executions. Results are shown both for the hv weight and random selection

142

5.2. Multi-objective Benchmark Problems

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
yp

er
vo

lu
m

e

Pm

Median of the Hypervolume - WFG1

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
yp

er
vo

lu
m

e

Pm

Median of the Hypervolume - WFG2

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
yp

er
vo

lu
m

e

Pm

Median of the Hypervolume - WFG3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
yp

er
vo

lu
m

e

Pm

Median of the Hypervolume - WFG4

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
yp

er
vo

lu
m

e

Pm

Median of the Hypervolume - WFG5

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
yp

er
vo

lu
m

e

Pm

Median of the Hypervolume - WFG6

Figure 5.16: Median of the hypervolume considering different mutation probabilities
(WFG1 - WFG6)

143

CHAPTER 5. Validation with Benchmark Optimisation Problems

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
yp

er
vo

lu
m

e

Pm

Median of the Hypervolume - WFG7

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
yp

er
vo

lu
m

e

Pm

Median of the Hypervolume - WFG8

 0.335

 0.34

 0.345

 0.35

 0.355

 0.36

 0.365

 0.37

 0.375

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
yp

er
vo

lu
m

e

Pm

Median of the Hypervolume - WFG9

Figure 5.17: Median of the hypervolume considering different mutation probabilities
(WFG7 - WFG9)

methods. Tests with up to 128 low-level configurations have been carried out. It
can be noted that in most of the problems the advantages of using hv weight are
clear. Thus, assigning the resources using the designed methodology is preferable to
assigning them in a random way. In the case of the wfg9 problem the results are
not conclusive. wfg9 is highly deceptive and contains the hardest non-separable
components [130]. For this reason, the low-level approaches are not able to escape -
in most cases - from the local optima. Thus, independently of the way in which the
resources were shared among the low-level approaches, very low quality values were
obtained in some of the runs. In addition, it is important to remark that in most
of the cases the differences between the qualities achieved by the considered models
with 128 configurations are not as large as when fewer configurations have been
used. The reason is that when 128 configurations have been used, a total number
of 640.000 evaluations have been utilised to execute each low-level configuration one

144

5.2. Multi-objective Benchmark Problems

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 2 4 8 16 32 64 128

H
yp

er
vo

lu
m

e

Low-level configurations

Median of the Hypervolume - WFG1

HV_Weight

Random

 0.672

 0.674

 0.676

 0.678

 0.68

 0.682

 0.684

 0.686

 2 4 8 16 32 64 128

H
yp

er
vo

lu
m

e

Low-level configurations

Median of the Hypervolume - WFG2

HV_Weight

Random

 0.626

 0.628

 0.63

 0.632

 0.634

 0.636

 0.638

 2 4 8 16 32 64 128

H
yp

er
vo

lu
m

e

Low-level configurations

Median of the Hypervolume - WFG3

HV_Weight

Random

 0.426

 0.428

 0.43

 0.432

 0.434

 0.436

 0.438

 2 4 8 16 32 64 128

H
yp

er
vo

lu
m

e

Low-level configurations

Median of the Hypervolume - WFG4

HV_Weight

Random

 0.3985

 0.399

 0.3995

 0.4

 0.4005

 0.401

 0.4015

 0.402

 0.4025

 0.403

 2 4 8 16 32 64 128

H
yp

er
vo

lu
m

e

Low-level configurations

Median of the Hypervolume - WFG5

HV_Weight

Random

 0.406

 0.408

 0.41

 0.412

 0.414

 0.416

 0.418

 0.42

 0.422

 2 4 8 16 32 64 128

H
yp

er
vo

lu
m

e

Low-level configurations

Median of the Hypervolume - WFG6

HV_Weight

Random

Figure 5.18: Median of the hypervolume considering different number of configura-
tions (WFG1 - WFG6)

145

CHAPTER 5. Validation with Benchmark Optimisation Problems

 0.432

 0.433

 0.434

 0.435

 0.436

 0.437

 0.438

 0.439

 0.44

 2 4 8 16 32 64 128

H
yp

er
vo

lu
m

e

Low-level configurations

Median of the Hypervolume - WFG7

HV_Weight

Random

 0.362

 0.364

 0.366

 0.368

 0.37

 0.372

 0.374

 2 4 8 16 32 64 128

H
yp

er
vo

lu
m

e

Low-level configurations

Median of the Hypervolume - WFG8

HV_Weight

Random

 0.3701

 0.3702

 0.3703

 0.3704

 0.3705

 0.3706

 0.3707

 0.3708

 0.3709

 2 4 8 16 32 64 128

H
yp

er
vo

lu
m

e

Low-level configurations

Median of the Hypervolume - WFG9

HV_Weight

Random

Figure 5.19: Median of the hypervolume considering different number of configura-
tions (WFG7 - WFG9)

time. Thus, a lot of evaluations are used in the initial stage where every low-level
approach is executed. Anyway, even in such a case, the hv weight model has
obtained higher hypervolume values than the random approach.

It can also be observed that as more configurations are added, the hypervolume
tends to decrease. As more configurations are added, the initial stage in which each
configuration is tested is larger. Thus, more resources are granted to non-optimal
configurations. In addition, due to the way in which the low-level configurations
have been defined, in every scheme there is at least one adequate low-level approach.
Therefore, the obtained quality decreases as more configurations are added. It is
important to remark that this might not happen in every case. For instance, a
model with few configurations in which none of them are adequate, will behave
worse than a model with many configurations, in which some of them are suitable
for the problem. For this reason, the addition of alternative configurations might

146

5.2. Multi-objective Benchmark Problems

Table 5.27: Statistical comparison between hv weight and random (WFG1 -
WFG5)

WFG1 WFG2 WFG3 WFG4 WFG5
2 conf. ↑ ↑ ↑ ↑ ↑
4 conf. ↑ ↑ ↑ ↑ ↑
8 conf. ↑ ↑ ↑ ↑ ↑
16 conf. ↑ ↑ ↑ ↑ ↑
32 conf. ↑ ↑ ↑ ↑ ↑
64 conf. ↑ ↑ ↑ ↑ ↑
128 conf. ↑ ↑ ↑ ↑ ↑

Table 5.28: Statistical comparison between hv weight and random (WFG6 -
WFG9)

WFG6 WFG7 WFG8 WFG9
2 conf. ↑ ↔ ↔ ↔
4 conf. ↑ ↑ ↑ ↔
8 conf. ↑ ↑ ↑ ↔
16 conf. ↑ ↑ ↑ ↑
32 conf. ↑ ↑ ↑ ↔
64 conf. ↑ ↑ ↑ ↔
128 conf. ↑ ↑ ↑ ↑

increase or decrease the quality of the obtained results.

Tables 5.27 and 5.28 show the results of the statistical comparisons between the mo-
dels hv weight and random at the end of the executions. For each problem and
amount of low-level configurations, a ↑ is shown if the model hv weight obtains
higher hypervolume values than random with statistically significant differences.
In cases where the differences are not significant the symbol ↔ is used. No cases
were found in which the random method was significantly better than hv weight.
In most cases, the hv weight model is superior to random. wfg7-9 were the only
problems in which hv weight was not significantly superior to random in every
considered execution. In the case of wfg7 and wfg8 both approaches reached
similar solutions at the end of the executions when two low-level configurations
were considered. In fact, in both cases the obtained solutions were good approx-
imations of the Pareto Front, as it can be appreciated in their 50%-attaintment

147

CHAPTER 5. Validation with Benchmark Optimisation Problems

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5

S
ec

on
d

O
bj

ec
tiv

e

First Objective

50% Attainment Surface - WFG7

HV_Weight

Random

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5

S
ec

on
d

O
bj

ec
tiv

e

First Objective

50% Attainment Surface - WFG8

HV_Weight

Random

Figure 5.20: 50% Attainment Surfaces at 1.000.000 Evaluations (WFG7, WFG8)

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0 250000 500000 750000 1e+06

H
yp

er
vo

lu
m

e

Evaluations

Evolution of the Hypervolume - WFG7

HV_Weight

Random

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0 250000 500000 750000 1e+06

H
yp

er
vo

lu
m

e

Evaluations

Evolution of the Hypervolume - WFG8

HV_Weight

Random

Figure 5.21: Evolution of the median of the hypervolume (WFG7, WFG8)

surfaces (Figure 5.20). The evolution of the hypervolume for both cases is shown
in Figure 5.21. Although both approaches reached similar hypervolume values at
the end of the executions, the convergence to high hypervolume values is faster
when hv weight is used. Since there has been no case in which random has been
superior to hv weight, the advantages of using hv weight are clear.

The previous analysis has shown some of the advantages of hv weight. How-
ever, it is also important to quantify the improvement that has been achieved.
Tables 5.29 and 5.30 show the percentage of evaluations that can be saved by using
the hv weight model instead of the random approach. It has been calculated
using the evaluations required by each model to achieve a 50% of success ratio. The
desired quality hypervolume has been calculated in the following way. First, the

148

5.2. Multi-objective Benchmark Problems

Table 5.29: Percentage of saved evaluations with hv-weight (WFG1 - WFG5)
WFG1 WFG2 WFG3 WFG4 WFG5

2 conf. 54.54% 36.35% 46.51% 46.39 % 45.00%
4 conf. 67.67% 63.00% 58.76% 72.00 % 59.37%
8 conf. 73.74% 66.67% 71.72% 74.48 % 77.01%
16 conf. 75.51% 68.69% 71.00% 72.00 % 68.60%
32 conf. 70.00% 66.67% 71.00% 69.70 % 69.47%
64 conf. 55.00% 57.00% 57.00% 57.44 % 56.99%
128 conf. 30.00% 27.83% 25.51% 22.82 % 25.00%

Table 5.30: Percentage of saved evaluations with hv-weight (WFG6 - WFG9)
WFG6 WFG7 WFG8 WFG9

2 conf. 72.22% 46.34 % 8.51% -6.38%
4 conf. 86.45% 66.67 % 64.28% 45.83%
8 conf. 63.95% 66.67 % 76.59% 66.66%
16 conf. 75.55% 72.16 % 74.48% 56.86%
32 conf. 75.00% 70.10 % 68.36% 50.98%
64 conf. 58.00% 54.54 % 58.58% 27.08%
128 conf. 17.39% 26.53 % 29.29% 20.51%

median of the hypervolume obtained by using the hv weight and random mo-
dels at the end of the executions have been calculated. The lowest value has been
considered as the desired quality level. This ensures that both models attain the
desired quality level. The saved percentages show that by using the hv weight
approach, a large amount of resources can be saved. In fact, in some cases, more
than 80% of resources can be saved. When many configurations have been used,
the saved evaluations have not been so large. The reasons are that in such cases the
initial stage where each configuration is executed once is larger. In the case of wfg9
it has appeared a case where the random model converges faster than hv weight.
The reasons have been previously explained.

The hv weight approach has obtained better results than the random scheme
in terms of the hypervolume of the obtained solutions. This indicates that more
resources are given to the most suitable low-level approaches in every case. For the
case that considers 16 configurations, the sharing of resources has been measured.
Figures 5.22 and 5.23 show the percentage of resources granted to each one of the

149

CHAPTER 5. Validation with Benchmark Optimisation Problems

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - WFG1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - WFG2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - WFG3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - WFG4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - WFG5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - WFG6

Figure 5.22: Resource sharing with 16 configurations (WFG1 - WFG6)

150

5.2. Multi-objective Benchmark Problems

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - WFG7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - WFG8

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

ou
rc

es
 (

%
)

Pm

Resources granted to each approach - WFG9

Figure 5.23: Resource sharing with 16 configurations (WFG7 - WFG9)

low-level configurations. It can be appreciated that a higher amount of resources
are granted to the low-disruptive configurations in every case. This means that the
hyperheuristic is detecting which are the most suitable configurations, and more
resources are granted to them.

The increase on the generality of the hyperheuristics is usually achieved at the
expense of reduced solution quality when compared to the best low-level approaches.
For this reason, it is also important to quantify the relative performance with respect
to the best low-level configuration. In order to give a measure of the impact produced
by the hyperheuristics, the factors between the evaluations required to obtain a
50% of success ratio with the hv weight model and with the best sequential low-
level approach have been calculated. The desired quality level was fixed as in the
previous experiment. Tables 5.31 and 5.32 show such a value for each problem and
for the different number of considered configurations. It can be observed that, as

151

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.31: Factor of additional evaluations performed with hv-weight (WFG1 -
WFG5)

WFG1 WFG2 WFG3 WFG4 WFG5
2 conf. 0.89 0.80 0.68 0.76 0.79
4 conf. 1.20 0.84 0.78 0.91 0.94
8 conf. 1.34 0.98 1.36 1.10 0.97
16 conf. 1.72 1.38 1.34 1.42 1.02
32 conf. 2.06 1.61 1.47 1.50 1.23
64 conf. 3.12 1.98 2.50 2.27 1.15
128 conf. 5.50 3.44 3.66 4.26 1.79

Table 5.32: Factor of additional evaluations performed with hv-weight (WFG6 -
WFG9)

WFG6 WFG7 WFG8 WFG9
2 conf. 0.79 0.64 0.25 0.30
4 conf. 1.13 0.74 0.33 0.60
8 conf. 2.08 1.17 0.38 0.80
16 conf. 1.58 1.43 0.52 1.50
32 conf. 2.58 1.79 0.71 2.00
64 conf. 2.17 2.35 0.87 2.5
128 conf. 3.75 4.16 1.31 3.2

it was expected, in several problems the hyperheuristic requires a larger amount of
evaluations (ratios greater than 1) than the corresponding best low-level approach.
Moreover, the factors increase as more configurations are considered. However, in
every case the factor is much lower than the number of low-level configurations. Since
the testing of each low-level configuration can be avoided by using the hyperheuristic,
the overall computing and user effort saved is very large.

Second Experiment: Improving on the results obtained with the best

low-level approach

In the theoretical analysis, it was shown that in some cases, the hyperheuristics
might obtain better values than any of the involved low-level approaches. The pre-
vious experimental analysis shows that hv weight required fewer evaluations than
the best sequential approach in several cases, demonstrating that, in practice, it

152

5.2. Multi-objective Benchmark Problems

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0 250000 500000 750000 1e+06

H
yp

er
vo

lu
m

e

Evaluations

Median of the Hypervolume - WFG8

HV_Weight

Pm = 0.041667

0.
36

6
0.

36
8

0.
37

0
0.

37
2

0.
37

4

Boxplots at 1.000.000 evaluations − WFG8

H
yp

er
vo

lu
m

e

HV_Weight Pm = 0.04667

Figure 5.24: Hypervolume for WFG8 with different configurations

also happens. The most outstanding case occurs with wfg8. In such a case the
hyperheuristic has been better than the best low-level approach, except in the case
of 128 configurations. Moreover, in the case with two low-level configurations the
number of evaluations required by the hyperheuristic has been much lower than the
evaluations required by the best low-level approach. Figure 5.24 shows the evo-
lution of the median of the hypervolume for the best low-level approach, and for
hv weight with two low-level configurations. The boxplots at the end of the exe-
cutions are also shown. It can be appreciated that the hyperheuristic attains much
better values. Therefore, the synergy of combining a low-disruptive configuration
with a high-disruptive configuration is clear. In addition, the statistical tests con-
firm the superiority of the hyperheuristic. In fact, the boxplots show that at the
end of the executions, every run of the hv weight obtained fronts with higher
hypervolume values than the ones obtained with the best low-level approach.

Third Experiment: Adaptation level

Previous analysis has shown the advantages of using hv weight with a global
adaptation level, i.e. with the parameterisation k =∞. It is interesting to analyse
the robustness of the approach with respect to the value of k. In order to check
it, the model hv weight was executed with the wfg tests, but considering the
parameterisations k = {1, 5, 10, 100, 1000,∞}. In every case, 32 low-level configu-
rations were considered. They were made up as in the previous experiments. The
remaining parameters were also the same than in the previous experiments. The

153

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.33: Median of the hypervolume for different values of k (WFG1 - WFG5)
WFG1 WFG2 WFG3 WFG4 WFG5

k = 1 0.3815 0.6816 0.6316 0.4323 0.4002
k = 5 0.4123 0.6836 0.6364 0.4361 0.4009
k = 10 0.3900 0.6834 0.6363 0.4359 0.4013
k = 100 0.3964 0.6826 0.6359 0.4356 0.4011
k = 1000 0.3918 0.6820 0.6358 0.4353 0.4012
k =∞ 0.4001 0.6824 0.6360 0.4359 0.4013
Random 0.2931 0.6738 0.6271 0.4287 0.3994

Table 5.34: Median of the hypervolume for different values of k (WFG6 - WFG9)
WFG6 WFG7 WFG8 WFG9

k = 1 0.4180 0.4360 0.3692 0.3702
k = 5 0.4162 0.4380 0.3704 0.3705
k = 10 0.4193 0.4382 0.3704 0.3706
k = 100 0.4200 0.4380 0.3715 0.3706
k = 1000 0.4206 0.4378 0.3712 0.3705
k =∞ 0.4176 0.4381 0.3716 0.3706
Random 0.4067 0.4325 0.3635 0.3702

median of the hypervolume obtained at the end of the executions are shown in Ta-
bles 5.33, and 5.34. Independently of the parameterisation, the model hv weight
has reported better results than an assignment based on the random approach. It
is also clear that the parameterisation k = 1 is not adequate. It can be observed
than in most of the cases such a value reports worse solutions than the rest of the
parameterisations. The cause is that, when k = 1 is used, the stochastic behaviour
of the low-level configurations provokes fails in the way of assigning the resources.
In the cases where different configurations are best suited for different stages of the
optimisation, the models that use intermediate values have the ability of detecting
it faster than the models that use a global adaptation level. However, in some cases
the stochastic behaviour might produce some drawbacks. Thus, in some cases the
global adaptation level is the best one, while in other cases intermediate values are
better.

The scheme with a global adaptation level was statistically compared with the re-
maining ones. Tables 5.35 and 5.36 show the results of the comparison. In each

154

5.2. Multi-objective Benchmark Problems

Table 5.35: Statistical comparison between k = ∞ and other values of k (WFG1 -
WFG5)

WFG1 WFG2 WFG3 WFG4 WFG5
k = 1 ↔ ↑ ↑ ↑ ↑
k = 5 ↓ ↓ ↔ ↔ ↑
k = 10 ↔ ↓ ↔ ↔ ↔
k = 100 ↔ ↔ ↔ ↔ ↔
K = 1000 ↔ ↔ ↔ ↑ ↔

Table 5.36: Statistical comparison between k = ∞ and other values of k (WFG6 -
WFG9)

WFG6 WFG7 WFG8 WFG9
k = 1 ↔ ↑ ↑ ↑
k = 5 ↔ ↔ ↑ ↔
k = 10 ↓ ↔ ↑ ↔
k = 100 ↓ ↔ ↔ ↔
k = 1000 ↔ ↑ ↔ ↔

Table 5.37: Factor of additional evaluations performed with each k respect to k =∞
(WFG1 - WFG5)

WFG1 WFG2 WFG3 WFG4 WFG5
k = 1 1.16 1.35 2.23 2.06 1.89
k = 5 0.88 0.78 0.88 0.89 1.02
k = 10 1.08 0.82 0.97 1.02 0.91
k = 100 1.03 0.94 1.06 1.04 0.93
k = 1000 1.03 1.17 1.06 1.19 0.90

cell a ↑ is shown if the model with a global adaptation level is better than a model
with the corresponding value of k (shown in the first column). The statistical tests
confirms that the value k = 1 is not adequate. The remaining values have been in
some cases better than the model with k =∞, while in other cases they have been
statistically worse.

Finally, it is important to quantify the differences among them. The factors bet-
ween the evaluations required to obtain a 50% of success ratio with hv weight

155

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.38: Factor of additional evaluations performed with each k respect to k =∞
(WFG6 - WFG9)

WFG6 WFG7 WFG8 WFG9
k = 1 0.81 2.00 1.67 1.08
k = 5 1.09 1.05 1.40 1.00
k = 10 0.68 0.96 1.32 0.82
k = 100 0.58 1.06 1.00 0.76
k = 1000 0.54 1.17 1.08 1.18

considering different values of k, and with the hv weight considering k =∞ have
been calculated. Thus, a value greater than 1 means that the model with global
adaptation level converged faster than a model with the corresponding value of k.
The factors are shown in tables 5.37 and 5.38. In general the values are not very
large nor very small. This means that the model is robust with respect to the value
of k. The exception is the case with k = 1, where some large values have been
found. The reasons of the inadequate performance of such a parameterisation have
been previously described.

Fourth Experiment: Probabilistic vs. Elitist Selection

It is also interesting to compare the previous approach, with the eli-hv weight
scheme. eli-hv weight was executed with the different values of k considered
in the previous experiments and with different amount of low-level configurations.
In the case of using few low-level configurations (less than 16), differences among
the approaches were not significant. The resources were assigned in very similar
ways. However, when a higher amount of low-level configurations were used, some
statistically significant differences appeared. Generally, eli-hv weight obtained
better values than hv weight. The reason is that hv weight tends to distribute
the resources among more configurations, while eli-hv weight tends to focus on
few configurations. This can be appreciated in Figure 5.25. It shows the number
of evaluations executed by the configuration that was granted with the maximum
amount of resources. It can be appreciated that the number of evaluations executed
in the case of the eli-hv weight model is generally higher. In some cases, such
type of assignment clearly provides advantages. For instance, in the wfg1 pro-
blem eli-hv weight model obtains higher hypervolume values than hv weight
and the differences are statistically significant. However, in other cases, the hyper-
heuristic is confounded and assigns a high number of resources among non-suitable

156

5.2. Multi-objective Benchmark Problems

1e
+

05
2e

+
05

3e
+

05
4e

+
05

5e
+

05

Boxplots of Granted Resources − F11

G
ra

nt
ed

 E
va

lu
at

io
ns

Eli−Mono_Weight Mono_Weight

Figure 5.25: Boxplots of the resources granted to the configuration that executed
more evaluations

configurations. This happens in some executions with wfg6. In such cases, the eli-
hv weight assigns a higher amount of resources to non-suitable configurations. In
fact, with wfg6 and k = 10, the hv weight obtains higher hypervolume values
than eli-hv weight and the differences are statistically significant. By exploring
each execution performed with eli-hv weight it could be checked that in some
executions the resources had been granted to non-adequate low-level approaches.

Fifth Experiment: Performance of the parallel hyperheuristic

This section is devoted to present the experiments that have been performed with the
aim of validating the adequate performance of the parallel version of the approach.
Specifically, a hyperheuristic that considered 16 configurations - the same as in the
previous study - was executed in parallel. The same parameterisation as in the case
of the first sequential experiment was used. Specifically, the value of k was fixed to
∞, and the value of β was fixed in a way that the 10% of the decisions performed
by the hyperheuristic followed a uniform distribution, i.e., β ∗ nh = 0.1. Finally,
the local stopping criterion was fixed to 5.000 function evaluations and the global
stopping criterion to 1.000.000 function evaluations. Thus, the only change was the
specification of the number of processors to use.
Since it is known that the migration stage highly affects the performance of island-

157

CHAPTER 5. Validation with Benchmark Optimisation Problems

Table 5.39: Speedup of the parallel approach (4 islands) with hv-weight and
different migration stages (WFG1 - WFG5)

WFG1 WFG2 WFG3 WFG4 WFG5
random-nsga-ii crowd-all all 3.12 3.63 4.73 4.76 5.17
eli rand-nsga-ii crowd-all all 4.00 3.26 3.06 3.50 7.04
random-eli100-all all 2.20 3.24 4.18 2.44 2.62
eli rand-eli100-all all 2.16 3.04 3.91 2.26 2.04
random-random-all all 2.4 3.30 3.16 2.95 3.91
eli rand-random-all all 2.44 3.20 3.12 2.97 3.06
random-nsga-ii crowd-ring 2.52 3.18 3.34 3.34 4.00
eli rand-nsga-ii crowd-ring 3.36 2.81 3.10 3.50 6.06
random-eli100-ring 1.80 3.20 3.04 2.44 2.71
eli rand-eli100-ring 2.25 3.28 3.16 2.59 2.74
random-random-ring 2.65 3.20 3.54 2.77 4.09
eli rand-random-ring 2.76 3.04 3.10 3.11 3.04

based models, the aim of the first analysis has been to measure the impact that
the migration stage has over the performance. The hyperheuristic was executed
with 4 processors (np) considering several types of migration stages. Specifically,
12 different migrations stages were considered. They were made up by combining
two migration selectors, three exchange selectors and two topologies. The migration
selectors were the random, and the eli rand. The considered exchange selec-
tors were the random, the eli100, and the nsga-ii crowd. Finally, the tested
topologies were the all and the ring. In order to identify the different migration
stages the following nomenclature has been used: Migration Scheme-Replacement
Scheme-Topology. For example, the migration stage which uses the elitist random
migration selector, with the elitist 100% ranking exchange scheme, and considers a
ring topology is named as eli rand-eli100-ring.

In order to measure the performance of the parallel approach, the sequential version
of hv weight that considered 16 configurations was used to perform the com-
parison. Tables 5.39 and 5.40 show the speedup factors obtained with the different
models for each one of thewfg problems. The factors have been calculated using the
evaluations required by each model to achieve a 50% of success ratio. The speedup
factors have been calculated as in the study performed for the mono-objective hy-
perheuristics. The calculated speedup factors reveal that the obtained performance

158

5.2. Multi-objective Benchmark Problems

Table 5.40: Speedup of the parallel approach (4 islands) with hv-weight and
different migration stages (WFG6 - WFG9)

WFG6 WFG7 WFG8 WFG9
random-nsga-ii crowd-all all 5.79 3.55 5.41 9.40
eli rand-nsga-ii crowd-all all 7.00 3.91 5.25 10.44
random-eli100-all all 4.09 2.26 2.81 2.50
eli rand-eli100-all all 4.94 2.04 3.39 2.50
random-random-all all 3.36 2.66 2.93 4.08
eli rand-random-all all 2.76 2.79 3.64 4.70
random-nsga-ii crowd-ring 3.87 3.25 3.68 6.26
eli rand-nsga-ii crowd-ring 3.34 3.82 6.34 9.40
random-eli100-ring 3.16 2.12 3.27 4.94
eli rand-eli100-ring 7.00 2.12 3.90 5.22
random-random-ring 4.54 2.69 3.31 4.47
eli rand-random-ring 2.85 2.79 2.97 3.27

highly depends on the migration stage. The most important components have been
the topology and the exchange selector, while the migration selector has not been so
important. The migration stages eli rand-nsga-ii crowd-all and rand-nsga-
ii crowd-all seem the most adequate ones. They have obtained good speedup
factors in every addressed problem.

A second experiment with the aim of analysing the scalability of the approach has
been performed. The same model as in the previous experiment was executed with
up to 32 processors. The two best migration stages of the previous experiment were
considered. Figures 5.26 and 5.27 show the speedup factors of the approach with the
different optimisation problems. It can be observed that in several cases superlinear
speedups have appeared. However, in other cases the obtained factors have been
much lower. Anyway, in any of the cases as more processors have been added,
the speedup factors have increased. The most outstanding case with 32 processors
appeared with wfg6. In such a case the speedup factor was 33.6. The problem
that produced the worst case with 32 processors was wfg1. The obtained speedup
factor was 11.71.

159

CHAPTER 5. Validation with Benchmark Optimisation Problems

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32

S
pe

ed
up

Processors

Scalability of HV_Weight - WFG1

Eli_Rand-NSGAII_Crowd-All-All

Random-NSGAII_Crowd-All-All

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32

S
pe

ed
up

Processors

Scalability of HV_Weight - WFG2

Eli_Rand-NSGAII_Crowd-All-All

Random-NSGAII_Crowd-All-All

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32

S
pe

ed
up

Processors

Scalability of HV_Weight - WFG3

Eli_Rand-NSGAII_Crowd-All-All

Random-NSGAII_Crowd-All-All

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32

S
pe

ed
up

Processors

Scalability of HV_Weight - WFG4

Eli_Rand-NSGAII_Crowd-All-All

Random-NSGAII_Crowd-All-All

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 8 16 32

S
pe

ed
up

Processors

Scalability of HV_Weight - WFG5

Eli_Rand-NSGAII_Crowd-All-All

Random-NSGAII_Crowd-All-All

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 8 16 32

S
pe

ed
up

Processors

Scalability of HV_Weight - WFG6

Eli_Rand-NSGAII_Crowd-All-All

Random-NSGAII_Crowd-All-All

Figure 5.26: Scalability analysis for different migration stages (WFG1 - WFG6)

160

5.2. Multi-objective Benchmark Problems

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32

S
pe

ed
up

Processors

Scalability of HV_Weight - WFG7

Eli_Rand-NSGAII_Crowd-All-All

Random-NSGAII_Crowd-All-All

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32

S
pe

ed
up

Processors

Scalability of HV_Weight - WFG8

Eli_Rand-NSGAII_Crowd-All-All

Random-NSGAII_Crowd-All-All

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 8 16 32

S
pe

ed
up

Processors

Scalability of HV_Weight - WFG9

Eli_Rand-NSGAII_Crowd-All-All

Random-NSGAII_Crowd-All-All

Figure 5.27: Scalability analysis for different migration stages (WFG7 - WFG9)

Final Remarks

Additional experiments with other low-level configurations have been carried out.
Specifically, several experiments with the algorithms SPEA2 and IBEA have been
performed. Additionally, alternative crossover and mutation operators have been
used. Specifically, the polynomial mutation, and the uniform crossover have been
considered. Such experiments have confirmed the adequate performance of the hy-
perheuristic. The obtained results differ in quality and velocity of convergence.
However, regarding the usage of the analysed hyperheuristic, similar conclusions
than the ones obtained with the previous analysis can be drawn.

161

Part III

Practical Applications

Chapter

6

Communication Optimisation Problems

This chapter is devoted to present a set of problem-dependent techniques for several
optimisation problems that arise in the telecommunication field. Such techniques
have been merged with the problem-independent schemes previously presented. Two
of the problems arise in the design of wireless networks. The last addressed pro-
blem deals with the design of an optimal broadcasting strategy for Mobile Ad-Hoc
Networks.

6.1 Antenna Positioning Problem

6.1.1 General Problem Description

Engineering of wireless telecommunication networks evolves two major optimisation
problems [178]: the Antenna Positioning Problem (APP) and the Frequency As-
signment Problem (FAP). This section focuses on the APP. The aim of APP is
to position a set of base stations (BS) or antennas on potential sites, in order to
fulfil some objectives and constraints. Several objectives can be considered when
designing a network. Most typical considered objectives are: minimise the number
of antennas, maximise the amount of traffic held by the network, maximise the qua-
lity of service, and/or maximise the covered area. The APP has been analysed by
many researchers and it has been shown to be an NP-Complete optimisation pro-
blem [109]. APP plays a major role in various engineering, industrial, and scientific
applications because its outcome usually affects cost, profit, and other heavy-impact
business performance metrics. Therefore, the quality of the applied approaches has
a direct bearing on industry economic plans.

Several mathematical formulations of the APP have been proposed [6, 232]. In

CHAPTER 6. Communication Optimisation Problems

some cases, the models are based on using a network simulator that incorporates a
wave propagation model to estimate the performance of a given solution. Among
others, the free space, the Hokumara-Hata and the Walfish-Ikegami models can be
used [214]. In other cases, the canonical APP is used [246]. The main benefit of
the canonical version is that the formulation is independent of the used techno-
logy. Therefore, new instances can be tackled with little effort. The technological
constraints would raise the combinatorial complexity of the problem. However, the
problem’s essence remains untouched. Thus, using such a formulation is an inex-
pensive way of comparing different algorithms for the APP.

6.1.2 Mathematical Formulation

APP is defined as the problem of identifying the infrastructures required to establish
a wireless network. The APP mathematical formulation used in this research was
proposed in [246]. Such a formulation comprises the maximisation of the coverage
of a given geographical area while minimising the amount of base stations deployed.
Thus, it is an intrinsically multi-objective problem. A BS is a radio signal transmit-
ting device that irradiates any type of wave model. The region of the area covered
by a BS is called a cell. In our definition of APP, BSs can only be located in a set of
potential locations. The formulation considers two objectives: the maximisation of
the coverage (Coverage), and the minimisation of the BSs or transmitters deployed
(Transmitters). In [6, 246] the problem is simplified by defining a fitness function
that converts the problem into a mono-objective one.
The geographical area G on which a network is deployed is discretised into a finite
number of points or locations. Tamx and Tamy are the number of vertical and
horizontal subdivisions, respectively. They are selected by communications experts,
depending on several characteristics of the region and transmitters. U is the set of
locations where BSs can be deployed: U = {(x1, y1), (x2, y2), ..., (xn, yn)}. Location i
is referred to using the notation U [i]. The x and y coordinates of location i are named
U [i]x and U [i]y, respectively. If a BS is located in position i, its corresponding cell is
covered. The cell is named C[i]. In our definition we use the canonical APP formu-
lation, i.e. an isotropic radiating model is considered for the cell. The set P deter-
mines the locations covered by a BS: P = {(∆x1,∆y1), (∆x2,∆y2), ..., (∆xm,∆ym)}.
Thus, if BS i is deployed, the covered locations are given by the next set: C[i] =
{(U [i]x+∆x1, U [i]y+∆y1), (U [i]x+∆x2, U [i]y+∆y2), ..., (U [i]x+∆xm, U [i]y+∆ym)}.
Being B = [b0, b1, ..., bn] the binary vector that determines the deployed BSs, the
next two objectives are defined:
f1 =

∑n
i=0 bi

f2 =
∑tamx

i=0

∑tamy

j=0 covered(i, j)

166

6.1. Antenna Positioning Problem

where:

covered(x, y) =

{

1 If ∃ i/{(bi = 1) ∧ ((x, y) ∈ C[i])}
0 Otherwise

(6.1)

Objective f1 (Transmitters) is the number of deployed BSs, so it must be minimised.
Objective f2 (Coverage) is a measure of the covered area, so it must be maximised.

In the cases where the problems is converted to a mono-objective optimisation pro-
blem, the following fitness function must be maximised:

f(solution) =
Coverageα

Transmitters
(6.2)

In the previous scheme a decision maker must select a value for α. It is tuned
considering the importance given to the coverage, in relation to the number of
deployed BSs.

6.1.3 Proposed Optimisation Schemes

Mono-objective Metaheuristics

First, a set of mono-objective metaheuristics were designed and tested with a real-
world sized instance. A large effort was done to adapt the metaheuristics to the
problem at hand, creating new operators and several hybrid schemes. The analysis
was done in collaboration with researchers of several universities. Thirteen meta-
heuristics were tested. They were: SA, CHC, ILS, PBIL, DE, GRASP, VNS, and
several hybrid approaches. The main duty of my research group was to design and
implement a version of ILS. Thus, the details of such an implementation are given.
The basic behaviour of the rest of the approaches were given in Chapter 2. The
details for such algorithms can be found in [176].

The general pseudocode of ILS has been previously presented. The parts which are
specific for the APP are the following:

• A method for generating initial solutions.

• A method for perturbing the solutions.

• The neighbourhood definition.

167

CHAPTER 6. Communication Optimisation Problems

In order to generate the initial solutions the following steps are executed. First, the
grid is divided into a set of sub-grids or windows. All windows have size N × N ,
where N is randomly selected between the values in the range [(R − 9) × 2, R ∗ 2].
R represents the antennas coverage radius. The centre of each window is calcu-
lated and each coordinate is shifted considering random values in the range [−5, 5].
The antenna which is nearest to each calculated position is inserted in the current
solution.

The designed perturbation mechanism selects a set of deployed transmitters to be
removed from the solution and a set of locations in which to include an extra antenna.
For perturbing a solution, the number of antennas to be deleted and inserted are
determined by a random value that follows a normal distribution of mean m ∗
strength and standard deviation sd. The BSs to be discarded from the solution and
the ones to be included are randomly selected from the set of available locations.
Once such modifications have been introduced into the solution, a final correction is
performed. For each base station location, the fitness of the solution including the
transmitter (if it is not used in the current solution) or excluding the transmitter (if it
is used in the current solution) is checked and the best choice is selected for the final
solution. Moreover, iterated local search controls the strength of the perturbation.
Initially it is set to 1. If the best solution has not been improved in the last b search
iterations, the search strength is increased. Moreover, if after i increases the search
keeps trapped in a local optimum, the algorithm is restarted from a new generated
initial solution.

The intensification step is performed with a hill climbing local search. The neigh-
bourhood of a solution is defined as follows:

1. For each of the available locations that have not been used in the solution, a
neighbour that includes an antenna in the corresponding position is created.

2. For each of the available locations where a transmitter has been placed, a
neighbour that excludes such an antenna from the solution is created.

3. For each of the available locations where a transmitter has been placed, a
neighbour that replaces such a base station with the nearest one is created.

During the local search, the complete neighbourhood is generated. From the neigh-
bours obtained, the best one is selected. The process finishes when the local search
reaches a local maximum or when the steps are repeated a maximum number of ms
times. Finally, for the acceptance criterion of the ILS, the solution with greatest
fitness is always selected.

168

6.1. Antenna Positioning Problem

Figure 6.1: Creation of offspring with gc

Multi-objective Metaheuristics

One of the main drawbacks of the previous approaches is that the practitioner must
select a value for the α parameter of the fitness function. For this reason, additional
metaheuristics that deals with the multi-objective version of the problem have been
proposed. In addition, they were integrated with the hv weight hyperheuristic
and executed in a parallel environment. Results obtained with the mono-objective
approaches have been used to validate the correct behaviour of the multi-objective
schemes.

The metaheuristics tested for the multi-objective version of the APP have been
four MOEAs: NSGA-II, SPEA2, and IBEA (both the adaptive and non-adaptive
version). In order to apply the previous MOEAs, an encoding for the individuals
must be defined. Tentative solutions have been represented as binary strings with n
elements. Each gene determines whether the corresponding BS is deployed or not.

Also, a set of variation operators must be defined in order to employ such MOEAs.
The mutation operator was the Flip operator. Each gene is inverted with a proba-
bility pm. Two different crossover operators - one random, and one directed - were
tested. The crossover operators were the OPX, and a geographic crossover [232].
The geographic crossover (gc) is illustrated in Figure 6.1. First, a random location
is chosen. Then, the parents exchange the BSs that are located within a given radius
(r) around the selected location.

169

CHAPTER 6. Communication Optimisation Problems

Figure 6.2: Mean of the fitness obtained at the end of the executions

6.1.4 Experimental Evaluation

Mono-objective Metaheuristics

The experimental evaluation of the mono-objective metaheuristic was performed
with a real-world-sized problem instance, defined by the geographical layout of the
city of Malaga. Such an instance had been previously analysed by some communi-
cation experts [6], who had determined that the value α = 2 was adequate. This
instance represents an urban area of 27.2km2. The terrain has been modelled using
a 450 x 300 grid, where each point represents a surface of approximately 15 x 15 m.
A dataset containing 1.000 candidate sites for the BSs is used. The cell model for the
BSs coverage is an omnidirectional isotropic model, with a radius of approximately
one half kilometre (30 grid points).

Every experiment in this chapter has been run on a Debian GNU/Linux cluster of
8 HP nodes, each one consisting of two Intel(R) Xeon(TM) at 3.20GHz and 1Gb
RAM. The compiler and mpi implementation used were gcc 3.3 and mpich 1.2.7.
The interconnection network has been a Gigabit Ethernet.

For each metaheuristic some preliminary experiments were performed with the aim
of setting up the different parameters. In the case of ILS, it was executed considering
the following parameterisation: m = 3, sd = 1, ms = 100, b = 2500, i = 2. The
metaheuristics were executed considering a stopping criterion of 5.000.000 function
evaluations. Figure 6.2 shows the mean of the fitness obtained by the different tested
metaheuristics at the end of the executions. The obtained results demonstrate the
adequate performance of the ILS approach. In fact, ILS has obtained the second
best mean. In order to better inspect the obtained results, Figure 6.3 show the
evolution of the median of the fitness obtained by the best algorithms. The boxplots
obtained at the end of the executions are also shown. It can be observed that

170

6.1. Antenna Positioning Problem

ILS MS_GEPVNS

16
3.

6
16

4.
0

16
4.

4
16

4.
8

(a) Boxplots obtained in 5.000.000 function
evaluations

 159

 160

 161

 162

 163

 164

 165

 1e+06 2e+06 3e+06 4e+06
F

itn
es

s
Evaluations

MS_GEPVNS
ILS

(b) Evolution of the mean fitness

Figure 6.3: Fitness obtained by the best mono-objective approaches

ILS has been the algorithm that has obtained the best overall solution. The main
drawback of ms gepvns - the approach that obtained the highest mean - is that it
has reached in every case the same local optimum. The solution has a high fitness,
but independently of the invested time, the approach never escapes from such a
solution. In fact, it obtains such a solution in only 250.000 evaluations. However,
ILS has been able to improve on such a solution in several executions. Thus, in
order to obtain high-quality solution in few evaluations, the usage of ms gepvns is
preferred. However, if many resources are going to be used, the application of ILS
might provide better solutions.

Multi-objective metaheuristics

The experimental evaluation performed for the multi-objective metaheuristics has
considered the same instance than in the mono-objective case. In our first expe-
riment a comparison among the different MOEAs was carried out. The compa-
risons are based on the obtained hypervolume. Each MOEA was executed with
a stopping criterion of 2 hours. For each MOEA, 15 parameterisations were ana-
lysed. They were made up by combining the flip mutation operator with pm =
{0.001, 0.002, 0.004} and the OPX operator with pc = {0, 0.25, 0.5, 0.75, 1}. Ta-
ble 6.1 shows the number of column configurations which are worse (significant

171

CHAPTER 6. Communication Optimisation Problems

Configuration SPEA2 Adapt. IBEA IBEA NSGA-II

SPEA2 0 15 15 15
Adapt. IBEA 0 0 14 11

IBEA 0 0 0 10
NSGA-II 0 3 4 0

Table 6.1: Statistical comparison of MOEAs

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 20 40 60 80 100

C
o
v
e
r
a
g
e

Antennas

pm = 0.001
pm = 0.002
pm = 0.004

Figure 6.4: Attainment Surfaces with several pm values

differences) than the corresponding row configuration. For the analysed instance,
SPEA2 is clearly the best strategy in terms of the achieved hypervolume. Results
show that SPEA2 is better than any other algorithm, with any of the tested para-
meterisations.

The variation process in MOEAs is performed by combining mutation and crossover
operators. The probability of mutation is usually fixed as 1/n, being n the num-
ber of genes. The next experiment tests the robustness of the mutation operator.
Figure 6.4 shows the 50%-attainment surfaces for SPEA2 with the flip mutation
operator using pm = {0.001, 0.002, 0.004}, and pc = 0. We can note that changing
pm in the selected range do not produce a high effect in the achieved results.

On the other hand, according to [232], it is necessary to include problem-dependent
information in the crossover, in order to develop a non-destructive operator. Fig-
ure 6.5 shows the 50%-attainment surfaces for SPEA2, with pc = {0, 1}, and
pm = 0.001. It confirms that OPX is not providing any improvement in the achieved
results.

Next experiment tested the advantages of including problem-dependent information
in the crossover operator. Operator gc was applied with different crossover prob-
abilities, and compared with the OPX with pc = 1. Table 6.2 shows whether the

172

6.1. Antenna Positioning Problem

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 20 40 60 80 100

C
o
v
e
r
a
g
e

Antennas

pc = 1
pc = 0

Figure 6.5: Attainment Surfaces with several pc values

Configuration OPX, pc = 1 gc, pc = 0.25 gc, pc = 0.5 gc, pc = 0.75 gc, pc = 1

OPX, pc = 1 ↔ ↓ ↓ ↓ ↓
gc, pc = 0.25 ↑ ↔ ↔ ↓ ↓
gc, pc = 0.5 ↑ ↔ ↔ ↔ ↓
gc, pc = 0.75 ↑ ↑ ↔ ↔ ↔
gc, pc = 1 ↑ ↑ ↑ ↔ ↔

Table 6.2: Advantages of incorporating problem-dependent information

row configuration is statistically better (↑), not different (↔), or worse(↓), than the
corresponding column configuration. It shows the benefits of incorporating problem-
dependent information into the operator. Moreover, the best results have been
attained with high values of pc.

The gc uses a parameter which represents the radius (r) of the exchanged area.
It is interesting to test the behaviour of such an operator with different values
of r. SPEA2 was executed with gc fixing the next values for the radius: r =
{15, 30, 45, 60}. Table 6.3 shows the statistical comparison with the same meaning
as table 6.2. The best behaviour is obtained by using the parameterisation r = 30.
This makes sense because, since the antennas radius is also 30, the exchanged area
coincides with the area influenced by the randomly selected antenna.

Finally, Figure 6.6 compares the results obtained by multi-objective and mono-
objective approaches. It shows the 50%-attainment surface achieved with the best
tested configuration of SPEA2, as well as the best solution obtained by the best
known mono-objective strategy. On one hand, the multi-objective schemes are ob-
taining many solutions which are non-dominated by the best mono-objective solu-
tions (in average the 97% of the solutions are non-dominated). Thus, the schemes

173

CHAPTER 6. Communication Optimisation Problems

Configuration gc, r = 15 gc, r = 30 gc, r = 45 gc, r = 60

gc, r = 15 ↔ ↓ ↓ ↓
gc, r = 30 ↑ ↔ ↑ ↑
gc, r = 45 ↑ ↓ ↔ ↑
gc, r = 60 ↑ ↓ ↓ ↔

Table 6.3: Statistical comparison of gc with different radius

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 30 40 50 60 70 80 90

C
o
v
e
r
a
g
e

Antennas

SPEA2
Mono-Objective

Figure 6.6: Comparison of multi-objective and mono-objective approaches

are providing a large number of high-quality solutions. On the other hand, since the
mono-objective solution dominates about 3% of the achieved solutions, there is still
some room for improvement for the multi-objective schemes.

Finally, the performance of the hyperheuristic hv weight, executed in a para-
llel environment, has also been analysed. The configurations were made up by
combining different parameterisations of mutation and crossover operators. Ev-
ery configuration used the SPEA2. The flip mutation operator was used with
pm = {0.001, 0.002, 0.004}. The set of crossover operators was the following: OPX
with pc = {0.5, 1}, and gc with (pc, r) = {(0.5, 15), (0.5, 30), (0.5, 45), (0.5, 60),
(1, 15), (1, 30), (1, 45), (1, 60)}. Thus, a set of 30 low-level configurations was consi-
dered. The population and archive sizes were fixed to 100. Each considered scheme
was executed fixing a stopping criterion of 2 hours. Considering the obtained re-
sults, sequential algorithms were ordered based on the mean hypervolume achieved
at the end of the executions. An index based on such an order is assigned to each
configuration, being “Seq1” the one obtaining the highest hypervolume.

The parallel model was executed using hv weight with the 30 described configu-
rations. The executions used 4 worker islands. The following parameterisation was

174

6.1. Antenna Positioning Problem

 0.914

 0.9145

 0.915

 0.9155

 0.916

 1400 2300 3200 4100 5000 5900 6800

H
y
p
e
r
v
o
l
u
m
e

Time (s)

HV_Weight

Random

Seq1

(a) Evolution of the mean hypervolume

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

S
u
c
c
e
s
s

r
a
t
i
o

Time(s)

HV_Weight

Seq1

(b) Run-length Distribution

Figure 6.7: Comparison of hv weight and Seq1

used: β = 0.2/30 and k = 20. The local stopping criterion was fixed to 1 minute. In
addition, a random parallel scheme was used. In such a scheme, every configuration
is scored with the same value. Migration was performed following an asynchronous
scheme with a migration probability of 1, but it only takes place when new non-
dominated individuals have been generated. The all topology was considered.
Migrated individuals are selected following the eli-rand scheme. Replacements
were performed following the eli100 selector.

Figure 6.7-(a) shows the hypervolume evolution for “Seq1” and for the parallel
models “random” and hv weight. It shows that every parallel model is better
than the best sequential configuration. Therefore, the parallel models are useful, not
only to avoid the testing of each sequential configuration, but also, to speed up the
attainment of high-quality solutions. Moreover, the results of hv weight clearly
improve on the ones achieved by the “random” model. A statistical comparison was
performed among the models. It shows that the parallel models are better than
the sequential configuration. In addition, it confirms that the differences between
hv weight and the random approach are significant.

The previous experiment has compared the schemes, mainly focused in terms of the
achieved hypervolume. However, since the parallel executions use more computa-
tional resources than the sequential ones, the improvement must be quantified. In
order to measure the improvement of the parallel approach the RLDs have been
used. The hv weight and the “Seq1” model were executed using as finalisation
condition the achievement of a fixed level of hypervolume. Such hypervolume was
the mean of the hypervolume attained by “Seq5”. Figure 6.7-(b) shows the RLDs
for “Seq1” and hv weight. It shows the superiority of the hv weight model.
The speedup factor for achieving a 50% of success ratio is 1.71. Moreover, the

175

CHAPTER 6. Communication Optimisation Problems

speedup factor is much larger when other sequential configurations are considered.
For instance, when “seq5” is used as the reference, the speedup factor is 5.15. This
mean, that, by using four processors the practitioner might avoid the testing of each
low-level configurations, and speedup the achievement of high-quality solutions.

6.2 Frequency Assignment Problem

6.2.1 General Problem Description

Wireless communication networks have undergone a dramatic expansion over the
last few decades. The Frequency Assignment Problem (FAP) plays a key role in the
design of these kinds of networks [1]. Several variants of the FAP have emerged for
the various wireless technologies. Specifically, in the case of the GSM networks, the
FAP is one of the crucial issues to be considered in its design [187]. This problem
is also known as Automatic Frequency Planning (afp) and Channel Assignment
Problem (cap). Although the FAP has led to many different mathematical and
engineering models, all of them share two common features:

• A set of antennas must be assigned frequencies such that data transmissions
between the two end points of each connection are possible.

• Depending on the frequencies assigned to the antennas, they may interfere
with one another, resulting in loss of signal quality.

The performed research focuses on the FAP that arises in the design of GSM net-
works. In such a case, the available frequency band is slotted into channels that have
to be allocated to the elementary transceivers (trxs) installed in the base stations
of the network. In GSM, the FAP is a hard design task because the usable radio
spectrum is very scarce and frequencies have to be reused throughout the network;
consequently, some degree of interference is inevitable. The goal of the designer is to
minimise the interferences in the network, i.e. to minimise the loss of signal quality.
The FAP emerges in different network environments, and involves different objec-
tives, features, and constraints. Therefore, several mathematical formulations have
been defined for dealing with the FAP [1]. In the last few years, the basic FAP for-
mulation has been widely extended in order to address real-world issues [149]. Most
of the FAP models differ in the way that the interference is measured. Computing
the level of interference is a difficult task which depends on the channels, the radio
signals and many other features of the environment. The quantification of the inter-
ference results in an interference matrix, usually denoted by M . Some theoretical
methods for measuring M have been proposed [1]. Theoretical methods offer the

176

6.2. Frequency Assignment Problem

advantage of allowing for new instances to be tackled with less effort. However,
these methods ignore some features of the environment, making it difficult to know
the consequences that its usage might involve. Therefore, in other researches [149],
extensive network measurements are performed in order to calculate M . In such
cases, the M matrix is composed of more accurate values, resulting in more realistic
frequency plans. However, applying the method to new networks is expensive.

The FAP can be classified in different ways depending on the spectrum size, the
objectives, and the specific technological constraints. In [1], three main FAP mo-
dels are described: Minimum Order Frequency Assignment Problem (MOFAP),
Minimum Span Frequency Assignment Problem (MSFAP), and Minimum Interfer-
ence Frequency Assignment Problem (MIFAP). These models have chronologically
appeared in the literature as technology, national regulations and markets have
determined the working conditions. MOFAP is aimed at reducing the number of
frequencies used in a given cellular network. It assumes that different frequencies
do not interfere with each other. MSFAP focuses on searching an assignment that
minimises the difference between the largest and the smallest assigned frequency,
i.e. the span. It assumes that frequencies are assigned by regulators in continuous
slots. Finally, MIFAP tries to minimise a measure of the overall interference in the
network. MIFAP is the FAP model that has been most frequently addressed in
the recent literature, mainly because of its direct applicability to the resolution of
large instances of real-world GSM frequency planning [31]. Besides these three main
models of the FAP, other variants are seen to exist in the literature [1].

Several optimisation methods have been used to address the different versions of
the FAP. Among them, some exact algorithms have been proposed [12, 99, 170].
However, since most FAP variants are np-hard [119], approximation approaches are
mandatory when tackling large network instances [1]. Metaheuristics have been
shown to yield very accurate solutions to the FAP problem [10]. Specifically, hy-
brid metaheuristics [230], which incorporate tailor-made local search methods, have
provided very promising results [60].

The version of the FAP considered in this research [164] is classified as a MIFAP.
In such a version, the interference matrix is calculated by using an extensive mea-
surement stage. This matrix includes the interference between cells by giving the
entire probability distribution of the Carrier-to-Interference ratio (C/I). The main
advantage of this formulation is that it allows not only for the computation of
high performance frequency plans, but also for a prediction of the Quality of Ser-
vice (QoS). At the beginning of this research, the best solutions reported for this
version of FAP had been reported by an ACO algorithm[164].

177

CHAPTER 6. Communication Optimisation Problems

6.2.2 Mathematical Formulation

The FAP formulation applied here [164] is based on a matrix M calculated by
extensive measurements. Let T = {t1, t2, . . . , tn} be a set of n transceivers, and let
Fi = {fi1, . . . , fiki} ⊂ N be the set of valid frequencies that can be assigned to a
transceiver ti ∈ T , i = 1, . . . , n. Note that ki - the cardinality of Fi - is not necessarily
the same for all the transceivers. Furthermore, let S = {s1, s2, . . . , sm} be a set of
given sectors (or cells) of cardinality m. Each transceiver ti ∈ T is installed in
exactly one of the m sectors. Henceforth we denote the sector in which a transceiver
ti is installed by s(ti) ∈ S. Finally, the interference matrix M = {(µij, σij)}m×m,
is given. The two elements µij and σij of a matrix entry M (i, j) = (µij, σij) are
numerical values greater than or equal to zero. µij represents the mean and σij the
standard deviation of a Gaussian probability distribution describing the C/I ratio
[244] when sectors i and j operate on the same frequency. The higher the mean
value, the lower the interference and thus the better the communication quality.
Note that the interference matrix is defined at the sector (cell) level because the
transceivers installed in each sector all serve the same area.

A solution to the problem is obtained by assigning to each transceiver ti ∈ T one
of the frequencies from Fi. A solution (or frequency plan) is henceforth denoted by
p ∈ F1 × F2 × · · · × Fn, where p(ti) ∈ Fi is the frequency assigned to transceiver ti.
The objective is to find a solution p that minimises the following cost function:

C(p) =
∑

t∈T

∑

u∈T,u 6=t

Csig(p, t, u)

In order to define the function Csig(p, t, u), let st and su be the sectors in which the
transceivers t and u are installed; that is, st = s(t) and su = s(u), respectively.
Moreover, let µstsu and σstsu be the two elements of the corresponding matrix en-
try M(st, su) of the interference matrix with respect to sectors st and su. Then,
Csig (p, t, u) =















K if st = su, |p(t)− p(u)| < 2
Cco(µstsu , σstsu) if st 6= su, µstsu > 0, |p(t)− p(u)| = 0
Cadj(µstsu , σstsu) if st 6= su, µstsu > 0, |p(t)− p(u)| = 1
0 otherwise.

The parameter K represents the cost associated with the usage of the same or
adjacent frequencies in the same area. In real networks, it is unfeasible to operate
with more than one transceiver with the same or adjacent frequencies serving the
same area. Thus, K is defined as a very large constant. Function Cco(µ, σ) is defined

178

6.2. Frequency Assignment Problem

as follows:

Cco(µ, σ) = 100

(

1.0−Q

(

cSH − µ

σ

))

where

Q(z) =

∫ ∞

z

1√
2π

e
−x2

2 dx

is the tail integral of a Gaussian probability distribution function with zero mean
and unit variance, and cSH is a minimum quality signalling threshold. Function Q
is widely used in digital communication systems because it characterises the error
probability performance of digital signals [217]. This means that Q

(

cSH−µ
σ

)

is the
probability of the C/I ratio being greater than cSH, and therefore Cco(µstsu , σstsu)
computes the probability of the C/I ratio in the serving area of sector st being
below the quality threshold due to the interference caused by sector su. That is,
if this probability is low, the C/I value in sector st is not likely to be degraded by
the interfering signal coming from sector su, and thus the resulting communication
quality is high. Note that this is compliant with the definition of a minimisation
problem. In contrast, a high probability - and consequently a high cost - causes the
C/I mostly to be below the minimum threshold cSH, and thus results in low quality
communications.
As function Q has no closed form for the integral, it has to be evaluated numerically.
To do this, we use the complementary error function E:

Q(z) =
1

2
E

(

z√
2

)

In [203], a numerical method is presented that allows the value of E to be computed
with a fractional error smaller than 1.2 · 10−7. Analogously, function Cadj(µ, σ) is
defined as:

Cadj(µ, σ) = 100
(

1.0−Q
(cSH−cACR−µ

σ

))

= 100
(

1.0− 1
2E

(

cSH−cACR−µ

σ
√
2

))

The only difference between functions Cco and Cadj is the additional constant cACR > 0
(adjacent channel rejection) in the definition of function Cadj. This hardware specific
constant measures the receiver’s ability to receive the wanted signal in the presence
of an unwanted signal in an adjacent channel. Note that the effect of constant cACR

is that Cadj(µ, σ) < Cco(µ, σ). This makes sense because using adjacent frequencies
(channels) does not result in such strong interference as using the same frequency.

179

CHAPTER 6. Communication Optimisation Problems

Algorithm 18 Local Search for the Frequency Assignment Problem

1: Input: current solution S
2: nextSectors← {1, ..., numberOfSectors}
3: while (nextSectors ! = ∅) do
4: currentSectors← nextSectors
5: nextSectors← ∅
6: while (currentSectors != ∅) do
7: sec← extract a random sector from currentSectors
8: neighbour ← reassign frequencies of S in sector sec
9: if (neighbour improves S) then

10: S ← neighbour
11: nextSectors + = sectors interfered with by sec
12: nextSectors + = sectors that interfere with sec
13: end if

14: end while

15: end while

16: return S

6.2.3 Proposed Optimisation Schemes

Local Search

A local search specifically designed for this version of the FAP was designed. The
application of the local search methods allows for admissible solutions to be obtained
in relatively short times. Given its importance, a considerable effort was made to
make the procedure as efficient as possible.

The operation of the local search (Algorithm 18) is based on optimising the assign-
ment of frequencies to trxs in a given sector, leaving intact the remaining network
assignments. Each neighbour of a candidate solution is obtained by replacing the
frequencies in the trxs of a sector. Therefore, the neighbourhood size is the num-
ber of sectors in the network. The reassignment of frequencies within a sector is
performed as follows: first, the available frequencies for the sector are sorted by
their corresponding cost. Then, two possibilities are considered: either assign the
frequency with the lowest associated cost to a trx that is allowed to use that fre-
quency, or assign its two adjacent frequencies to two different trxs. For each of the
newly generated partial solutions, the same process is repeated until all trxs in the
sector are assigned a frequency. The complete solution with the lowest associated
cost is considered as the new neighbour, while the other ones are discarded.

Figure 6.8 illustrates the generation of a new neighbour. In this example, the sector

180

6.2. Frequency Assignment Problem

Figure 6.8: Generation of a new neighbour by reassigning the frequencies of a sector

is assumed to contain three trxs, and that each trx can use any frequency slot.
For every node, the cost associated with each slot is shown. The children of a node
are generated in accordance with the rules detailed earlier. The slots assigned to
the trxs are bolded. The nodes with three slots assigned are complete solutions,
while the other ones are partial solutions. The complete solution identified by the
number three is the new neighbour because it is the one with the lowest cost. The
remaining generated solutions are discarded.

The order in which neighbours are analysed is randomly determined (line 7 of the
Algorithm 18) while trying to avoid the generation of neighbours that do not improve
on the current solution. To this end, a set called currentSectors containing the
sectors that might improve on the current solution is stored. Initially, all sectors are
introduced in currentSector (lines 2 and 4). For the generation of a new neighbour,
a sector sec is randomly extracted from currentSector (line 7) and its frequencies
reassigned as discussed above (line 8). The local search moves to the first new
generated neighbour that improves on the current solution (lines 9-10), adding all
the sectors that interfere with or are interfered with by sec to the set of the next
sectors (nextSectors) to be considered (lines 11-12). When the currentSectors set
becomes empty (line 6), sectors in nextSectors are transferred to the current set
(line 4) and the nextSectors set is cleared (line 5). The local search stops when
none of the neighbours improves on the current solution (line 3).
In cases where the network satisfies a set of properties, the neighbour generation
process ensures the achievement of the optimal frequency assignment inside the
analysed sector, considering the remaining network fixed. Such properties are (i)
all trxs in a given sector are allowed to use the same frequency ranges, (ii) it
is possible to make assignments which do not use the same frequency or adjacent
frequencies in any two trxs serving the same area, and (iii) the optimal assignment

181

CHAPTER 6. Communication Optimisation Problems

does not use the same frequency or adjacent frequencies in any two trxs that are
in the same sector. A sketch of the proof is here presented. Let Cost(f) be the cost
associated to the assignment of the frequency f to any of the trxs in the considered
sector. Being f1 the frequency with minimum associated cost, the best assignment
must use f1, or must simultaneously use f1 − 1 and f1 + 1. In fact, considering an
assignment in which f1 + 1 is used, but f1 − 1 is not used, we can substitute the
assignment of f1 + 1 by f1, thus obtaining an assignment with lower cost. In the
case of using f1 − 1, but not f1 + 1, the same property holds. In the cases where
f1 − 1 and f1 + 1 are not used, since f1 is the best possible assignment, it must be
used. Finally, the simultaneous assignment of both f1 + 1 and f1 − 1, could lead to
a better assignment than the ones using f1 and other frequency f2. For this reason,
in order to ensure that the best assignment is achieved, individuals which use f1,
and individuals which use simultaneously f1− 1 and f1+1 should be analysed. The
way in which neighbours are generated ensure that both possibilities are explored,
so the best assignment is achieved under such conditions.

Memetic Schemes

A set of metaheuristics that included the usage of the previous local search were
designed. This research was done in collaboration with researchers of three uni-
versities: University of Malaga, University Carlos III of Madrid, and University of
Extremadura. The following metaheuristics were tested:

• Steady-State Genetic Algorithm (SSGA)

• Scatter Search (SS)

• Local Search with Heuristic Restart (LSHR)

• Evolutionary Algorithm with Increasing Population Size (EAIPS)

From the previous metaheuristics, my research group was in charge of designing
eaips. Thus, the internal operation of such an algorithm is presented. The basic
operation of the rest of the algorithms has already been presented in Chapter 2.
The details can be found in [166].
EAIPS is a memetic algorithm that combines a modified EA with a (1+1) selection
operator and the previously described local search. The algorithm has the ability to
perform as a trajectory-based algorithm when no stagnation is detected. However,
it increases the population size in order to avoid strong local optima when necessary,
behaving then as a population-based algorithm.

182

6.2. Frequency Assignment Problem

Algorithm 19 Evolutionary Algorithm with Increasing Population Size

1: initialise(P)
2: P ← localSearch(P)
3: while not time-limit do
4: offspring ← variation(P)
5: offspring ← localSearch(offspring)
6: for i = 0 to populationsize do

7: if P(i) is blocked SoftBloq generations then
8: P(i) ← offspring(i)
9: else

10: P(i) ← best(P(i), offSpring(i))
11: end if

12: end for

13: if P is blocked HardBloq generations then
14: if P.size < MaxPopSize then

15: increase population size
16: end if

17: end if

18: end while

Algorithm 19 shows the pseudocode of the approach. Individuals are encoded as
an array of integer values, p, where p(x) is the slot assigned to the transceiver tx.
InitPSize initial individuals are generated in a completely random way (line 1).
For each gene, a random value among the admissible ones is assigned. On each
generation, the approach applies a variation operator over the population (line 4).
The variation step lies in the application of a mutation operator to each individual
in order to produce new offsprings. The (1 + 1) selection operator is deterministic
and selects the best individual between an offspring and its parent. In order to
improve on the behaviour of the approach when dealing with local optima, two
improvements were considered. First, if after SoftBloq generations the fitness of
the current individual has not been improved on, the selection operator used during
the generation is a (1, 1), i.e. the offspring is selected independently of its fitness
value (lines 6-12). Moreover, if after HardBloq generations the fitness value of none
of the individuals has been improved on, an extra new individual is introduced in the
population (lines 13-17). During the following generations, each individual included
in the population is evolved applying the aforementioned rules. In order to avoid
an uncontrolled growth of the population, the maximum size of the population is
limited to MaxPopSize.

183

CHAPTER 6. Communication Optimisation Problems

Three different mutation operators were implemented and compared. They include
both directed and random operators. The tested mutation operators were the fol-
lowing:

• UM: each gene - or transceiver assignment - is mutated with a probability pm.
In order to perform the new assignment to the gene, a random value among
the admissible ones is selected.

• Mapping Mutation (MM): being F the set of accepted frequencies by any of
the transceivers, a random bijection m : F ↔ F is generated. Each transceiver
assignment tx is replaced with a probability pm by the value m(tx), if m(tx) is
an admissible value for the transceiver tx.

• Neighbour-based Mutation (NM): first, a random TRX tx is mutated. Then,
its neighbours, i.e. the TRXs which interfere with tx, or are interfered with
by tx, are mutated with a probability pm. The previous steps are repeated
N times, but the TRX is selected among those ones which are neighbours of
the TRXs that have been mutated in the previous steps. Thus, the mutation
operator focuses on one zone of the network.

Multiobjectivised approaches

The original FAP problem has been multiobjectivised with several schemes. Spe-
cifically the following multiobjectivisations have been tested: DCN, ADI, DBI,
random, inversion and dbi-thr. The parameter th of the dbi-thr multiob-
jectivisation was set up to the value 0.9. In addition, the scheme was multiobjec-
tivised considering problem-dependent information (Dependent). In the last case,
the helper-objective is calculated in the following way. First, the original FAP objec-
tive function (f) is decomposed into two independent functions f0 and f1, such that
f = f0 + f1. The decomposition is performed as follows. First, a table containing
all possible interferences between each pair of trxs is generated. Then, this table is
ordered based on the cost of the appearance of each pair ρ. The resultant position
of each ρ is denoted by iρ. The cost associated with each ρ is taken into account in
the function fobj where obj = iρ mod 2. Finally, f0 is used as the helper-objective.
Likewise, f1 could have been used as the helper-objective.
In order to solve the multiobjectivised approaches, a multi-objective memetic al-
gorithm has been used. Specifically, a memetic version of the NSGA-II has been
applied. The memetic version of NSGA-II incorporates the previously defined local
search after the variation stage. The same mutation operators than in the mono-
objective approaches have been used. In the case of the crossover operators the

184

6.2. Frequency Assignment Problem

following ones have been tested: UM, and Interference-based Crossover (IX). The
IX crossover operates as follows. First, a trx tx is randomly selected. Every gene
associated to a trx which interferes with tx or is interfered with by tx, including the
gene which represents the own tx, is inherited from the first parent. The remaining
genes are inherited from the second parent. As usual, the inverse mapping is used
to generate the second offspring.

Hyperheuristics

The hyperheuristics has also been used for dealing with the FAP. They have been
used both with the mono-objective schemes (eaips), and with the multiobjectivised
schemes. In both cases, the hyperheuristic mono weight has been used. In the
case of eaips the different configurations has been made up by considering different
variation stages. In the case of the multiobjectivised schemes, the different configu-
rations have considered different ways of multiobjectivising the FAP and different
variation schemes.

6.2.4 Experimental Evaluation

This section is devoted to present the experimental evaluation performed with the
different proposals. The tests have been performed with real data that correspond
to two US cities: Seattle and Denver. The former instance has 970 TRXs and 15
different frequencies to be assigned, while the latter has 2612 TRXs and 18 frequen-
cies. The constants used in the mathematical formulation were set to K = 100.000,
cSH = 6 dB, and cACR = 18 dB. Figure 6.9 display the network topologies. The
triangles represent a sectorised antenna in which several TRXs operate. The data
source to build the interference matrix has used thousands of Mobile Measurement
Reports (MMRs) rather than propagation prediction models.

Comparison of metaheuristics

This section shows the comparisons among the following algorithms: ACO, SSGA,
SS, LSHR and EAIPS. The ACO approach was the one presented in [164]. The
rest of the approaches have incorporated the usage of the specifically designed local
search. First, some preliminary executions were performed with the aim of properly
selecting the parameters of such approaches. The following parameterisation was
used:

• SSGA: Population size = 10, uniform crossover with pc = 1.0, random muta-
tion with pm = 0.2, selection with binary tournament, replacement = worst

185

CHAPTER 6. Communication Optimisation Problems

(a) Seattle (b) Denver

Figure 6.9: Topology of the considered instances

individual

• SS: Population size = 40, RefSet size = 9, Solution combination method =
uniform crossover

• EAIPS: initPSize = 1, softBloq = 50, hardBloq = 300, maxPopSize = 5,
Neighbourhood-based Mutation with pm = 0.9 and N = 7

• LSHR: Learning rate fr = 0.001

Experiments have been carried out under exactly the same conditions: an Intel
Xeon 3GHz processor and 2GB RAM have been used for this purpose. Since we are
dealing with stochastic algorithms, we have carried out 30 independent runs for each
metaheuristic. Moreover, the statistical tests have been performed with the short
and long time ranges. Specifically, four different time limits (120, 600, 1800, and
3600 seconds) have been considered. Mean cost values, x̄, and standard deviations,
σn, of the 30 executions for every algorithm are summarised in Tables 6.4 and 6.5,
for the Seattle and Denver instances, respectively (a grey background has been used
to show the best value).
To properly put in context the quality of the generated plans, Table 6.6 displays
the mean, x̄, and the standard deviation, σn, of the cost of randomly generated
solutions. In addition, the data for randomly generated solutions that undergo
the local search method used by the metaheuristic algorithms is also shown. The
goal is to highlight two different facts. First, the high accuracy of this local search
algorithm, which is able to reduce the cost of random frequency plans several orders

186

6.2. Frequency Assignment Problem

Table 6.4: Results of the metaheuristics for 4 different time limits on the Seattle
instance

Seattle 120 s 600 s 1800 s 3600 s
ACO 1889.64±118.97 1578.65±148.06 1380.33±128.33 1330.49±116.79

SSGA 1894.67±79.83 1757.60±87.49 1676.12±63.02 1628.05±51.17

SS 2115.56±191.43 1606.85±183.21 1348.74±145.95 1238.68±141.55

EAIPS 1417.28±141.94 1142.65±108.47 989.30±73.07 917.43±51.92

LSHR 1677.73±208.45 1341.40±123.48 1194.13±105.85 1102.13±115.49

Table 6.5: Results of the metaheuristics for 4 different time limits on the Denver
instance

Denver 120 s 600 s 1800 s 3600 s
ACO 93439.46±1341.54 92325.42±1111.56 90649.93±740.02 89875.66±699.49

ssGA 89540.41±1008.14 87850.79±583.45 86908.94±386.37 86870.40±320.02

SS 89401.36±1091.63 87233.42±874.73 86122.66±666.58 85525.17±494.54

EAIPS 89798.47±1305.70 87859.68±1038.68 86835.99±1016.04 86363.98±790.68

LSHR 92946.57±1519.37 89680.33±902.81 88646.53±526.92 88367.90±406.18

Table 6.6: Mean and standard deviation of 30 random solutions and 30 executions
of local search for the Denver and Seattle networks.

Random Local Search
x̄±σn

x̄±σn

Seattle 55.204, 11±1815.99 3.692, 66±405,19

Denver 115.577.436, 48±3.902.668,53 105.155, 60±2.077,20

of magnitude (specially in the Denver instance, the larger one). Second, to show
that the metaheuristics can profit from the hybridisation with this local search by
reaching frequency plans provoking weaker interference than those obtained by the
standalone local search. Indeed, if we consider the results included in Tables 6.4
and 6.5, it can be easily seen that the FAP costs of the plans are lower for all the
algorithms, time limits, and instances undertaken.

Taking into account these two tables (Tables 6.4 and 6.5), it is remarkable that
all the tested algorithms are able to keep improving on the solution quality in the
two problem instances even after one hour of execution. These numerical values

187

CHAPTER 6. Communication Optimisation Problems

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60

F
it

n
e
ss

Time (minutes)

Metaheuristics mean fitness. Seattle

SS
EAIPS

ssGA
LSHR

Local Search

Figure 6.10: Mean interference of the four metaheuristics every 120 seconds in the
Seattle network.

also show that the behaviour of the different algorithms depends on the real world
instance addressed, even though the problem class is the same. Results reveal that
in the Seattle instance, EAIPS is the best scheme. In this instance, the population
size at the end of the executions has been between 1 and 3. Therefore, EAIPS
has practically behaved as a trajectory-based approach. The second best-behaved
scheme is LSHR, which is also a trajectory-based scheme.

For the Denver instance, the best plans are given by a population-based meta-
heuristic (SS), but the results of EAIPS are also competitive. In this case, the
population sizes at the end of the executions of EAIPS are larger. Thus, at the end
of the executions, EAIPS is behaving as a population-based approach. The strictly
trajectory-based approach LSHR obtains the worst solutions.

The evolution of the mean of the costs obtained every 120 seconds is shown if
figures 6.10 and 6.11. The good performance of EAIPS is confirmed with such
figures. It can be appreciated that in both cases, competitive results are obtained.

To further analyse the results, a set of statistical tests were performed. Tables 6.7
and 6.8 show the results of the comparisons. The way to interpret the pairwise
comparisons is as follows. For every pair of algorithms, the tables display those
time ranges where differences are not significant. The “−” symbol means that all
the differences are statistically significant. First, it must be noticed that for both
problem instances, differences for the 3600 second time range are always signifi-
cant. Second, it was noticed before that in the Seattle instance, trajectory-based

188

6.2. Frequency Assignment Problem

 85000

 90000

 95000

 100000

 105000

 110000

 0 10 20 30 40 50 60

F
it

n
e
ss

Time (minutes)

Metaheuristics mean fitness. Denver

SS
EAIPS

ssGA
LSHR

Local Search

Figure 6.11: Mean interference of the four metaheuristics every 120 seconds in the
Denver network.

algorithms performed better than population-based ones. Table 6.7 shows that, in
fact, all differences between population-based and trajectory-based metaheuristics
are significant. Moreover, differences among the population-based algorithms (ACO,
SS, and ssGA) are in some cases not significant. With respect to the trajectory-
based ones, EAIPS outperforms significantly LSHR for all time ranges, so this is
clearly the best algorithm in this instance.

In the Denver instance, SS is the best algorithm for the 3600 second range, while
it behaves similarly to other algorithms for shorter time spans. It seems that the
diversity maintenance techniques of SS allow this metaheuristic to avoid stagnation
for the longer time periods. It can also be seen that SSGA and EAIPS have a similar
behaviour for most time ranges.

Summarising all the above, we can conclude that EAIPS and SS are particularly
accurate algorithms for this domain. EAIPS is a very effective algorithm for both
problem instances. It is significantly the best for Seattle and the runner up in
Denver, and in this latter case, differences with the best performer (SS) are not
statistically significant for time ranges smaller than 600 seconds. SS is the statisti-
cally significant winner for time ranges over 600 seconds in the Denver domain, and
the third performer in Seattle. The remaining algorithms behave well in one of the
domains (LSHR in Seattle and ssGA in Denver) but badly in the other.

189

CHAPTER 6. Communication Optimisation Problems

Table 6.7: Post-hoc tests of the results for the Seattle instance. Time limits for
which the pairwise comparison is not significant.

SSGA 120
SS 600, 1800 −
EAIPS − − −
LSHR − − − −

ACO ssGA SS EAIPS

Table 6.8: Post-hoc tests of the results for the Denver instance. Time limits for
which the pairwise comparison is not significant.

SSGA −
SS − 120, 600
EAIPS − 120, 600, 1800 120, 600
LSHR 120 − − −

ACO SSGA SS EAIPS

Performance of multiobjectivisation

This section is devoted to perform a comparison between the results obtained with
EAIPS, and the ones obtained with NSGA-II and multiobjectivisation. A set of 21
multiobjectivised approaches has been tested. They have been made up by com-
bining seven multiobjectivisation schemes with three different variation schemes.
The multiobjectivisation schemes have been: DCN, ADI, DBI, random, inver-
sion, dbi-thr and dependent. In the first variation scheme, the UX operator
with pc = 1 has been used. In the second one, the IX operator with pc = 1 has
been applied. Finally, for the last variation scheme, the crossover operator has
been disabled, i.e pc has been fixed to 0. The population size was set up to 10 in
every case. In order to identify the different schemes, the following nomenclature
has been used: Multiobjectivisation Scheme-Crossover operator. In the cases where
the crossover has not been used, the scheme is referred to using solely the name
of the multiobjectivisation. Every variation schemes have used the next paramete-
risation for the Neighbour-based Mutation operator: pm = 0.9 and N = 7. Each
configuration has been executed during 4 hours.

Executions have been run on a debian gnu/linux computer with four amd R©
opteron TM (model number 6164 he) at 1.7 ghz and 64 gb ram. The compiler that
has been used is gcc 4.4.5.

Figure 6.12 shows, for the Seattle and Denver instances, the evolution of the cost
function mean values for the different multiobjectivised schemes. The results ob-

190

6.2. Frequency Assignment Problem

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0 2500 5000 7500 10000 12500

C
os

t

Time (s)

Seattle Instance

Random-UX
Dependent-UX

DBI
ADI-UX
EAIPS

DCN-UX
DBI_THR-UX

 85500

 86000

 86500

 87000

 87500

 88000

 88500

 89000

 89500

 90000

 0 2500 5000 7500 10000 12500

C
os

t

Time (s)

Denver Instance

Random-IX
Dependent

DCN-IX
ADI
DBI

DBI_THR
EAIPS-IX

Figure 6.12: Mean cost obtained with different models for the Seattle and Denver
instance

Table 6.9: Statistical Comparison of Configurations for the Seattle Instance
DBI THR-UX DCN-UX EAIPS ADI-UX DBI Dep.-UX Rand-UX

DBI THR-UX ↔ ↔ ↑ ↑ ↑ ↑ ↑
DCN-UX ↔ ↔ ↑ ↑ ↑ ↑ ↑
VarPopEA ↓ ↓ ↔ ↑ ↑ ↔ ↑
ADI-UX ↓ ↓ ↓ ↔ ↔ ↔ ↔
DBI ↓ ↓ ↓ ↔ ↔ ↔ ↔

Dependent-UX ↓ ↓ ↔ ↔ ↔ ↔ ↔
Random-UX ↓ ↓ ↓ ↔ ↔ ↔ ↔

tained with eaips are also shown. Results are shown with the best behaved variation
scheme for each approach. Since the Reverse multiobjectivisation has obtained very
low quality results, it has not been taken into account. Table 6.9 shows whether the
row configuration is statistically better (↑), not different (↔), or worse(↓), than the
corresponding column configuration, in 4 hours of execution for the Seattle instance.
Table 6.10 shows the same information for the Denver instance. For the Seattle in-
stance, two multiobjectivised schemes have obtained better mean cost values than
eaips. Moreover, in both cases the differences are statistically significant, showing
the benefits of multiobjectivised techniques. For the Denver instance, the best mean
results have been obtained by eaips-ix. However, differences between it and the
best three multiobjectivised approaches are not statistically significant.

Taking into account the best multiobjectivised approach, Table 6.11 shows, for the
Seattle instance, a statistical comparison among the three tested variation schemes.
The same information is shown in Table 6.12 for the Denver instance. For the Seattle
instance, no significant differences have been detected among different variation
schemes. In the case of the Denver instance, the ix operator is statistically better

191

CHAPTER 6. Communication Optimisation Problems

Table 6.10: Statistical Comparison of Configurations for the Denver Instance
VarPopEA-IX DBI TH1 DBI ADI DCN-IX Dep. Rand-IX

VarPopEA-IX ↔ ↔ ↔ ↔ ↑ ↑ ↑
DBI TH1 ↔ ↔ ↔ ↔ ↑ ↑ ↑

DBI ↔ ↔ ↔ ↔ ↔ ↑ ↑
ADI ↔ ↔ ↔ ↔ ↑ ↑ ↑

DCN-IX ↓ ↓ ↔ ↓ ↔ ↔ ↑
Dependent ↓ ↓ ↓ ↓ ↔ ↔ ↔
Random-IX ↓ ↓ ↓ ↓ ↓ ↔ ↔

Table 6.11: Statistical Comparison of Variation Schemes for Seattle
UX No Crossover IX

UX ↔ ↔ ↔
No Crossover ↔ ↔ ↔

IX ↔ ↔ ↔

Table 6.12: Statistical Comparison of Variation Schemes for Denver
No Crossover IX UX

No Crossover ↔ ↔ ↑
IX ↔ ↔ ↑
UX ↓ ↓ ↔

than the ux operator, but not statistically different from the variation scheme with
no crossover operator. Moreover, taking into consideration mean cost values, results
of four schemes have been improved on by using the ix operator. Therefore, a deeper
analysis with other instances should be performed to better explore the ix benefits.

In order to check the behaviour of the multiobjectivised approaches in the long term,
a second experiment has been carried out. Specifically, the best multiobjectivised
scheme and eaips, with its best variation scheme, have been executed using a stop-
ping criterion of 24 hours. Figure 6.13 shows the boxplot of the cost values achieved
in 4 and 24 hours for the Seattle and Denver instances. In the Seattle instance, for
both values of the stopping criterion, the multiobjectivised approach is statistically
better than eaips. In the Denver instance, considering 4 hours for the stopping cri-
terion, both models are similar. In fact, differences are not statistically significant.
In the case of 24 hours, most of the eaips-ix executions are better than the dbi thr
executions. However, some dbi thr executions have been able to deal better with
local optima. It can be appreciated that the variation in the results of dbi thr is
larger than the one obtained with eaips-ix. In fact, dbi thr has obtained the best
and the worst frequency plans.

Previous experiments have compared different mono-objective and multiobjectivised

192

6.2. Frequency Assignment Problem
60

0
70

0
80

0
90

0

Seattle Instance

C
os

t

DBI_TH1−UX
14400 s

EAIPS
14400 s

DBI_TH1−UX
86400 s

EAIPS
86400 s

84
00

0
85

00
0

86
00

0
87

00
0

Denver Instance

C
os

t

DBI_TH1
14400 s

EAIPS−IX
14400 s

DBI_TH1
86400 s

EAIPS−IX
86400 s

Figure 6.13: Boxplots of the obtained cost

configurations in terms of the quality achieved at fixed times. In addition, the run-
time behaviour has been analysed by using the RLDs. In order to establish a
high enough quality level, it has been fixed as the mean cost obtained in 8 hours
of execution of eaips with its best variation scheme for each instance. Figure 6.14
shows the run-length distribution for both instances. In the Seattle instance, the 50%
of executions of dbi thr-ux has achieved the fixed quality level in 7440 seconds.
In the case of eaips, the required time is 30840 seconds. Thus, the speedup factor
to obtain such a success ratio is 4.14. By contrast, the success ratio of eaips is
higher than the success ratio of dbi thr-ux, considering 24 hours of execution.
In the Denver instance, considering the 50% of the executions, eaips-ix is 1.97
times faster than dbi thr. Moreover, considering the results for 24 hours, eaips-
ix success ratio is higher than the dbi thr success ratio. However, dbi thr has
been able to obtain higher success ratios than eaips-ix, when times lower than 5.5
hours are considered. Therefore, for the considered quality level, the most promising
model depends on time constraints.

Hyperheuristic for mono-objective schemes

In the previous sections the proper behaviour of EAIPS has been demonstrated.
However, in order to obtain such results, experiments with several parameterisations
had to be performed. Thus, the computational and user effort required to obtain
such results was very large. In this section the performance of the mono weight
hyperheuristic when it has been used with the EAIPS scheme is analysed. Experi-
ments with four and eight processors have been carried out. The same computational
environment than in the previous experiment has been used.

193

CHAPTER 6. Communication Optimisation Problems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

S
uc

ce
ss

 R
at

io

Time (s)

Seattle Instance

DBI_THR-UX
EAIPS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

S
uc

ce
ss

 R
at

io

Time (s)

Denver Instance

DBI_THR
EAIPS-IX

Figure 6.14: Run-length distribution for both considered instances

 1000

 2000

 3000

 4000

 5000

 0 600 1200 1800 2400 3000 3600

C
o
s
t

Time

Seattle

Seq30
Seq15
Seq1

Mono_Weight_4
Mono_Weight_8

 90000

 95000

 100000

 105000

 110000

 0 600 1200 1800 2400 3000 3600

C
o
s
t

Time

Denver

Seq30
Seq15
Seq1

Mono_Weight_4
Mono_Weight_8

Figure 6.15: Evolution of the cost function for Seattle and Denver networks

First experiment performs a comparison of the costs of the frequency plans obtained
by a set of sequential configurations of EAIPS and by the parallel approach of
mono weight. The configuration of EAIPS was as follows: InitPSize = 2,
SoftBloq = 50, HardBloq = 300, MaxPopSize = 5. Many configurations
can be made up by using the set of defined mutation operators and by tuning
their internal parameters. A set of 30 sequential configurations were executed and
analysed. The set of mutation operator configurations was the following:

• UX with pm = {0.1, 0.3, 0.5, 0.7, 0.9}

• MM with pm = {0.1, 0.3, 0.5, 0.7, 0.9}

• NM with (pm, N) = {(0.1, 1), (0.3, 1), (0.5, 1), (0.7, 1), (0.9, 1), (0.1, 3), (0.3, 3),
(0.5, 3), (0.7, 3), (0.9, 3), (0.1, 5), (0.3, 5), (0.5, 5), (0.7, 5), (0.9, 5), (0.1, 7),
(0.3, 7), (0.5, 7), (0.7, 7), (0.9, 7)}

194

6.2. Frequency Assignment Problem

Configuration Seattle Index Denver Index

NM (0.7, 7) 1 2
NM (0.9, 5) 2 1
NM (0.3, 3) 3 12
NM (0.5, 7) 4 5
NM (0.7, 5) 5 3
UM (0.1) 6 19

NM (0.5, 5) 7 17

Table 6.13: Robustness of sequential configurations

The parallel mono weight has been executed using the 30 described configura-
tions as low-level meta-heuristics. Since the low-level approaches are not elitist,
non-suitable configurations might degrade the quality of the population. For this
reason, starting with the last population of the previous approach might not be
adequate. If the new selected configuration is the same as the island current con-
figuration, the execution continues with the last found population. Otherwise, the
island configuration is updated and the changes performed by the algorithm over its
subpopulation must be validated. In such a step, the model checks whether the indi-
viduals in the subpopulation has worsen its frequency plan cost more than 5% along
the last configuration run. If an individual does not verify the condition, the origi-
nal individual is recovered. This step is necessary because unsuitable configurations
could excessively degrade the population quality.

mono weight was executed with the following parameterisation: β = 0.2
30

and
k = 5. The executions considered 4 and 8 worker islands. They are referred to as
mono weight4 and mono weight8. Every sequential and parallel execution was
run with a stopping criterion of 1 hour. For the parallel executions the local stopping
criterion was fixed to 1 minute. Migration was performed following an asynchronous
scheme with a migration probability of 1. The used migration topology was the
all. Migrated individuals are selected following an elitist scheme, i.e. the best
individual is selected to migrate. Replacements were performed also following an
elitist scheme. They only take place when the migrated individual is better than
any of the individuals in the new island. In such a case, the individual that is in the
first position of the population is replaced.

Considering the obtained results, sequential algorithms were ordered based on the
mean cost achieved at the end of the executions. An index based on such an order
is assigned to each configuration. Therefore, for each instance, the best sequential
execution will be referred to as “seq1”, while the worst one will be referred to as

195

CHAPTER 6. Communication Optimisation Problems

seq15 seq1 Weight_4 Weight_8

80
0

10
00

12
00

14
00

Seattle − 30 min.

C
os

t

seq15 seq1 Weight4 Weight8

85
00

0
87

00
0

89
00

0

Denver − 30 min.

C
os

t

seq15 seq1 Weight_4 Weight_8

80
0

90
0

11
00

13
00

Seattle − 60 min.

C
os

t

seq15 seq1 Weight_4 Weight_8

86
00

0
87

00
0

88
00

0
89

00
0

Denver − 60 min.
C

os
t

Figure 6.16: Box-plots of the achieved costs

“seq30”. Table 6.13 shows the best configurations for the Seattle instance, and its
corresponding index for the Denver instance. Most of the best configurations are
suitable for both instances. However, some of them are not adequate, so they would
produce a waste of resources if applied to the other instance. Some of the best
configurations correspond to high values of pm, while other ones correspond to low
values. Thus, it is very difficult to know, a-priori, which configurations are suitable
for a given instance.

Figure 6.15 displays, for both instances, the evolution of the mean cost achieved by
mono weight, “seq1”, “seq15”, and “seq30”. In both instances the costs achieved
by mono weight4 are very similar to the one achieved by the best sequential
approach. In the Seattle network, “seq1” is slightly better than mono weight4,
while in the Denver network, mono weight4 obtains better results than “seq1”.
Therefore, the parallel approaches, even with so few processors, can be used with

196

6.2. Frequency Assignment Problem

Seattle Denver
↑ ↔ ↓ ↑ ↔ ↓

mono weight4 7 6 17 0 3 27
mono weight8 0 0 30 0 0 30

Table 6.14: Statistical analysis fixing the execution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500

S
u
c
c
e
s
s

r
a
t
i
o

Time(s)

Seattle Instance

HH_Imp_8

HH_Imp_4

Seq1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500

S
u
c
c
e
s
s

r
a
t
i
o

Time(s)

Denver Instance

HH_Imp_8

HH_Imp_4

Seq1

Figure 6.17: Run length distributions for “seq1” and mono weight

the aim of avoiding the testing of each one of the low-level configurations. Costs
values achieved by “seq15” and “seq30” are clearly worse than the ones achieved
by the parallel models. Executions with 8 worker islands produce much betters
results. Differences between the models with 4 islands, and the ones with 8 islands
are statistically significant in both instances. Therefore, they allow to avoid the
testing of each one of the low-level configurations, and to speed up the achievement
of high quality frequency plans. The boxplots of the costs obtained by the different
models are shown in Figure 6.16. They were calculated using as stopping criterion 30
minutes and 1 hour. In both instances, the boxtplots confirm the similarity between
“seq1” and the parallel models that use 4 worker islands. In addition, they show
the superiority of the models with 8 worker islands.

It is also interesting to know the relative performance between the rest of the se-
quential configurations, and mono weight. Table 6.14 shows, for both instances,
the number of sequential configurations which are better (↑), not different(↔), or
worse(↓) than the corresponding row configuration. The comparison is performed
in terms of the achieved fitness when considering a stopping criterion of 1 hour. It
shows the better adaptation of the hyperheuristic to the Denver instance, than to
the Seattle instance. In both instances, the parallel approach with 4 worker islands
is better than most of the sequential configurations. When 8 worker islands are

197

CHAPTER 6. Communication Optimisation Problems

Config.
mono weight4 mono weight8 Success

speedup speedup Ratio (%)

seq1 1 2.5 100%
seq5 1.3 2.8 100%
seq10 2.4 4.9 100%
seq15 3.9 9.2 100%
seq20 6.5 13.1 100%
seq25 - - 0%

Table 6.15: Speedup of the parallel models in the Seattle network

Config.
mono weight4 mono weight8 Success

speedup speedup Ratio (%)

seq1 1.5 2.1 90%
seq5 1.8 2.6 90%
seq10 3.3 5.4 90%
seq15 3.9 5.8 90%
seq20 11.4 26.8 60%
seq25 - - 0%

Table 6.16: Speedup of the parallel models in the Denver network

incorporated, the parallel approaches perform better than any sequential approach.

The previous experiment has compared the schemes, mainly focused in terms of the
achieved quality. However, since the parallel executions use more computational
resources than the sequential ones, the improvement achieved by the parallel model
must be quantified. In order to measure the improvement of the parallel approach,
the run-time behaviour of the different models has also been analysed. The sequen-
tial configurations, as well as the parallel models, were executed using as finalisation
condition the achievement of a certain level of quality. The quality level was estab-
lished as the mean cost obtained by mono weight4 in 30 minutes. Since some
of the sequential configurations are not able to reach such a quality level, a second
stopping criterion - the execution of a maximum time of 10 hours - was also consi-
dered. Thus, the success ratio is defined as the probability of achieving the required
quality level, considering a limitation in the execution time of 10 hours. Figure 6.17
shows the RLDs of the parallel models and of the best behaved sequential configu-
ration when applied to the Seattle and Denver networks. In the case of the Seattle

198

6.2. Frequency Assignment Problem

random4 mono weight4

Best Worst Mean Median Best Worst Mean Median

30 min. 951 1316 1138 1149 857 1314 1063 1069
60 min. 949.5 1278 1074 1067 857 1198 1024 1016

Table 6.17: Quality comparison of the hyperheuristic-based models with a random
scheme for the Seattle network

instance it shows the similarity among the RLD of the hyperheuristic-based method
using 4 worker islands, and the best sequential configuration. Thus, such a parallel
approach and the best sequential configuration require similar times to converge to a
plan with the considered quality. The parallel scheme with 8 worker islands obtains
such a quality level in less time. In the Denver network the hyperheuristics with only
4 worker islands require less time than the best sequential configuration to achieve
similar quality levels. Therefore, for both instances the mono weight produce
many benefits. In fact, by using only 4 processors, the success ratio achieved by the
parallel models is similar - or even better - than the ones achieved by the best sequen-
tial approach. This demonstrates the good behaviour of mono weight, specially
considering the large set of low-level metaheuristics incorporated in the model.

For the remaining configurations a summary of the analysis is shown. Table 6.15
shows, for the Seattle network, the success ratio and the speedup of the parallel
models versus a set of selected sequential configurations. The speedup has been
calculated considering the time required to achieving a 50% of success ratio. The
speedup is marked with a line in the cases in which the sequential configurations were
not able to achieve a success ratio greater than 50%. Although linear speedup is not
achieved when comparing with the best configuration, it must be taken into account
that when solving a problem, the best configuration is not known a priori, so, the
time saving is much greater than the speedup calculated versus the best configura-
tion. In fact, the speedup highly increases when comparing to other configurations.
Moreover, the incorporation of more resources produces a faster convergence to high-
quality results. The speedup achieved by the models which use 8 worker islands is
about the double of the models which use 4 worker islands. Thus, with the usage
of the first resources the testing of each low-level configuration can be avoided; and
with the incorporation of more resources, the speedup can be improved. Table 6.16
shows the same information for the Denver network. The behaviour is very similar
to the one detected in the Seattle instance.

Finally, it is important to check the suitability of the selection scheme performed
by mono weight. The proposed hyperheuristic was compared with a strategy
that randomly changes the configurations executed on the islands. Such a strat-

199

CHAPTER 6. Communication Optimisation Problems

random4 mono weight4

Best Worst Mean Median Best Worst Mean Median

30 min. 86849 89174 87790 87756 85760 88507 87198 87175
60 min. 86390 88620 87224 87201 85465 88037 86677 86553

Table 6.18: Quality comparison of the hyperheuristic-based models with a random
scheme for the Denver network

egy has been denoted by random4. The involved configurations, migration scheme
and stopping criteria were identical to the ones used in the first experiment. Ta-
bles 6.17 and 6.18 show the best, worst, mean and median of the costs achieved by
mono weight4, and random4 approaches when applied to Seattle and Denver in-
stances, respectively. In every case, the mean and median costs achieved by the new
proposed models are better than the ones achieved by making a random mapping.
Moreover, the statistical comparison of random4 with mono weight4 shows the
superiority of mono weight4. As shown, the incorporated hyperheuristic strategies
produce an important improvement when compared to random selection schemes.

Hyperheuristic for multiobjectivised schemes

This section is devoted to perform an analysis of mono weight when it is used
in conjunction with the previously described multiobjectivised schemes. One of the
main drawbacks of the previous approach is that several multiobjectivisations have
to be tested. The study revealed that the performance of the multiobjectivised
schemes depend on the instance to solve. Therefore, the usage of mono weight
might facilitate the application of multiobjectivisation and might reduce the com-
putational and user effort required to solve new network instances. Moreover, it
enables the usage of parallel environments. Tests were run on the hector machine,
the uk’s National Supercomputing Service. The processors used were amd 2.3 ghz
16-core processors. The compiler used was gcc 4.6.1. Due to restriction in the
computational resources, the amount of repetitions performed for each run has been
24 instead of 30.

The aim of the first experiment has been to analyse the capability of the hyper-
heuristic mono weight to obtain high-quality results in a single run while using a
low number of processors. To do this, the mono weight model was executed with
four different migration stages. They were generated by combining two topologies
with two replacement selectors. The tested topologies were the ring and the all.
The considered replacement schemes were the eli and the ham. In every case, an
elitist migration scheme is applied. Specifically, a subpopulation individual is mi-

200

6.2. Frequency Assignment Problem

 650

 700

 750

 800

 850

 900

 950

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
os

t

Time (s)

Seattle Instance - 4 islands

Ham-Ring
Eli-Ring
Ham-All

Eli-All
Seq1

 85000

 85500

 86000

 86500

 87000

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
os

t

Time (s)

Denver Instance - 4 islands

Ham-Ring
Eli-Ring
Ham-All

Eli-All
Seq1

Figure 6.18: Evolution of the mean of the cost - 4 islands

grated when its cost is lower than the cost of any member of its previous generation.
This is checked in every generation. The following nomenclature is used to identify
the different migration stages: Replacement Scheme-Topology. Tests in this experi-
ment considered 4 worker islands (np = 4). The global stopping criterion was set
to 11.5 hours of execution, while the local stopping criterion was set to 10 minutes.
The mono weight model was applied with an adaptation level k = 10, and the
value of β was set up such that 10% of the decisions performed by the hyperheuristic
followed a uniform distribution, i.e. β ∗ nh = 0.1.

A set of 21 multiobjectivised configurations were used as low-level configurations.
They were the same configurations than in previous experiments, i.e. they were made
up by combining seven multiobjectivisation schemes with three different variation
schemes. In order to compare the results of the mono weightmodel, the sequential
versions of the aforementioned 21 low-level configurations were also executed. The
stopping criterion was set to 11.5 hours. The low-level configurations were sorted
based on the mean of the fitness achieved at the end of their executions. An index
based on this order was assigned to each configuration. From now on, the best low-
level configuration, i.e. the one that achieved the lowest mean cost, will be referred
to as seq1, while the worst one will be referred to as seq21.

Figure 6.18 shows, for the Seattle and Denver instances, the trend in the mean of
the cost obtained by the mono weight model with the four migration stages, and
by the best low-level configuration. In both instances, three of the parallel models
were able to improve on the results achieved by seq1. We see that although the
mono weight model used more computational resources than the best sequential
configuration, it achieved better results than seq1. By using the mono weight
model, the requirement of testing each one of the low-level configurations under

201

CHAPTER 6. Communication Optimisation Problems
50

0
60

0
70

0
80

0
90

0

Seattle Instance − 4 islands − 41400s

C
os

t

Ham−Ring Eli−Ring Ham−All Eli−All Seq1

84
00

0
85

00
0

86
00

0

Denver Instance − 4 islands − 41400s

C
os

t

Ham−Ring Eli−Ring Ham−All Eli−All Seq1

Figure 6.19: Boxplots for the Seattle and Denver Instances - 4 islands

Table 6.19: Statistical comparison for the Seattle Instance - 4 islands
Ham-Ring Eli-Ring Ham-All Eli-All Seq1

Ham-Ring ↔ ↔ ↔ ↔ ↔
Eli-Ring ↔ ↔ ↔ ↑ ↔
Ham-All ↔ ↔ ↔ ↔ ↔
Eli-All ↔ ↓ ↔ ↔ ↔
Seq1 ↔ ↔ ↔ ↔ ↔

consideration can be avoided. Thus, by using the mono weightmodel, the amount
of computational resources saved can be quite considerable. In addition, since the
parameter setting stage is alleviated, the user effort required to solve a new network
instance is reduced.

In order to better analyse the results, the boxplots of the cost obtained by each
model at the end of the runs are shown in Figure 6.19. For both instances, the
results yielded by all the approaches were very similar. Table 6.19 shows, for the
Seattle instance, whether the row model is statistically better (↑), not different (↔),
or worse(↓) than the corresponding column model after 11.5 hours of execution. It
reveals that the eli-ringmodel is statistically better than the eli-allmodel. There
are no statistical differences among the remaining models. The same information is
shown in Table 6.21 for the Denver instance. In this case no statistical differences
appear. Consequently, regardless of the migration stage used, the mono weight
model was able to yield competitive frequency plans.

A previous experiment compared different parallel models in terms of the quality
achieved at fixed times. However, it is important to quantify the improvement
achieved by these parallel approaches in terms of the amount of time saved. To do

202

6.2. Frequency Assignment Problem

Table 6.20: Speedup factors for the Seattle Instance - 4 islands

Ham-Ring Eli-Ring Ham-All Eli-All
Seq1 1.23 1.23 1.33 0.28
Seq3 1.23 1.23 1.33 0.28
Seq5 4.92 4.92 5.33 1.14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000

S
uc

ce
ss

 R
at

io

Time (s)

Seattle Instance - 4 islands

Ham-Ring
Eli-Ring
Ham-All

Eli-All
Seq1
Seq3
Seq5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000

S
uc

ce
ss

 R
at

io

Time (s)

Denver Instance - 4 islands

Ham-Ring
Eli-Ring
Ham-All

Eli-All
Seq1
Seq3
Seq5

Figure 6.20: RLDs for the Seattle and Denver Instances - 4 islands

Table 6.21: Statistical comparison for the Denver Instance - 4 islands
Ham-Ring Eli-Ring Ham-All Eli-All Seq1

Ham-Ring ↔ ↔ ↔ ↔ ↔
Eli-Ring ↔ ↔ ↔ ↔ ↔
Ham-All ↔ ↔ ↔ ↔ ↔
Eli-All ↔ ↔ ↔ ↔ ↔
Seq1 ↔ ↔ ↔ ↔ ↔

Table 6.22: Speedup factors for the Denver Instance - 4 islands

Ham-Ring Eli-Ring Ham-All Eli-All
Seq1 1.28 1.63 0.72 1.63
Seq3 2.64 3.36 1.48 3.36
Seq5 3.64 4.63 2.04 4.63

so, the RLDs have been used. In order to establish a high enough quality level, it
was set as the median of the cost obtained by seq5 in 11.5 hours. Figure 6.20 shows,
for the Seattle and Denver instances, the RLDs of the parallel models, together with
the RLDs of the seq1, seq3, and seq5 sequential configurations. It shows the
similarities among the parallel models and seq1, validating the conclusions drawn

203

CHAPTER 6. Communication Optimisation Problems

Table 6.23: Speedup factors for the Seattle Instance - 8, 16, and 32 islands

8 Islands 16 Islands 32 Islands
Ham-Ring 6.37 12.75 17
Eli-Ring 5.66 10.2 12.75
Ham-All 0.75 5.66 7.28
Eli-All 1.02 4.25 2.68

Table 6.24: Statistical comparison for the Seattle Instance - 32 islands
Ham-Ring Eli-Ring Ham-All Eli-All Seq1

Ham-Ring ↔ ↔ ↑ ↑ ↑
Eli-Ring ↔ ↔ ↑ ↑ ↑
Ham-All ↓ ↓ ↔ ↔ ↑
Eli-All ↓ ↓ ↔ ↔ ↔
Seq1 ↓ ↓ ↓ ↔ ↔

in the first experiment. However, some parallel models were able to achieve higher
success ratios than seq1. In addition, the RLDs show the clear superiority of the
parallel models compared to the remaining sequential configurations.
Considering the time required to attain a 50% success ratio, Table 6.20 shows, for the
Seattle instance, the speedup factors obtained by the parallel models with respect
to seq1, seq3, and seq5. The eli-all parallel model was clearly outperformed by
the other ones. In fact, its success ratio of 50% is four times slower than seq1 and
seq3. The best parallel models obtained super-linear speedup when compared with
seq5. This means that the hyperheuristic granted more computational resources to
the best-behaved sequential approaches. Thus, the decision space was explored more
efficiently. Table 6.22 shows the speedup factors for the Denver instance. Similar
conclusions can be drawn for this instance. However, the ham-all model was the
worst-behaved in this case.
Finally, a set of experiments intended to analyse the scalability of themono weight
model was performed. In the previous experiments the mono weight model was
executed with four islands. Differences among the results obtained with different
migration stages are not very clear. However, for a larger number of islands, the dif-
ferences might be more obvious. For instance, consider the ring migration topology
in which each island sends its solutions to another island, versus the all migration
topology, where each island sends its solutions to np− 1 islands. As np increases, so
do the differences between the two topologies. This is why the scalability analysis
was performed taking into consideration the four aforementioned migration stages.
For this analysis, the mono weight model was executed with 8, 16, and 32 islands,
and using the same parameterisation as in the previous experiments.
Considering the Seattle instance, the speedup factors for the different parallel mo-

204

6.2. Frequency Assignment Problem

Table 6.25: Speedup factors for the Denver Instance - 8, 16, and 32 islands

8 Islands 16 Islands 32 Islands
Ham-Ring 11.5 13.8 17.25
Eli-Ring 11.5 17.25 23
Ham-All 8.62 13.8 5.75
Eli-All 6.9 7.66 9.85

Table 6.26: Statistical comparison for the Denver Instance - 32 islands
Ham-Ring Eli-Ring Ham-All Eli-All Seq1

Ham-Ring ↔ ↔ ↑ ↑ ↑
Eli-Ring ↔ ↔ ↑ ↑ ↑
Ham-All ↓ ↓ ↔ ↔ ↑
Eli-All ↓ ↓ ↔ ↔ ↑
Seq1 ↓ ↓ ↓ ↓ ↔

dels, using seq1 as the reference model, are shown in Table 6.23. In this case the
quality level was set as the lowest median of the cost obtained by any of the pa-
rallel models. The speedup factors were calculated considering the time required
to achieving a 50% success ratio. Note that differences among the models are very
noticeable. For example, for 32 islands, the speedup values range from 2.68 to 17.
Moreover, the parallel models which used the ring topology achieved the set qua-
lity level faster than the models that used the all topology. Specifying 32 islands
and a stopping criterion of 11.5 hours, the statistical tests (Table 6.24) confirm the
superiority of those mono weight models that apply the ring topology. The same
analysis was carried out for the Denver instance. The speedup factors are shown in
Table 6.25, while the results of the statistical tests are given in Table 6.26. In this
instance, the superiority of the models that used the ring topology is also clear.
In this experiment, the quality of the frequency plans achieved by the parallel mo-
dels, when a high number of islands are considered, was also analysed. Considering
the Seattle instance, the boxplots of the best and worst parallel models, in terms of
the speedup values obtained with 32 islands, are shown in Figure 6.21. In the case of
the mono weight model with the ham-ring migration stage, the incorporation of
extra islands into the scheme produced a clear decrease in the interference cost. In
contrast, when the eli-all migration stage was incorporated, the mono weight
model was unable to profit from the incorporation of more islands. In the case of
the Denver instance, the boxplots for the best and worst parallel models are shown
in Figures 6.22. For this network, the same conclusions can be drawn. However, the
best and worst migration stages were the eli-ring and ham-all, respectively.
Finally, it is important to note that the best frequency plans for both instances,
previously published in [164], have been improved upon with the models here con-

205

CHAPTER 6. Communication Optimisation Problems
50

0
55

0
60

0
65

0
70

0
75

0

Seattle Instance − Ham−Ring − 41400s

C
os

t

4 islands 8 islands 16 islands 32 islands

50
0

60
0

70
0

80
0

90
0

Seattle Instance − Eli−All − 41400s

C
os

t

4 islands 8 islands 16 islands 32 islands

Figure 6.21: Boxplot for the Seattle Instance with the best and worst migration
schemes

sidered. In the case of the Seattle instance the interference cost was decreased to
486.617. The best frequency plan obtained for the Denver instance has a cost of
83340.2. These frequency plans were obtained using the eli-ring migration with
32 islands.

6.3 Broadcast Operation in Mobile Ad-hoc Net-

works

6.3.1 Introduction

MANETs [169] are fluctuating, self-configuring networks of mobile hosts, called
nodes or devices, connected by wireless links. This kind of network has numer-
ous applications because of its capacity of auto-configuration and its possibilities
of working autonomously or connected to a larger network. No static network in-
frastructure is needed to support the communications between nodes, which are
free to move arbitrarily. Devices in MANETs are usually laptops, pdas, or mobile
phones, equipped with network cards featuring wireless technologies. This implies
that devices communicate within a limited range and also that they can move while
communicating.
Broadcasting is a common operation at the application level and it is also widely
used for solving many network layer problems. It is expected to be performed very
frequently, serving also as a last resort to provide multicast services. Hence, having

206

6.3. Broadcast Operation in Mobile Ad-hoc Networks
83

50
0

84
50

0
85

50
0

86
50

0

Denver Instance − Eli−Ring − 41400s

C
os

t

4 islands 8 islands 16 islands 32 islands

83
50

0
84

50
0

85
50

0
86

50
0

Denver Instance − Ham−All − 41400s

C
os

t

4 islands 8 islands 16 islands 32 islands

Figure 6.22: Boxplot for the Denver Instance with the best and worst migration
schemes

a well-tuned broadcast strategy results in a major impact in network performance.
The optimisation implies satisfying several objectives simultaneously: the number
of reached devices (coverage) must be maximised, a minimum usage of the network
(bandwidth) is desirable, and the process must take a time as short as possible
(duration).

6.3.2 Problem Description

This research focuses on the study of the broadcast operation in a particular kind of
MANETs, the metropolitan MANETs. These MANETs have some specific features
that hinders the testing in real environments. First, the network density is hetero-
geneous. In addition, it is continuously changing because devices in a metropolitan
area move and/or appear/disappear from the environment. For this reason, many
simulation tools have been developed [124]. In this work the Madhoc simulator [123]
has been used. This tool provides a simulation environment for several levels of ser-
vices based on different types of MANETs technologies and for a wide range of
MANET real environments. It also provides implementations of several broadcast
algorithms [249]. From the existing broadcast protocols, the Delayed Flooding with
Cumulative Neighbourhood (DFCN) [125] has been selected because it was specifi-
cally designed to deal with metropolitan MANETs.
DFCN is a deterministic and totally localised algorithm. It uses heuristics based on
the information from one hop. Thus, it achieves a high scalability. The behaviour
of each device when using DFCN is driven by three events: the reception of a

207

CHAPTER 6. Communication Optimisation Problems

message (reactive behaviour), the expiration of the random delay for rebroadcasting
(rad) of a message, and the arrival of a new neighbour to its covered area (proactive
behaviour). When one of these events occurs, DFCN reacts by behaving in a specific
manner [125]. DFCN can be adapted to different environments by configuring a set of
internal parameters. Although DFCN has shown good behaviour with metropolitan
MANETs, the task of configuring such parameters is not trivial, and the proper
operation of the protocol is sensitive to such a configuration. The set of parameters
that must be configured is:

• minG : minimum gain for forwarding a message. The value must be in the
range [0.0, 1.0].

• [lowerRAD, upperRAD]: range values for the rad. The values must be in the
range [0.0, 10.0].

• proD : maximum density for which it is still necessary to use proactive be-
haviour for complementing the reactive behaviour. The value must be in the
range [0, 100].

• safeDensity : maximum density below which DFCN always rebroadcasts. The
value must be in the range [0, 100].

Since the algorithm is used as a black-box, the internal operation of DFCN is not
considered in the design of the optimisers. Given the values of the five DFCN param-
eters and a MANET scenario, the Madhoc tool does the corresponding simulation
and provides an estimate of the three objectives: duration, coverage, and band-
width. The goal is to find the parameters that optimise the DFCN behaviour, i.e.
the set of non-dominated solutions. One possibility to find the most suitable confi-
gurations is to systematically vary each of the five DFCN parameters. However, the
possible parameter combinations are too large and evaluations in the simulator are
computationally expensive - each evaluations takes several seconds. Therefore, such
a technique is unable to obtain good quality solutions in a reasonable amount of
time. Other alternative lies in deeply analysing the problem to extract information
to define a heuristic strategy, but the complexity and stochastic behaviour of the
given problem hinders it. For these reasons, one usual way of affording this problem
is through evolutionary techniques [9].

6.3.3 Proposed Optimisation Schemes

This problem was solved in collaboration with researchers of other universities. Spe-
cifically, the research was done in collaboration with researchers of University of

208

6.3. Broadcast Operation in Mobile Ad-hoc Networks

Malaga, University Carlos III of Madrid, and University of Extremadura. Each
research group implemented and integrated several metaheuristics in the METCO
tool. Then, they were executed collaboratively using the hyperheuristic hv weight.
The set of tested metaheuristics were the following:

• Strength Pareto Evolutionary Algorithm 2 (SPEA2).

• Non-Dominated Sorting Genetic Algorithm II (NSGA-II).

• Indicator-Based Evolutionary Algorithm (IBEA): The non-adaptive and adap-
tive versions were considered.

• Evolution Strategy with NSGA-II (ESN).

• Multi-Objective Particle Swarm Optimisation (MOPSO).

• Multi-Objective Cellular Genetic Algorithm (MOCell).

• Non-dominated Sorting Differential Evolution for Multiobjective Optimisation
(NSDEMO).

The variation scheme of the previous algorithms - for the ones that do not define a
specific variation scheme - was based on using a mutation and a crossover operator.
They were the PM and the SBX operators. Regarding the encoding of the individu-
als, a direct encoding was used. In order to perform a correct simulation, the value
of lowerRAD must be lower than the value of upperRad. In order to force it, the
values of their corresponding genes are interchanged when required.

6.3.4 Experimental Evaluation

In this section the experimental evaluation performed for the broadcast optimisation
problem is presented. The experimental analysis has been performed with an envi-
ronment that represents a mall MANET scenario. The main aim of the analysis has
been to validate the proper behaviour of a parallel scheme based on the hv weight
hyperheuristic. For doing it, such a hyperheuristic has been executed using the
previously presented metaheuristics as low-level configurations. The hv weight
approach has been compared with the sequential version of the metaheuristics and
with other PMOEAs. Specifically, for each implemented metaheuristic a homoge-
neous island-based scheme is considered. Each homogeneous scheme is referred to
as “homo-algorithm”. Also, a heterogeneous scheme that considers the eight im-
plemented metaheuristics has been executed. It is named “heterogeneous”. Every
parallel model was executed considering 8 islands. The subpopulation size on each

209

CHAPTER 6. Communication Optimisation Problems

Table 6.27: Mean hypervolume achieved by the different PMOEAs
Parallel Evaluations limit

Model 5000 10000 25000
hv weight 0.725 0.737 0.746
heterogeneous 0.711 0.721 0.729

homo-SPEA2 0.713 0.724 0.738
homo-NSGA-II 0.712 0.723 0.739

homo-IBEA 0.715 0.724 0.733
homo-adap-IBEA 0.716 0.725 0.733
homo-ESN 0.707 0.718 0.726

homo-MOPSO 0.682 0.683 0.685

homo-MOCell 0.690 0.702 0.712

homo-NSDEMO 0.713 0.720 0.727

island has been fixed to 15 individuals, while the population size for every sequential
execution has been fixed to 100 individuals. The remaining parameterisation of each
metaheuristic was as follows:

• SPEA2: pm = 0.2, pc = 0.9

• NSGA-II: pm = 0.2, pc = 0.9

• IBEA, adaptive-IBEA: pm = 0.2, pc = 0.9, k = 0.002

• ESN: σ = 0.1

• MOPSO: pm = 0.2, divisions in archive = 30

• MOCell: pm = 0.2, pc = 0.9

• NSDEMO: F = 0.5, CR = 1.0

In every execution the same migration scheme was specified. The topology was the
all. The migration probability has been fixed to 0.05 and the number of individuals
to migrate was limited to 4 each time. The migration scheme was the eli-rand, and
the replacement selector was the eli100. The global stopping criterion for every
execution was 25.000 evaluations. hv weight was executed with the following
parameterisation: β = 0.2

8
and k = 5. The local stopping criterion was fixed to 15

generations. In all cases, the final solution was limited to 100 elements.
Tests have been run on a Debian gnu/Linux cluster of 8 Intel R© XeonTM 3.20 Ghz bi-
processor nodes with 1Gb ram. The interconnection network is a Gigabit Ethernet.
The compiler and mpi implementation used were gcc 3.3 and mpich 1.2.7.
The first experiment compares the different aforementioned PMOEAs among them.
For each type of execution, 30 repetitions have been performed. In order to detect

210

6.3. Broadcast Operation in Mobile Ad-hoc Networks

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0 5000 10000 15000 20000 25000

H
yp

er
vo

lu
m

e

Evaluations

HV_Weight
homo-NSGA-II
homo-SPEA2

homo-IBEA
homo-adap-IBEA

heterogeneous

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0 5000 10000 15000 20000 25000

H
yp

er
vo

lu
m

e

Evaluations

HV_Weight
homo-NSDEMO

homo-ESN
homo-MOCeLL
homo-MOPSO

Figure 6.23: Hypervolume achieved by the parallel models

differences between the algorithms within short and long time ranges, three diffe-
rent number of individual evaluation limits have been considered: 5.000, 10.000 and
25.000 evaluations. The computing time of a sequential execution with 25.000 evalu-
ations is approximately 50 hours. Table 6.27 shows the mean hypervolume attained
by each parallel model at the given limits. The hv weight configuration achieves
the best results. The dynamic mapping allows giving more computational resources
to the most suitable algorithms, thus improving upon the results of the heteroge-
neous model. Moreover, the simultaneous usage of different evolutionary algorithms
makes it possible to combine the benefits of each one. Therefore, the results of
every homogeneous island-based model are also improved on. Figure 6.23 presents,
for each model, the mean hypervolume achieved during the executions. It can be
observed the superiority of hv weight for any considered amount of evaluations.
As our interest is mainly focused on the hv weight model, it has been statisti-
cally compared with the remaining PMOEAs. Table 6.27 shows data in bold when
differences between the row model and the hv weight model are significant. The
parallel hyperheuristic achieves a better hypervolume in every case. In the case
of 10.000 evaluations, all differences are significant, except with homo-adap-IBEA,
showing the good performance of the approach.
The second experiment analyses the run-time behaviour of the sequential and para-
llel models. Each sequential configuration, as well as the hv weight and the het-
erogeneous models, were executed using as finalisation condition the achievement of
a certain level of hypervolume quality: the median obtained by “heterogeneous” in
20.000 evaluations in the first experiment. In this way, a high hypervolume is used,
but no so high so that other approaches are not able to reach it. A second stopping
criterion - the execution of a maximum number of 25.000 evaluations - was also
considered. Figure 6.24 shows the RLDs of the models that obtained a success ratio

211

CHAPTER 6. Communication Optimisation Problems

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000

S
u
c
c
e
s
s

r
a
t
i
o

Time(m)

HV_Weight
heterogeneous
adaptive-IBEA

IBEA
NSGA-II
SPEA2

ESN

Figure 6.24: Run length distributions of parallel and sequential approaches

Table 6.28: Speedup of the proposed model and success ratio for sequential models
Sequential Models Heterogeneous Speedup hv weight Speedup

adap-IBEA 3.76 4.92
IBEA 3.76 4.92
NSGA-II 5.17 6.76
SPEA2 5.17 6.76
ESN 7.52 9.84

higher than 50%. The advantages of using the parallel models are clear. Table 6.28
shows the speedup factors of the parallel approaches with respect to the different
sequential schemes. The factors have been calculated considering the time required
to obtaining a 50% of success ratio. The model based on hv weight has obtained
better speedup factor than the heterogeneous scheme. Moreover, high speedup fac-
tors have been obtained, demonstrating the adequate performance of hv weight
for the considered optimisation problem.

212

Chapter

7

Two-dimensional Packing Problem

This chapter is devoted to present a set of problem-dependent techniques for a two-
dimensional packing problem. Such techniques have been merged with the problem-
independent schemes previously presented. The specific version of the packing pro-
blem was proposed in the Genetic and Evolutionary Computation Conference. Re-
sults show the validity of the proposals.

7.1 Introduction

Bin Packing problems are combinatorial NP-hard problems in which objects with
different shapes, volumes and/or areas must be packed into a finite number of bins.
They are closely related to cutting problems. In cutting problem the main goal is
to cut large stock sheets into a set of smaller pieces. Cutting and packing problems
can be classified [86, 251] according to several characteristics. Some of the most
used ones are the number of dimensions (1D, 2D, 3D), the number of available
patterns, the shape of the patterns (regular or irregular), the orientation, and the
objective that must be optimised. Some popular variants are: 2D strip packing [81],
constrained 2D cutting stock [242], knapsack problems [172], packing with cost [46],
and online packing [216]. Cutting and packing problems have many applications and
are widely used inside more complex systems, e.g. filling up containers, optimisation
of the layout of electrical circuits and multiprocessor scheduling.
In the last years, a competition session has been organised inside the Genetic and
Evolutionary Computation Conference (GECCO). Since many participants try to
explore the contest problems, this kind of competition is of great value. Researchers
can apply new advances in the field, thus allowing to compare a large set of different
proposals working on a given specific problem. The contest problems are usually

CHAPTER 7. Two-dimensional Packing Problem

proposed in a way that different areas of evolutionary computation may be explored.
In the GECCO 2008 competition session a variation of a 2D bin packing problem
was proposed. In this research a set of schemes for dealing with such a problem has
been designed. The current best-known solution for the instance proposed in the
contest has been found using the proposals here described.

7.2 Problem Description

The Two-Dimensional Packing Problem (2DPP) is a two-dimensional variation of a
bin packing problem. Problem instances are described by the following data:

• The sizes of a rectangular grid: X, Y .

• The maximum number which can be assigned to a grid position: N . The value
assigned to each grid location is an integer in the range [0, N].

• The scoring or value associated to the appearance of each pair (a, b) where
a, b ∈ [0, N]: v(a, b). Note that v(a, b) need not be the same as v(b, a).

A candidate solution is generated by assigning a number to each grid position. The
objective of the proposed problem is to best pack a grid so that the sum of the point
scores for every pair of adjacent numbers is maximised. Two positions are considered
to be adjacent if they are neighbours in the same row, column, or diagonal of the
grid. Once that a particular pair is collected, it cannot be collected a second time
in the same grid.

Mathematically, the problem objective is to find the grid G which maximises the
fitness function f :

f =
N
∑

a=0

N
∑

b=0

v2(a, b)

where

v2(a, b) =

{

0 if (a, b) are not adjacent in G
v(a, b) if (a, b) are adjacent in G

214

7.3. Proposed Optimisation Schemes

Figure 7.1: Generation of neighbours by the learning process

7.3 Proposed Optimisation Schemes

7.3.1 Local Search

A local search specifically tailored for the 2DPP has been designed. It is based on
a mono-objective stochastic hill-climbing local search. The application of a local
search allows admissible solutions to be achieved in relatively short times. The
applied local search strategy has the following features. For each pair of adjacent grid
positions (i, j) and (k, l), a neighbour is considered. This is illustrated in Figure 7.1.
Each neighbour is generated by assigning the best possible values to the positions
(i, j) and (k, l) (shading positions in Figure 7.1), leaving intact the assignments in
any other grid location. In order to assign the best values to both locations, the
trivial solution involves enumerating all possible pairs for a later selection of the best
one. As such approach is computationally too expensive, a mechanism to prune the
explored values has been used. First, all the possible assignments n ∈ [0,M] to the
grid position (i, j) are considered, and the contribution of each assignment vij(n),
assuming position (k, l) unassigned, is calculated. The same process is performed
for the position (k, l), assuming the position (i, j) unassigned, and thus calculating
vkl(n). The contribution to the objective function obtained by assigning a value a
to the position (i, j), and a value b to the position (k, l), is given by:

vij(a) + vkl(b) + v′(a, b)− vrep (7.1)

where v′(a, b) = v(a, b) + v(b, a) if the pair (a, b) was not already in the grid, or
0 if it was, and vrep is the value associated to pairs that are created by both, the
assignment of the value a to (i, j) and the assignment of the value b to (k, l), which
must be considered only once. An upper bound of such a contribution is given by:

vij(a) + vkl(b) +min(bestV (a), bestV (b)) (7.2)

215

CHAPTER 7. Two-dimensional Packing Problem

where bestV (n) is the maximum value associated to any pair (n,m), m ∈ [0,M], i.e.
max{(v(n,m)+v(m,n)}. Being bestObj the best objective value currently achieved
for an assignment of the positions (i, j) and (k, l), the only values a′, b′ that must
be considered are the ones that satisfy the following inequality:

vij(a
′) + vkl(b

′) +min(bestV (a′), bestV (b′)) > bestObj (7.3)

By omitting the values in which the previous inequality is not satisfied, the as-
signments to be considered are highly reduced, so a large amount of time can be
saved.
Since stochastic hill-climbing has been applied, the order in which neighbours are
analysed is determined in a random way. The local search moves to the first new
generated neighbour that improves on the current solution. Finally, the learning
process stops when none of the neighbours improve on the current solution.

7.3.2 Memetic Schemes

The previous local search has been integrated in a memetic evolutionary approach.
Specifically, the EAIPS scheme described in Chapter 6 has been used. The variation
scheme uses a crossover and a mutation operator. The considered crossover oper-
ator was the Two-Dimensional Substring Crossover (SSX). The tested mutation
operators were the following:

• Uniform Mutation with Range (umr): Each gene is mutated with a probability
between min pm and max pm. In order to perform the new assignment to the
gene, a random value among the admissible ones is selected.

• Uniform Mutation with Domain Information (umd): Each gene is mutated
with a probability between min pm and max pm. In order to perform the
new assignment to the gene, a random value is selected among the ones that
produce a nonzero increase in the fitness value.

• Selective Uniform Mutation (sum): First, the umr operator with probabil-
ities min pm and max pm is applied. Then, the chromosome is considered
as divided in rectangular windows of sizes between min w and max w. The
fitness value associated to each considered window is calculated. The genes
in the window with lowest fitness contribution are randomly mutated with a
probability between minw pm and maxw pm.

• 2D Rotation Mutation (2drot): It is a generalisation of the rotation mutation
suggested in [175]. First, it randomly decides to do column or row rotation.

216

7.3. Proposed Optimisation Schemes

Then, it generates a number n, between 0 and X − 1, when column rotation
is selected or between 0 and Y − 1, when row rotation is selected. Finally,
the columns or rows are rotated n positions, i.e. they are shifted, and the
ones that are pushed off are reinserted at the other end of the grid. Since
this operator does not introduce new values in the grid, it is always used in
combination with any of the other mutation operators.

7.3.3 Multiobjectivised Approaches

A set of multiobjectivised approaches have also been tested. Specifically, the follow-
ing multiobjectivisations have been considered: DCN, ADI, DBI, random, inver-
sion, dcn-thr, and dbi-thr,. The parameter th of the dcn-thr and dbi-thr
multiobjectivisations was set up to the value 0.99. In addition, a multiobjectivi-
sation which considers problem-dependent information (Dependent) has also been
tested. In such a case, the helper-objective has been calculated in the following
way. First, the original 2DPP objective function (f) has been decomposed into
two independent functions f0 and f1, so that f = f0 + f1. The decomposition is
performed in the following way. First, a table containing all possible pairs whose
score is not equal to zero is calculated. Then, this table is sorted based on the score
of the appearance of each pair ρ. The resultant position of each ρ, after the sort,
is denoted as iρ. The value associated to each ρ is taken into account to calculate
the function fobj where obj = iρ mod 2. Finally, f0 is used as the helper-objective.
Likewise, f1 could have been used as the second objective.

In order to solve the multiobjectivised approaches, a multi-objective optimisation
algorithm is required. Two memetic versions of MOEAs have been used. Specifically,
the SPEA2 and NSGA-II have been considered. They have integrated the previously
described local search after the variation scheme. In this case, the variation stage
has been based on using the SSX crossover operator and the umdmutation operator.

7.3.4 Hyperheuristics

The hyperheuristics has also been used for dealing with the 2DPP. They have been
used both with the mono-objective schemes (eaips), and with the multiobjectivised
schemes. In both cases, the hyperheuristic mono weight has been used. In the
case of eaips the different configurations has been made up by considering different
variation stages. In the case of the multiobjectivised schemes, the different configu-
rations have considered different ways of multiobjectivising the 2DPP, and different
MOEAs.

217

CHAPTER 7. Two-dimensional Packing Problem

7.4 Experimental Evaluation

This section is devoted to present the experimental evaluation performed with the
different proposals. Most of the analysis has been performed with the instance
proposed for the contest. Such an instance has the following features: X = 20,
Y = 20, N = 399, and 15962 possible pair scores. The search space of the contest
instance consists of 400400 candidate solutions. The search space can be pruned,
making use of bounds and other exact techniques. However, it is very difficult
to propose an exact approach capable of solving such an instance in a reasonable
amount of time.
In addition, another instance has been recently published. Some analyses with such
an instance have also been performed. In the rest of the chapter we will name it
“small instance”. The small instance is characterised by the following parameters:
X = 10, Y = 10, N = 99, and 9032 possible pair scores.
Tests were run on the hector machine, the uk’s National Supercomputing Service.
The processors used were amd 2.3 ghz 16-core processors. The compiler used was
gcc 4.6.1.

7.4.1 Mono-objective Schemes

This section is devoted to present the results obtained with the mono-objective
schemes. The instance proposed for the contest has been used. First experiment
performs a comparison of the fitness achieved by a set of sequential mono-objective
configurations of eaips and by a parallel version of mono weight that uses such
configurations as low-level schemes. The parameters of eaips have been set up as
follows: InitPSize = 2, SoftBloq = 50, HardBloq = 300, MaxPopSize = 10.
A set of 36 sequential configurations were executed and analysed. The set was made
up by combining 18 different kinds of mutations with 2 different kinds of crossovers:

• 18 different mutations:

– umr with (min pm, max pm) = {(0.01, 0.1), (0.1, 0.15), (0.15, 0.2)} to-
gether with 2drot or alone.

– umd with (min pm, max pm) = {(0.01, 0.1), (0.1, 0.15), (0.15, 0.2)} to-
gether with 2drot or alone.

– sum with (min pm,max pm,minw pm,maxw pm) = {(0.01, 0.1, 0.1, 0.15),
(0.1, 0.15, 0.15, 0.2), (0.15, 0.2, 0.2, 0.25)} and (min w, max w) = (3, 6)
together with 2DRot or alone.

• 2 different crossovers:

218

7.4. Experimental Evaluation

 9.4e+08

 9.5e+08

 9.6e+08

 9.7e+08

 9.8e+08

 9.9e+08

 1e+09

 1.01e+09

 1.02e+09

 0 1000 2000 3000 4000 5000 6000 7000

F
i
t
n
e
s
s

Time (s)

Mono_Weight_16
seq1
seq18
seq36

(a) Evolution of the mean of the fitness

Weight_16 seq1 seq18 seq36

9.
60

e+
08

9.
80

e+
08

1.
00

e+
09

(b) Boxplots in two hours of execution

Figure 7.2: Fitness obtained in the Contest instance

– No crossover

– SSX with pc = 1.

In addition, a parallel version of mono weight that uses the 36 described confi-
gurations was run considering 16 processors. It will be referred to with the label
mono weight16. The sequential and parallel algorithms were executed with a stop-
ping criterion of 2 hours. For the parallel algorithm the local stopping criterion was
fixed to 2 minutes. An asynchronous migration scheme with a migration probability
of 1 was defined. The all topology was used. Migrated individuals are selected
following an elitist scheme, i.e. the best individual is selected to migrate. Replace-
ments were performed following an elitist scheme. They only take place when the
migrated individual is better than any of the individuals in the new island. In such
a case, the individual which is in the first position of the population is replaced.

Sequential algorithms were ordered based on the mean fitness achieved at the end of
the executions. An index based on such an order is assigned to each configuration.
The best sequential execution will be referred to as “seq1”, while the worst one
will be referred to as “seq36”. Figure 7.2 displays - at the left - the evolution of
the mean fitness achieved with the parallel model and with “seq1”, “seq18”, and
“seq36”, i.e. the best, median and worst sequential configurations. The parallel
execution performs much better than any of the sequential configurations. The
boxplots obtained at the end of the executions are also shown in such a figure.

219

CHAPTER 7. Two-dimensional Packing Problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2000 4000 6000 8000 10000 12000 14000

S
u
c
c
e
s
s

r
a
t
i
o

Time(m)

Mono_Weight_16

seq1

Figure 7.3: RLDs of seq1 and mono weight16

The worst single parallel execution performed better than the best single sequential
execution, reflecting the clear superiority of the parallel approach.

Since the parallel executions use more computational resources than the sequential
ones, the improvement achieved by the parallel model must be measured. In order to
measure the improvement of the parallel approach, a second analysis that considers
the run-time behaviour of the sequential and parallel models has been carried out.
The sequential configurations and the parallel model were executed using as finali-
sation condition the achievement of a certain level of quality: the mean achieved by
the best sequential configuration in the first experiment. Since some of the configu-
rations are not able to reach such a quality level, a second stopping criterion - the
execution of a maximum time of 6 hours - was also considered. Figure 7.3 shows
the RLDs for mono weight16 and for the best behaved sequential configuration.
It shows the superiority of the mono weight16 model when compared to “seq1”.
More than half of the configurations were not able to obtain a success ratio greater
than 10% for the considered quality value. This indicates that the speedup of the
parallel model with respect to such configurations is very large. In order to calcu-
late the exact value much longer executions would be needed for such bad-behaved
configurations. Among the 14 configurations which have a success ratio greater than
10%, the configuration “seq1”, “seq7” and ‘seq14” were selected to make a deeper
analysis. Table 7.1 shows the success ratio and the speedup factors to attain a 50%
of success ratio. mono weight16 have obtained a 100% of success ratio and a 5.09
speedup when compared with the best sequential configuration. Although linear
speedup is not achieved, it must be taken into account that when solving a problem,
users don’t know a priori the best configuration, so the time saving is much greater
than the speedup calculated versus the best configuration. In fact, when considering

220

7.4. Experimental Evaluation

Configuration Speedup Success ratio(%)

seq1 5.09 100

seq7 6.9 100

seq14 13.31 83.3

Table 7.1: Speedup of the new parallel model

mono weight16 random16

Time Mean Median Mean Median

30 m 991126233 990615500 987718266 986855500

60 m 996036733 993478000 992013666 991733500

120 m 1004046666 1003205000 995660333 995207000

Table 7.2: Mean and median fitness for mono weight16 and random16

other low-level configurations the speedup factor highly increases.
The last experiment was performed with the aim of checking the suitability of the
scoring and selection schemes. The proposed scheme was compared with a model
that randomly changes the configurations executed on the islands - random16. The
involved configurations, migration scheme and local stopping criteria were similar
to the ones used in mono weight16. In order to provide the results with statistical
confidence and detect differences between the algorithms within short and long time
ranges, three different time limits were considered (30 minutes, 1 hour and 2 hours)
and statistical comparisons were performed. Table 7.2 shows the mean and the
median of the achieved fitness by both models for the considered times. In every
case, the mean and median fitness achieved by mono weight16 is greater than the
ones achieved by making the random mapping. Moreover, the statistical tests show
that the differences between the models have been statistically significant for every
considered stopping criterion.

7.4.2 Multiobjectivised Schemes

This section is devoted to present the results obtained with a set of multiobjectivised
schemes. First, an analysis of several multiobjectivised configurations is performed.
Then, an analysis of the mono weight hyperheuristic, using as low-level strategies
such a set of multiobjectivised configurations, is performed.

Sequential multiobjectivised schemes

The objective of the first experiment has been to analyse the behaviour of multiob-
jectivisation for the 2DPP. Specifically, the effect of the MOEA and the effect of the

221

CHAPTER 7. Two-dimensional Packing Problem

Table 7.3: Original objective function for the multiobjectivised configurations -
Small Instance

Name MOEA Multiobj. Mean Median Max
SEQ1 SPEA2 DBI 5.130 · 108 5.134 · 108 5.152 · 108
SEQ2 SPEA2 DBI-THR 5.129 · 108 5.129 · 108 5.157 · 108
SEQ3 NSGA2 ADI 5.126 · 108 5.125 · 108 5.152 · 108
SEQ4 NSGA2 DCN 5.124 · 108 5.127 · 108 5.142 · 108
SEQ5 SPEA2 DCN 5.120 · 108 5.121 · 108 5.145 · 108
SEQ6 SPEA2 DCN-THR 5.120 · 108 5.118 · 108 5.137 · 108
SEQ7 NSGA2 DBI-THR 5.118 · 108 5.119 · 108 5.143 · 108
SEQ8 NSGA2 DCN-THR 5.118 · 108 5.115 · 108 5.146 · 108
SEQ9 SPEA2 ADI 5.117 · 108 5.112 · 108 5.144 · 108
SEQ10 NSGA2 DBI 5.117 · 108 5.119 · 108 5.139 · 108
SEQ11 NSGA2 Dependent 5.105 · 108 5.102 · 108 5.149 · 108
SEQ12 SPEA2 Dependent 5.104 · 108 5.105 · 108 5.133 · 108
SEQ13 NSGA2 Random 5.103 · 108 5.103 · 108 5.131 · 108
SEQ14 SPEA2 Random 5.099 · 108 5.097 · 108 5.126 · 108
SEQ15 NSGA2 Inversion 5.095 · 108 5.093 · 108 5.127 · 108
SEQ16 SPEA2 Inversion 5.095 · 108 5.097 · 108 5.117 · 108

considered multiobjectivisation approaches over the quality of the obtained solutions
has been studied. Moreover, additional analyses with the aim of discovering whether
the most suitable approach depends on the considered instance of the 2DPP or not
have been carried out. For doing that, 16 different multiobjectivised configurations
have been defined. They have been obtained by combining two different MOEAs
(NSGA-II and SPEA2), with the 8 multiobjectivisation schemes previously descri-
bed. In every configuration, the population and the archive sizes have been fixed to
N = 10 individuals. For the multiobjectivisation approaches that incorporates the
usage of a threshold value, it has been fixed to th = 0.99. The variation stage has
been based on using the best operator found in the previous analysis. They were
the ssx operator with pc = 1, and the umd with min pm = 0.1 and max pm = 0.15.
The stopping criterion has been fixed to 5 hours for the small instance and to 11.5
hours for the contest instance.

Table 7.3 shows, for the small instance and for each tested MA, the mean, the me-
dian, and the maximum of the achieved original objective values. The configurations
have been sorted in terms of their mean values. An index based on such an order

222

7.4. Experimental Evaluation

Table 7.4: Original objective function for the multiobjectivised configurations - Con-
test Instance

Name MOEA Multiobj. Mean Median Max
SEQ1 NSGA2 DCN-THR 1.008 · 109 1.007 · 109 1.017 · 109
SEQ2 SPEA2 DCN-THR 1.007 · 109 1.006 · 109 1.015 · 109
SEQ3 SPEA2 DBI-THR 1.006 · 109 1.007 · 109 1.015 · 109
SEQ4 NSGA2 DBI-THR 1.005 · 109 1.005 · 109 1.015 · 109
SEQ5 SPEA2 DCN 1.004 · 109 1.005 · 109 1.013 · 109
SEQ6 NSGA2 DCN 1.004 · 109 1.005 · 109 1.015 · 109
SEQ7 NSGA2 ADI 1.004 · 109 1.002 · 109 1.015 · 109
SEQ8 SPEA2 ADI 1.002 · 109 1.002 · 109 1.013 · 109
SEQ9 NSGA2 DBI 1.001 · 109 1.001 · 109 1.011 · 109
SEQ10 SPEA2 DBI 9.997 · 108 9.992 · 108 1.009 · 109
SEQ11 SPEA2 Random 9.961 · 108 9.995 · 108 1.004 · 109
SEQ12 NSGA2 Random 9.950 · 108 9.945 · 108 1.004 · 109
SEQ13 NSGA2 Dependent 9.946 · 108 9.952 · 108 1.001 · 109
SEQ14 SPEA2 Dependent 9.946 · 108 9.956 · 108 1.001 · 109
SEQ15 SPEA2 Inversion 9.864 · 108 9.861 · 108 9.938 · 108
SEQ16 NSGA2 Inversion 9.851 · 108 9.850 · 108 9.923 · 108

has been assigned to each configuration. From now on the first configuration, i.e.
the one which has achieved the highest mean of the original objective value, will
be referred to as seq1, while the last one will be referred to as seq16. It can be
observed that differences among the configurations have been noticeable, showing
the importance of correctly selecting the appropriate one. In fact, differences among
seq1 and the rest of the configurations have been statistically significant, except
for the configurations seq2 – seq4. Statistical tests have also confirmed that the
applied multiobjectivisation approach as well as the applied MOEA have really af-
fected the obtained results. For instance, seq1 has been significantly different from
seq10. Such configurations are based on the same multiobjectivisation approach,
but they consider a different MOEA. By this way, it can be noted that the proper
selection of the MOEA has really affected the obtained results. Similarly, seq1
and seq5, which are both based on the SPEA2 have been statistically different.
Since they only differ on the multiobjectivisation approach, the importance of prop-
erly selecting the multiobjectivisation method has also been demonstrated. On the
other hand, statistical tests have shown that the incorporation of a threshold value

223

CHAPTER 7. Two-dimensional Packing Problem

in the tested multiobjectivisation approaches has not affected the obtained results.
The configurations that have applied a multiobjectivisation approach with threshold
have not been statistically different from their homonyms without threshold. For
example, the differences between the results obtained by seq1 and seq2 have not
been statistically significant.

Table 7.4 shows the same information for the contest instance. In this case, no-
ticeable differences among the considered configurations have also appeared. The
results obtained by seq1 have been statistically different from the ones obtained
by the other configurations, apart from the configurations seq2 and seq3. In ad-
dition, it has also been demonstrated by the statistical analysis that changing the
applied MOEA has not produced significant differences on the obtained results. For
example, differences between seq1 and seq2 have not been statistically significant.
In this case, both configurations have applied the same multiobjectivisation method
and have used a different MOEA. It is worthy to mention that this has happened for
every pair of configurations in which the applied multiobjectivisation approach has
been the same and the applied MOEA has been different. However, the statistical
analysis has supported that the applied multiobjectivisation approach has really af-
fected the quality of the obtained solutions. For instance, seq1 has been statistically
different from seq4, and they have applied the dcn-thr and the dbi-thr multiob-
jectivisations, respectively. Finally, it has been statistically demonstrated that the
incorporation of a threshold value in the applied multiobjectivisation methods has
an effect over the obtained results. Only seq5 and the corresponding configuration
which has applied a multiobjectivisation approach with threshold (seq2) have not
presented significant statistical differences. In the rest of the cases, the configura-
tions that have applied a multiobjectivisation approach with threshold have been
statistically different from their homonyms without threshold.

Figure 7.4 shows, for both instances, the evolution of the mean of the original objec-
tive value for several configurations. Once more it can be observed that differences
among the results obtained by the tested configurations are considerable. Although
in some executions stagnation in local optima has appeared, the mean and the me-
dian of the original objective value have kept increasing even after a large amount
of time. In fact, multiobjectivisation has been able to avoid premature convergence
in almost all cases. Considering both tested instances, it is important to remark
that the most suitable configurations have been different. For example, the configu-
ration seq1 for the small instance has been the configuration seq10 for the contest
instance. Similarly, the configuration seq1 for the contest instance has been the
configuration seq8 for the first one. By this way, the most suitable configurations
depend on the features of the considered instance. Given a new instance, it is diffi-
cult to predict which configuration will provide the best results. In addition, if the

224

7.4. Experimental Evaluation

 5.08e+08

 5.09e+08

 5.1e+08

 5.11e+08

 5.12e+08

 5.13e+08

 0 3000 6000 9000 12000 15000 18000

O
rig

in
al

 O
bj

ec
tiv

e

Time (s)

Small Instance - Sequential Models

Seq1
Seq5
Seq9

Seq13
 9.65e+08

 9.7e+08

 9.75e+08

 9.8e+08

 9.85e+08

 9.9e+08

 9.95e+08

 1e+09

 1.005e+09

 1.01e+09

 0 6000 12000 18000 24000 30000 36000

O
rig

in
al

 O
bj

ec
tiv

e

Time (s)

Contest Instance - Sequential Models

Seq1
Seq5
Seq9

Seq13

Figure 7.4: Evolution of the mean of the original objective function obtained with
the multiobjectivised schemes

number of considered configurations is very large, testing each one of them might be
unfeasible. Therefore, the application of a hyperheuristic seems very promising. Fi-
nally, since the sequential models have not converged even after a very large amount
of time, the usage of parallel models also seems a promising approach.

Hyperheuristic for multiobjectivised schemes

The objective of the second experiment has been to analyse the behaviour of the
mono weight hyperheuristic when it is used with multiobjectivised low-level confi-
gurations. Given the importance of the migrations, it has been tested with four mi-
gration stages. They were generated by combining two topologies with two replace-
ment selectors. The tested topologies were the ring and the all. The considered
replacement schemes were the eli and the ham. In every case, an elitist migration
scheme is applied. Specifically, a subpopulation individual is migrated when its cost
is lower than the cost of any member of its previous generation. This is checked
in every generation. The following nomenclature is used to identify the different
migration stages: Replacement Scheme-Topology. A total number of np = 4 islands
have been considered. The global stopping criterion has been fixed to 5 hours of
execution for the small instance, while for the contest instance it has been fixed to
11.5 hours. For both instances, the local stopping criterion has been fixed to 10 min-
utes. The mono weight model has been applied with an adaptation level k = 10,
and the value of β has been fixed in a way that a 10% of the decisions performed
by the hyperheuristic follow a uniform distribution, i.e. β · nh = 0.1. Finally, the
16 multiobjectivised configurations previously analysed have been used as low-level
configurations.

225

CHAPTER 7. Two-dimensional Packing Problem

 5.095e+08

 5.1e+08

 5.105e+08

 5.11e+08

 5.115e+08

 5.12e+08

 5.125e+08

 5.13e+08

 5.135e+08

 5.14e+08

 0 3000 6000 9000 12000 15000 18000

O
rig

in
al

 O
bj

ec
tiv

e

Time (s)

Small Instance - 4 islands

Ring-Ham
Ring-Eli
All-Ham

All-Eli
Seq1

 9.65e+08

 9.7e+08

 9.75e+08

 9.8e+08

 9.85e+08

 9.9e+08

 9.95e+08

 1e+09

 1.005e+09

 1.01e+09

 1.015e+09

 0 6000 12000 18000 24000 30000 36000

O
rig

in
al

 O
bj

ec
tiv

e

Time (s)

Contest Instance - 4 islands

Ring-Ham
Ring-Eli
All-Ham

All-Eli
Seq1

Figure 7.5: Evolution of the mean of the original objective function obtained with
the mono weight model with 4 worker islands

Figure 7.5 shows, for both considered instances, the evolution of the mean of the
original objective value for the mono weight model executed with the four con-
sidered migration stages. In order to compare the results obtained by the parallel
models, it also shows the data of the best sequential configuration (seq1). For both
instances, the parallel models have been able to achieve a higher mean of the orig-
inal objective value than the best sequential approach. Moreover, the differences
among the parallel model which has obtained the highest mean value and the best
sequential approach, for each considered instance, have been statistically significant.
In the case of the small instance, such a parallel approach has applied the migration
stage all-ham, while for the contest one the parallel model which has obtained the
highest mean value has used the migration stage ring-eli.

Figure 7.6 show the boxplots of themono weightmodel executed with the different
migration stages for the small and contest instances. They also show the boxplot of
the corresponding best sequential configuration for each instance. In the case of the
small instance, differences among the parallel approaches are not very noticeable.
However, they are slightly superior to the best sequential approach. In the case of the
contest instance, the hyperheuristic with the migration stage ring-eli is the best-
behaved. Differences between the parallel model which has applied the migration
stage ring-eli and the parallel model using the migration stage all-ham have been
statistically significant.

Finally, it is worthy to mention that by using the parallel model with four processors
it is not necessary to separately test every considered configuration. By this way,
high quality solutions can be achieved by a single execution of the mono weight
model. Therefore, a larger amount of computational resources can be saved.

An additional experiment devoted to analyse the effect caused by the migration

226

7.4. Experimental Evaluation
5.

10
e+

08
5.

12
e+

08
5.

14
e+

08
5.

16
e+

08

Small Instance − 4 islands − 18000s

O
rig

in
al

 O
bj

ec
tiv

e

Ring−Ham Ring−Eli All−Ham All−Eli Seq1

1.
00

0e
+

09
1.

01
0e

+
09

Contest Instance − 4 islands − 41400s

O
rig

in
al

 O
bj

ec
tiv

e

Ring−Ham Ring−Eli All−Ham All−Eli Seq1

Figure 7.6: Boxplots of the obtained fitness with the mono weight model with 4
islands

Table 7.5: Statistical tests of the mono weight model - 16 islands - 5 hours - Small
Instance

Ring-Ham Ring-Eli All-Ham All-Eli
Ring-Ham ↔ ↔ ↑ ↔
Ring-Eli ↔ ↔ ↑ ↔
All-Ham ↓ ↓ ↔ ↔
All-Eli ↔ ↔ ↔ ↔

stage and its relationship with the number of considered islands has been carried
out. In this case, the mono weight model has been executed with the same
parameterisation as in the previous experiment, but using a total number of 8, 16,
and 32 worker islands (np).

Taking into consideration the small instance, statistical differences among the diffe-
rent migration stages have not been significant when the mono weight model has
been applied with 4 and 8 worker islands. However, when the mono weight model
has been executed with 16 and 32 islands, statistical differences among the consi-
dered migration stages have appeared. This means that the proper selection of the
migration stage is more important when the number of considered worker islands
is higher. Tables 7.5 and 7.6 show the statistical significances for the different mi-
gration stages considering 16 and 32 worker islands, respectively. Every cell shows
if the row model is statistically better (↑), not different (↔), or worse(↓) than the
corresponding column model. It can be observed that the mono weight model
which has applied the migration stage all-ham has provided the worst behaviour.

227

CHAPTER 7. Two-dimensional Packing Problem

Table 7.6: Statistical tests of the mono weight model - 32 islands - 5 hours - Small
Instance

Ring-Ham Ring-Eli All-Ham All-Eli
Ring-Ham ↔ ↔ ↑ ↔
Ring-Eli ↔ ↔ ↔ ↔
All-Ham ↓ ↔ ↔ ↔
All-Eli ↔ ↔ ↔ ↔

Table 7.7: Statistical tests of the mono weight model - 4 islands - 11.5 hours -
Contest Instance

Ring-Ham Ring-Eli All-Ham All-Eli
Ring-Ham ↔ ↔ ↔ ↔
Ring-Eli ↔ ↔ ↑ ↔
All-Ham ↔ ↓ ↔ ↔
All-Eli ↔ ↔ ↔ ↔

Table 7.8: Statistical tests of the mono weight model - 8, 16, 32 islands - 11.5
hours - Contest Instance

Ring-Ham Ring-Eli All-Ham All-Eli
Ring-Ham ↔ ↔ ↑ ↑
Ring-Eli ↔ ↔ ↑ ↑
All-Ham ↓ ↓ ↔ ↔
All-Eli ↓ ↓ ↔ ↔

In the case of the contest instance, Table 7.7 shows the results of the statistical tests
for the different migration stages considering 4 worker islands. Similarly, Table 7.8
shows the same information when 8, 16, and 32 islands have been used. The amount
of significant statistical differences has been larger when 8, 16, and 32 islands have
been applied. This confirms that, as in the small instance, the importance of se-
lecting the appropriate migration stage increases when a higher amount of worker
islands are considered. Moreover, except for 4 worker islands, the results obtained
by the models which have applied the migration topology all have been statistically
worse than the results obtained by the models which have made use of the migration
topology ring.
In order to better analyse the importance of selecting the appropriate migration stage
for the mono weight model, another analysis has been carried out. Considering
the mean of the original objective value achieved by the parallel models with 32
islands, the best and worst of them have been selected for each instance. Figure 7.7

228

7.4. Experimental Evaluation
5.

12
e+

08
5.

14
e+

08
5.

16
e+

08

First Instance − Ring−Ham − 18000s

O
rig

in
al

 O
bj

ec
tiv

e

4 islands 8 islands 16 islands 32 islands

5.
11

e+
08

5.
13

e+
08

5.
15

e+
08

First Instance − All−Ham − 18000s

O
rig

in
al

 O
bj

ec
tiv

e

4 islands 8 islands 16 islands 32 islands

Figure 7.7: Boxplots of the mono weight model with the best and worst migration
stages for the Small Instance

1.
00

5e
+

09
1.

01
5e

+
09

1.
02

5e
+

09

Second Instance − Ring−Eli − 41400s

O
rig

in
al

 O
bj

ec
tiv

e

4 islands 8 islands 16 islands 32 islands 1.
00

0e
+

09
1.

01
0e

+
09

1.
02

0e
+

09

Second Instance − All−Ham − 41400s

O
rig

in
al

 O
bj

ec
tiv

e

4 islands 8 islands 16 islands 32 islands

Figure 7.8: Boxplots of the mono weight model with the best and worst migration
stage for the Contest Instance

shows, for the small instance, the boxplots of the best and worst parallel models
when they have been run with up to 32 islands. The same information is shown in
Figure 7.8 for the contest instance. For both instances, it can be observed that the
trend towards obtaining better objective values as the number of islands increases
is clear when the best migration stage has been considered. However, this has not
occurred with the worst migration stage. Finally, it is worthy to mention that
differences between the quality of the solutions obtained by the best and worst
approaches have been considerable.

229

CHAPTER 7. Two-dimensional Packing Problem

The previous analysis has compared different parallel models in terms of the quality
achieved at fixed times. However, it is important to quantify the improvement
achieved by such parallel approaches in terms of the saved time. For doing it, an
additional study based on the usage of the RLDs has been performed. Figure 7.9
shows, for the small instance, the RLDs of the best and worst parallel models with
up to 32 worker islands, respectively. They also include the RLDs of the sequential
configurations seq1 and seq3 so as to compare the results obtained by the parallel
models. The same information is shown in Figure 7.10 for the contest instance.
In order to calculate the RLDs for both instances, the quality level has been fixed
as the median of the original objective value achieved by the configuration seq3.
In the case of the small instance, the parallel models which have applied the best
migration stage have clearly outperformed the sequential configurations, obtaining
higher or the same success ratios in a lower amount of time. In addition, not only
high quality solutions have been achieved by the best parallel model, but also such
solutions have been obtained in less time when the number of worker islands has
been increased. For example, the best parallel models with 16 and 32 worker islands
have been able to achieve a 100% of success ratio, i.e. every execution has reached
the fixed quality level. However, the best parallel model with 32 islands has obtained
such a success ratio in a lower amount of time. Similar conclusions can be extracted
in the case of the parallel model that has used the worst-behaved migration stage.
However, it has obtained solutions with a lower quality level than the ones obtained
by the best parallel model at the end of the executions, as it has been observed in
the previous analysis. Moreover, none of the worst parallel models has been able to
reach a 100% of success ratio. Therefore, selecting the appropriate migration stage
not only affects the quality of the obtained solutions, but also the total amount of
time and processors required to achieve a fixed quality level.

In the case of the contest instance, the parallel model that has applied the best
migration stage with 4 worker islands has behaved similarly than the best sequential
configuration when low success ratios have been considered. Nevertheless, when the
success ratio has risen, differences between both models have become greater in
favour of the parallel model. Taking into consideration the best parallel models
with 8, 16, and 32 worker islands the benefits of adding worker islands have been
noticeable. The different success ratios have been achieved in less time when a
higher amount of islands has been used. In addition, the best parallel models with
16 and 32 islands have been able to achieve a 100% of success ratio. On the other
hand, it can be observed that the behaviour of the parallel model which has applied
the all-ham migration stage has been poor. For example, such a model with 4
worker islands has obtained certain values of the success ratio in a lower amount
of time than the same model using 32 islands. In addition, as in the case of the

230

7.4. Experimental Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
uc

ce
ss

 R
at

io

Time (s)

Small Instance - Ring-Ham

32 islands
16 islands
8 islands
4 islands

Seq1
Seq3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
uc

ce
ss

 R
at

io

Time (s)

Small Instance - All-Ham

32 islands
16 islands
8 islands
4 islands

Seq1
Seq3

Figure 7.9: RLDs of the mono weight model with the best and worst migration
stages for the Small Instance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000

S
uc

ce
ss

 R
at

io

Time (s)

Contest Instance - Ring-Eli

32 islands
16 islands
8 islands
4 islands

Seq1
Seq3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5000 10000 15000 20000 25000 30000 35000 40000

S
uc

ce
ss

 R
at

io

Time (s)

Contest Instance - All-Ham

32 islands
16 islands
8 islands
4 islands

Seq1
Seq3

Figure 7.10: RLDs of the mono weight model with the best and worst migration
stages for the Contest Instance

small instance, none of the parallel models using the worst-behaved migration stage
have achieved a 100% of success ratio. Consequently, increasing the number of
processors has not provided any advantage when the worst migration stage has been
applied. Finally, it is worthy to mention that for this particular instance, changing
the most suitable migration stage has clearly affected the behaviour of the whole
mono weight model, since differences between the best and the worst migration
stages have been more noticeable than for the small instance.

In order to quantify the effects that the migration stage has caused over the scala-
bility of the mono weight model, speedup factors have been calculated using the
data provided by the RLDs. Table 7.9 shows the speedup factors, with regard to
seq1, obtained by the mono weight model when it has been applied with the
corresponding best and worst migration stages to the small instance. In order to

231

CHAPTER 7. Two-dimensional Packing Problem

Table 7.9: Speedup factors of mono weight with the best and worst migration
stages - Small Instance

Best Worst
4 islands 1.71 1.61
8 islands 3.98 1.07
16 islands 6.29 1.21
32 islands 15.73 7.26

Table 7.10: Speedup factors of mono weight with the best and worst migration
stages - Contest Instance

Best Worst
4 islands 2.3 1.64
8 islands 4.10 2.57
16 islands 5.70 1.36
32 islands 18.81 2.90

calculate such factors the following steps have been performed. Firstly, given a
model with np worker islands, a relative speedup factor (spr[np]) has been calculated
with regard to the model with np ÷ 2 worker islands. In the case of the parallel
models with np = 4 islands, the best sequential configuration (seq1) has been used
as reference. For this instance, and for each relative speedup factor, the quality level
has been fixed as the lowest median of the original objective value achieved by both
considered models in 5 hours. The relative speedup is given by the division between
the time invested by the model using a lower number of processors and the time
invested by the model using a higher amount of processors. Such times have been
obtained by considering a 50% of success ratio. Once the relative speedup factors
have been calculated, the resultant speedup factor for the model that has applied
np processors (sp[np]) is calculated as follows:

sp[np] =

{

spr[np] · sp[np÷2] if np 6= 4
spr[4] if np = 4

(7.4)

The resultant speedup factors of the contest instance are shown in Table 7.10. The
procedure to calculate them has been the same as for the small instance, but a time
equal to 11.5 hours has been taken into account.

232

7.4. Experimental Evaluation
5.

11
e+

08
5.

14
e+

08
5.

17
e+

08

Small Instance − Ring−Ham − 7200s

O
rig

in
al

 O
bj

ec
tiv

e

4 isl. 8 isl. 16 isl. 32 isl. 64 isl. 128 isl.

9.
95

0e
+

08
1.

00
5e

+
09

1.
01

5e
+

09

Contest Instance − Ring−Eli − 7200s

O
rig

in
al

 O
bj

ec
tiv

e

4 isl. 8 isl. 16 isl. 32 isl. 64 isl. 128 isl.

Figure 7.11: Boxplots of the mono weight model with the best migration stage
with 64 and 128 islands

For both instances, it can be observed that the speedup factors have increased when
the best parallel model has been applied with a larger amount of worker islands.
For example, in the case of the small instance, the best parallel model with 16
worker islands has obtained a speedup factor equal to 6.29, while the same model
considering 32 islands has achieved a speedup factor equal to 15.73. In this case, the
relative speedup factor calculated for both models has been greater than one. This
means that the model with 32 islands has achieved the fixed quality level in a 50% of
the executions in less time than the model with 16 worker islands. However, this fact
has not happened when the corresponding worst parallel model has been applied to
each instance. For example, in the case of the contest instance, the worst parallel
model with 8 worker islands has obtained a speedup factor equal to 2.57 while the
worst parallel model with 16 worker islands has obtained a speedup factor equal to
1.36. In this case, the relative speedup factor calculated for both models has been
lower than one. This means that the model with a lower number of worker islands
has achieved the fixed quality level in a 50% of the executions in less time than the
model which has considered a larger amount of islands. Therefore, incorporating a
larger amount of processors in the worst-behaved parallel model for each considered
instance has not provided good results.

Finally, the mono weight model using the best-behaved migration stage for each
considered instance has been executed with 64 and 128 worker islands. The para-
meterisation of the mono weight model has been the same than the one applied
in the previous experiments. However, the global stopping criterion has been fixed
to 2 hours due to availability of computational resources.

233

CHAPTER 7. Two-dimensional Packing Problem

Table 7.11: Speedup factors of mono weight with the best migration stage for
both instances

64 islands 128 islands
Small instance 12.58 41.9
Contest instance 20.51 25.02

The boxplots of the mono weight model with up to 128 worker islands applying
the corresponding best-behaved migration stage for each instance are shown in Fig-
ure 7.11. Even with a so large number of worker islands, the quality of the solutions
obtained by mono weight has kept increasing as more resources have been consi-
dered. In general, the larger the number of worker islands, the higher the quality
of the obtained solutions. Nevertheless, some scalability problems have appeared
when the best parallel model has been applied to the small instance with 16 and
64 worker islands. In the case of the contest instance, problems have only appeared
with 64 islands, but it is worthy to mention that the median of the original objective
value has improved with every increase of the number of processors.
Table 7.11 shows the speedup factors, with regard to seq1, of the parallel model
using the best migration stage for each instance. Speedup factors have been obtained
following the same procedure than in the previous experiment. In order to obtain
the relative speedup factors for both instances, the quality level has been fixed as the
lowest median of the fitness of both considered models in 2 hours. The calculated
speedup factors have confirmed the benefits of adding a larger amount of processors.
In the case of the small instance, such benefits have been more noticeable.
The executions with np = 128 islands have been able to provide better results than
the best previously known solution for both instances. In the small instance the
value 517.199.441 has been obtained. In the case of the contest instance a larger
execution which considered a stopping criterion of 15 days was carried out. The
obtained solution - which is the best-known solution - has the value 1.038.329.890.

234

Part IV

Conclusions

Conclusions

Metaheuristics have proven to be adequate techniques for solving complex optimisa-
tion problems. However, solving novel problem and instances requires a large com-
putational and user effort. This research deals with the techniques that facilitate the
usage of metaheuristics. Specifically, a set of hyperheuristics for multi-point meta-
heuristics have been proposed. The defined hyperheuristics are an extension of the
choice-function based schemes. Initially, several schemes were proposed. The ones
which obtained high-quality solutions have been deeply analysed. Several hyper-
heuristic for mono-objective and multi-objective optimisation have been proposed.
They are based on assigning more resources to the configurations that have per-
formed better in previous stages of the optimisation.
In addition, some of the last innovations of optimisation have been analysed. Spe-
cifically, several novel multiobjectivisation schemes have been proposed. The novel
schemes are based on considering the diversity and the quality of the solutions
simultaneously. The optimal usage of such multiobjectivisations requires the spec-
ification of an additional parameter. In order to facilitate their usage, they have
been integrated with the designed hyperheuristics.
The validation of the proposals was initially performed with some well-known mono-
objective and multi-objective optimisation problems. It has been shown that by
properly configuring the hyperheuristics and multiobjectivisations high-quality so-
lutions can be found. In some cases, the time required to converge to high-quality
solutions is larger than the time used by the best considered low-level configurations.
In such cases the advantage is that the manual testing of each low-level configura-
tion can be avoided. In addition, some cases in which the hyperheuristic obtains
better solutions than any of the single low-level configurations have been found. The
reason is that there are some cases in which the relative performance between the
low-level configurations depends on the optimisation stage. Thus, by combining the
advantages of each low-level approach better results can be obtained.
Regarding the parallel approaches, several scalability analyses have been performed.
Adequate speedup factors have been obtained when few processors have been used.
However, when a large amount of processors have been used, the obtained speedup

factors have highly depended on the tackled problem and on the migration stages.
Thus, for large systems it is important to set up a proper migration stage.
Several complex and practical optimisation problems have also been addressed. Spe-
cifically, three problems that arise in the communication field have been studied. In
such cases, several novel schemes have been proposed, and they have been integrated
with the proposed hyperheuristics and multiobjectivisation schemes. The obtained
results confirm the suitability of the proposed schemes. In several instances, the
best-known results have been obtained with the new proposals. In addition, a two-
dimensional packing problem which was proposed in a contest of the GECCO has
been solved. A tailor-made neighbourhood definition was proposed and integrated in
an evolutionary approach that was controlled by the designed hyperheuristics. Mul-
tiobjectivisation was also successfully applied to such a problem. The best-known
results have been obtained with the designed schemes.
Therefore, the proposed algorithmic methods have proven to be effective for a large
number of optimisation problems. It has been shown that the quality of the results
depends on some of the parameters of the methods. Moreover, the most adequate
parameters of the hyperheuristics depend on the problem and instances. However,
it is much easier to configure the designed methods, that to configure the low-
level schemes. In fact, in most of the cases, competent results have been obtained
independently of the tested parameters. In addition, since the usage of parallel
environments has been enabled with the designed methods, the time invested for
obtaining high-quality results has been highly reduced in many cases.
Finally, it is worthy to mention that a new tool that enables the cooperation of
metaheuristics and their usage in sequential and parallel environments has been
developed. The tool allows executing the models developed in this research, as well
as many other schemes designed by other researchers. The functionalities of the
tool can be extended through the definition of plugins, while the kind of execution
to perform can be specified by using a configuration file. This means that it is not
required to know the internals of the tool to use it.
Several lines of future work can be studied. First, some of the ideas that were used to
design some of the hyperheuristics that did not obtain high-quality results might be
carefully analysed. For instance, we believe that the hyperheuristics that are based
on applying an exponential regression to estimate future results might be very useful.
The direct usage of regressions is not adequate because the stochastic behaviour of
the low-level configurations produce several drawbacks. However, we believe that it
is a promising line for future work. In addition, the designed hyperheuristics does not
distinguish between symbolic and numeric parameters. Since numeric parameters
have a structure where relations between different values can be exploited, some
best-suited hyperheuristics might be defined for such cases.

238

Part V

Appendices

Appendix

A

List of Publications

This appendix presents the publications that have been produced as a result of the
research conducted over the course of this PhD. These publications include book
chapters, articles in international journals of relevance to the particular research
field, and contributions to international conferences with review committees for en-
suring the quality and validity of the selected works.

Book Chapters

[1] C. Segura, E. Segredo, and C. León. Evolve - A Bridge Between Probability,
Set Oriented Numerics, and Evolutionary Computation II, chapter Analysing
the Robustness of Multiobjectivisation Approaches Applied to Large Scale Op-
timisation Problems, pages 365 – 391. Advances in Intelligent Systems and
Computing. Springer-Verlag, 2012.

International Journals

[1] J. de Armas, C. Leon, G. Miranda, and C. Segura. Optimisation of a Multi-
Objective Two-Dimensional Strip Packing Problem based on Evolutionary Al-
gorithms. International Journal of Production Research, 48(07):2011–2028, Feb.
2010.

[2] J. de Armas, C. León, G. Miranda, and C. Segura. Remote service to solve the
two-dimensional cutting stock problem: an application to the Canary Islands

INTERNATIONAL CONFERENCES

costume. International Journal of Grid and Web Services, 4:342–351, December
2008.

[3] C. León, G. Miranda, and C. Segura. METCO: A Parallel Plugin-Based Frame-
work for Multi-Objective Optimization. International Journal on Artificial In-
telligence Tools, 18(4):569–588, 2009.

[4] F. Luna, C. Estébanez, C. León, J. Chaves-González, A. Nebro, R. Aler, C. Se-
gura, M. Vega-Rodŕıguez, E. Alba, J. Valls, G. Miranda, and J. Gómez-Pulido.
Optimization algorithms for large-scale real-world instances of the frequency as-
signment problem. Soft Computing - A Fusion of Foundations, Methodologies
and Applications, 15:975–990, 2011.

[5] S. P. Mendes, G. Molina, M. A. Vega-Rodŕıguez, J. A. Gómez-Pulido, Y. Sáez,
G. Miranda, C. Segura, E. Alba, P. Isasi, C. León, and J. M. Sánchez-Pérez.
Benchmarking a wide spectrum of metaheuristic techniques for the radio network
design problem. IEEE Transactions on Evolutionary Computation, 13(5):1133–
1150, Oct. 2009.

[6] C. Segura, G. Miranda, and C. León. Parallel Hyperheuristics for the Frequency
Assignment Problem. Memetic Computing, 3(1):33–49, 2010.

International Conferences

[1] E. Alba, A. Cervantes, J. Gómez, P. Isasi, M. Jaráız, C. León, C. Luque,
F. Luna, G. Miranda, A. Nebro, R. Pérez, and C. Segura. Metaheuristics ap-
proaches for optimal broadcasting design in metropolitan MANETs. In Eleventh
International Conference on Computer Aided Systems Theory (EUROCAST
2007), 2007.

[2] J. d. Armas, C. León, G. Miranda, and C. Segura. Remote Service to Solve
the Two-Dimensional Cutting Stock Problem: An Application to the Canary
Islands Costume. In Proceedings of the 2008 International Conference on Com-
plex, Intelligent and Software Intensive Systems, CISIS ’08, pages 971–976.
IEEE Computer Society, 2008.

[3] O. Gonzalez, C. León, G. Miranda, C. Rodŕıguez, and C. Segura. A parallel
skeleton for the strength pareto evolutionary algorithm 2. In 15th Euromicro
International Conference on Parallel, Distributed and Network-Based Process-
ing (PDP 2007), pages 434–441. IEEE Computer Society, 2007.

242

INTERNATIONAL CONFERENCES

[4] C. Leon, G. Miranda, C. Rodriguez, and C. Segura. A Distributed Parallel
Algorithm to Solve the 2D Cutting Stock Problem. In Euromicro Conference
on Parallel, Distributed, and Network-Based Processing, pages 429–434. IEEE
Computer Society, 2008.

[5] C. Leon, G. Miranda, E. Segredo, and C. Segura. Parallel Library of Multi-
objective Evolutionary Algorithms. Euromicro Conference on Parallel, Dis-
tributed, and Network-Based Processing, pages 28–35, 2009.

[6] C. León, G. Miranda, and C. Segura. Parallel skeleton for multi-objective
optimization. In Proceedings of the 9th annual conference on Genetic and evo-
lutionary computation, GECCO ’07, pages 906–906. ACM, 2007.

[7] C. Leon, G. Miranda, and C. Segura. Optimizing the Configuration of a Broad-
cast Protocol through Parallel Cooperation of Multi-objective Evolutionary Al-
gorithms. In Advanced Engineering Computing and Applications in Sciences,
2008. ADVCOMP ’08. The Second International Conference on, pages 135 –
140, oct. 2008.

[8] C. Leon, G. Miranda, and C. Segura. Parallel hyperheuristic: a self-adaptive
island-based model for multi-objective optimization. In Proceedings of the
10th annual conference on Genetic and evolutionary computation, GECCO ’08,
pages 757–758. ACM, 2008.

[9] C. Leon, G. Miranda, and C. Segura. A memetic algorithm and a parallel
hyperheuristic island-based model for a 2d packing problem. In Proceedings of
the 11th Annual conference on Genetic and evolutionary computation, GECCO
’09, pages 1371–1378. ACM, 2009.

[10] C. León, G. Miranda, C. Rodŕıguez, and C. Segura. 2D Cutting Stock Problem:
A New Parallel Algorithm and Bounds. In A.-M. Kermarrec, L. Bougé, and
T. Priol, editors, Euro-Par 2007 Parallel Processing, volume 4641 of Lecture
Notes in Computer Science, pages 795–804. Springer Berlin / Heidelberg, 2007.

[11] C. León, G. Miranda, E. Segredo, and C. Segura. Parallel Hypervolume-Guided
Hyperheuristic for Adapting the Multi-objective Evolutionary Island Model.
In N. Krasnogor, M. Melián-Batista, J. Pérez, J. Moreno-Vega, and D. Pelta,
editors, Nature Inspired Cooperative Strategies for Optimization (NICSO 2008),
volume 236 of Studies in Computational Intelligence, pages 261–272. Springer
Berlin / Heidelberg, 2009.

243

INTERNATIONAL CONFERENCES

[12] C. León, G. Miranda, and C. Segura. Optimizing the Broadcast in MANETs
Using a Team of Evolutionary Algorithms. In I. Lirkov, S. Margenov, and
J. Wasniewski, editors, Large-Scale Scientific Computing, volume 4818 of Lec-
ture Notes in Computer Science, pages 569–576. Springer Berlin / Heidelberg,
2008.

[13] C. León, G. Miranda, and C. Segura. A Parallel Plugin-Based Framework
for Multi-objective Optimization. In J. Corchado, S. Rodŕıguez, J. Llinas,
and J. Molina, editors, International Symposium on Distributed Computing
and Artificial Intelligence 2008 (DCAI 2008), volume 50 of Advances in Soft
Computing, pages 142–151. Springer Berlin / Heidelberg, 2009.

[14] C. León, G. Miranda, and C. Segura. Hyperheuristics for a dynamic-mapped
multi-objective island-based model. In S. Omatu, M. Rocha, J. Bravo,
F. Fernández, E. Corchado, A. Bustillo, and J. Corchado, editors, Distributed
Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambi-
ent Assisted Living, volume 5518 of Lecture Notes in Computer Science, pages
41–49. Springer Berlin Heidelberg, 2009.

[15] F. Luna, C. Estébanez, C. León, J. M. Chaves-González, E. Alba, R. Aler,
C. Segura, M. A. Vega-Rodŕıguez, A. J. Nebro, J. M. Valls, G. Miranda, and
J. A. Gómez-Pulido. Metaheuristics for solving a real-world frequency assign-
ment problem in GSM networks. In Proceedings of the 10th annual conference
on Genetic and evolutionary computation, GECCO ’08, pages 1579–1586. ACM,
2008.

[16] G. Miranda, J. de Armas, C. Segura, and C. León. Hyperheuristic codification
for the multi-objective 2d guillotine strip packing problem. In IEEE Congress
on Evolutionary Computation, pages 1–8. IEEE, 2010.

[17] E. Segredo, C. Segura, and C. Leon. A multiobjectivised memetic algorithm for
the Frequency Assignment Problem. In 2011 IEEE Congress on Evolutionary
Computation (CEC), pages 1132 –1139, june 2011.

[18] E. Segredo, C. Segura, and C. Leon. Analysing the robustness of multiobjec-
tivisation parameters with large scale optimisation problems. In 2012 IEEE
Congress on Evolutionary Computation (CEC), pages 1–8, june 2012.

[19] E. Segredo, C. Segura, and C. León. On the comparison of parallel island-
based models for the multiobjectivised antenna positioning problem. In
A. König, A. Dengel, K. Hinkelmann, K. Kise, R. Howlett, and L. Jain, editors,

244

INTERNATIONAL CONFERENCES

Knowledge-Based and Intelligent Information and Engineering Systems, volume
6881 of Lecture Notes in Computer Science, pages 32–41. Springer Berlin Hei-
delberg, 2011.

[20] E. Segredo, C. Segura, and C. León. Analysing the adaptation level of parallel
hyperheuristics applied to mono-objective optimisation problems. In D. Pelta,
N. Krasnogor, D. Dumitrescu, C. Chira, and R. Lung, editors, Nature Inspired
Cooperative Strategies for Optimization (NICSO 2011), volume 387 of Studies
in Computational Intelligence, pages 169–182. Springer Berlin / Heidelberg,
2012.

[21] C. Segura, A. Cervantes, A. J. Nebro, M. D. Jaráız-Simón, E. Segredo,
S. Garćıa, F. Luna, J. A. Gómez-Pulido, G. Miranda, C. Luque, E. Alba, M. A.
Vega-Rodŕıguez, C. León, and I. M. Galván. Optimizing the DFCN Broadcast
Protocol with a Parallel Cooperative Strategy of Multi-Objective Evolutionary
Algorithms. In Proceedings of the 5th International Conference on Evolution-
ary Multi-Criterion Optimization, EMO ’09, pages 305–319, Berlin, Heidelberg,
2009. Springer-Verlag.

[22] C. Segura, Y. Gonz’alez, G. Miranda, and C. Le’on. A multi-objective evolu-
tionary approach for the antenna positioning problem. In R. Setchi, I. Jordanov,
R. Howlett, and L. Jain, editors, Knowledge-Based and Intelligent Information
and Engineering Systems, volume 6276 of Lecture Notes in Computer Science,
pages 51–60. Springer Berlin / Heidelberg, 2010.

[23] C. Segura, Y. González, G. Miranda, and C. León. Parallel Hyperheuristics for
the Antenna Positioning Problem. In A. de Leon F. de Carvalho, S. Rodŕıguez-
González, J. De Paz Santana, and J. Rodŕıguez, editors, Distributed Computing
and Artificial Intelligence, volume 79 of Advances in Intelligent and Soft Com-
puting, pages 471–479. Springer Berlin / Heidelberg, 2010.

[24] C. Segura, E. Segredo, Y. González, and C. León. Multiobjectivisation of the
Antenna Positioning Problem. In A. Abraham, J. Corchado, S. González, and
J. De Paz Santana, editors, International Symposium on Distributed Compu-
ting and Artificial Intelligence, volume 91 of Advances in Intelligent and Soft
Computing, pages 319–327. Springer Berlin / Heidelberg, 2011.

[25] C. Segura, E. Segredo, and C. León. Parallel island-based multiobjectivised
memetic algorithms for a 2D packing problem. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation, GECCO ’11, pages 1611–
1618. ACM, 2011.

245

INTERNATIONAL CONFERENCES

[26] C. Segura, E. Segredo, and C. Leon. Analysing the adaptation level of parallel
hyperheuristics applied to multiobjectivised benchmark problems. Euromicro
Conference on Parallel, Distributed, and Network-Based Processing, pages 138–
145, 2012.

246

Bibliography

[1] K. I. Aardal, S. P. M. V. Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sas-
sano. Models and solution techniques for frequency assignment problems.
Annals of Operations Research, 153(1):79–129, 2007.

[2] E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimiza-
tion. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997.

[3] H. A. Abbass and K. Deb. Searching under multi-evolutionary pressures. In
Proceedings of the Fourth Conference on Evolutionary Multi-Criterion Opti-
mization, pages 391–404. Springer-Verlag, 2003.

[4] M. Affenzeller and S. Wagner. Sasegasa: A new generic parallel evolution-
ary algorithm for achieving highest quality results. Journal of Heuristics,
10(3):243–267, May 2004.

[5] S. Ahmadi, R. Barone, P. Cheng, P. Cowling, and B. McCollum. Perturba-
tion based variable neighbourhood search in heuristic space for examination
timetabling problem. In Proceedings of multidisciplinary international schedul-
ing: theory and applications (MISTA 2003), pages 155 – 171, Nottingham,
1993.

[6] E. Alba. Evolutionary algorithms for optimal placement of antennae in radio
network design. Parallel and Distributed Processing Symposium, International,
7:168, 2004.

[7] E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley-
Interscience, 2005.

[8] E. Alba, A. Cervantes, J. Gómez, P. Isasi, M. D. Jaraiz, C. León, C. Luque,
F. Luna, G. Miranda, A. J. Nebro, R. Pérez, and C. Segura. Metaheuris-
tic Approaches for Optimal broadcasting Design in Metropolitan MANETs.

BIBLIOGRAPHY

In 11th International Conference on Computer Aided Systems Theory (EU-
ROCAST’2007), volume 4739 of LNCS, Las Palmas de Gran Canaria, Spain,
February 2007. Springer-Verlag.

[9] E. Alba, B. Dorronso, F. Luna, A. J. Nebro, P. Bouvry, and L. Hogie. A Cel-
lular Multi-Objective Genetic Algorithm for Optimal Broadcasting Strategy
in Metropolitan MANETs. Computer Communications, 30(4):685–697, 2007.

[10] E. Amaldi, A. Capone, F. Malucelli, and C. Mannino. Optimization problems
and models for planning cellular networks. In Handbook of Optimization in
Telecommunication, pages 917–939. Springer, 2006.

[11] I. Araya, B. Neveu, and M.-C. Riff. An Efficient Hyperheuristic for Strip-
Packing Problems. In C. Cotta and K. Sörensen, editors, Adaptive and Mul-
tilevel Metaheuristics, volume 136 of Studies in Computational Intelligence,
pages 61–76. Springer, 2008.

[12] A. Avenali, C. Mannino, and A. Sassano. Minimizing the span of d-walks
to compute optimum frequency assignments. Mathematical Programming,
91(2):357–374, 2002.

[13] M. Ayob and G. Kendall. A monte carlo hyper-heuristic to optimise component
placement sequencing for multi head placement machine. In Proceedings of the
International Conference on Intelligent Technologies (InTech’03), pages 132–
141, Chiang Mai, Thailand, December 17-19 2003.

[14] T. Bäck. The interaction of mutation rate, selection, and self-adaptation
within a genetic algorithm. In Proceedings of the 2nd Conference on Para-
llel Problem Solving from Nature. North-Holland, Amsterdam, 1992.

[15] T. Bäck and H. paul Schwefel. Evolutionary algorithms: Some very old strate-
gies for optimization and adaptation. In New Computing Techniques in Physics
Research II: Proceedings of the Second International Workshop on Software
Engineering, Artificial Intelligence, and Expert Systems for High Energy and
Nuclear Physics, pages 247–254, 1992.

[16] T. Bäck, G. Rüdolph, and H. Schwefel. A survey of evolution strategies. In
Proceedings of the 4th International Conference on Genetic Algorithms, pages
2–9, 1991.

[17] M. Bader-El-Den and R. Poli. Generating sat local-search heuristics using
a gp hyper-heuristic framework. In N. Monmarché, E.-G. Talbi, P. Collet,

248

BIBLIOGRAPHY

M. Schoenauer, and E. Lutton, editors, Artificial Evolution, volume 4926 of
Lecture Notes in Computer Science, pages 37–49. Springer Berlin / Heidelberg,
2008.

[18] T. Baeck, D. Fogel, and Z. Michalewicz, editors. Advanced Algorithms and Op-
erations (Evolutionary Computation). Taylor & Francis, 1 edition, November
2000.

[19] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel Iterative Algo-
rithms: From Sequential to Grid Computing (Chapman & Hall/Crc Numerical
Analy & Scient Comp. Series). Chapman & Hall/CRC, 2007.

[20] R. Bai. An Investigation of Novel Approaches for Optimising Retail Shelf
Space Allocation. PhD thesis, School of Computer Science and Information
Technology, University of Nottingham, Nottingham, United Kingdom, 2005.

[21] S. Baluja. Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. Technical
Report CS-94-163, Carnegie Mellon Univ., Pittsburgh, PA, 1994.

[22] S. Baluja and R. Caruana. Removing the genetics from the standard genetic
algorithm. Number CS-95-141, pages 38–46. Morgan Kaufmann Publishers,
1995.

[23] J. Bather. Decision Theory: An Introduction to Dynamic Programming and
Sequential Decisions. John Wiley & Sons, Inc., New York, NY, USA, 2000.

[24] E. B. Baum. Towards practical ‘neural’ computation for combinatorial opti-
mization problems. In AIP Conference Proceedings 151 on Neural Networks
for Computing, pages 53–58, Woodbury, NY, USA, 1987. American Institute
of Physics Inc.

[25] J. Baxter. Local optima avoidance in depot location. The Journal of the
Operational Research Society, 32(9):pp. 815–819, 1981.

[26] M. Biazzini, B. Banhelyi, A. Montresor, and M. Jelasity. Distributed hyper-
heuristics for real parameter optimization. In Proceedings of the 11th An-
nual conference on Genetic and evolutionary computation, GECCO ’09, pages
1339–1346, New York, NY, USA, 2009. ACM.

[27] S. Binato, W. Hery, D. M. Loewenstern, and M. G. C. Resende. A grasp for
job shop scheduling. In Essays and Surveys on Metaheuristics, pages 59–79.
Kluwer Academic Publishers, 2000.

249

BIBLIOGRAPHY

[28] G. E. Blelloch and B. M. Maggs. Programming parallel algorithms. Commu-
nications of the ACM, 39:85–97, 1996.

[29] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison. ACM Computing Surveys, 35(3):268–
308, 2003.

[30] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Comput. Surv., 35(3):268–308, Sept. 2003.

[31] R. Borndörfer, A. Eisenblätter, M. Grötschel, and A. Martin. Frequency as-
signment in cellular phone networks. Annals of Operations Research, 76:73–93,
1998.

[32] G. Brassard and P. Bratley. Fundamentals of Algorithms. Prentice-Hall, New
Jersey, 1996.

[33] O. Bräysy. A reactive variable neighborhood search for the vehicle-routing
problem with time windows. INFORMS J. on Computing, 15(4):347–368,
2003.

[34] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and E. Zit-
zler. Do additional objectives make a problem harder? In Proceedings of the
9th annual conference on Genetic and evolutionary computation, GECCO ’07,
pages 765–772, New York, NY, USA, 2007. ACM.

[35] L. Bui, H. Abbass, and J. Branke. Multiobjective optimization for dynamic
environments. In The 2005 IEEE Congress on Evolutionary Computation,
volume 3, pages 2349 – 2356 Vol. 3, 2005.

[36] E. Burke, E. Burke, and G. Kendall. Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques. Springer, 2005.

[37] E. Burke, G. Kendall, J. L. Silva, R. O’Brien, and E. Soubeiga. An Ant
Algorithm Hyperheuristic for the Project Presentation Scheduling Problem. In
Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC
2005), volume 3, pages 2263–2270, Edinburgh, Scotland, September 2-5 2005.

[38] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu. Hyper-
heuristics: A Survey of the State of the Art. Technical Report NOTTCS-TR-
SUB-0906241418-2747, School of Computer Science and Information Techno-
logy, University of Nottingham, Computer Science, 2010.

250

BIBLIOGRAPHY

[39] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R. Woodward.
A classification of hyper-heuristics approaches. In M. Gendreau and J.-Y.
Potvin, editors, Handbook of Metaheuristics, volume 57 of International Series
in Operations Research & Management Science, chapter 15, pages 449–468.
Springer, 2nd edition, 2010.

[40] E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg.
Handbook of Meta-heuristics. Kluwer, 2003.

[41] E. K. Burke, G. Kendall, and E. Soubeiga. A Tabu-Search Hyperheuristic for
Timetabling and Rostering. Journal of Heuristics, 9(6):451–470, 2003.

[42] E. K. Burke, J. D. Landa-Silva, and E. Soubeiga. Hyperheuristic approaches
for multiobjective optimisation. In Proceedings of the Fifth Metaheuristics
International Conference (MIC 2003), pages 11.1–11.6, Kyoto, Japan, August
25-28 2003.

[43] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based
hyper-heuristic for educational timetabling problems. European Journal of
Operational Research, 176(1):177–192, January 2007.

[44] E. K. Burke, J. L. Silva, A. Silva, and E. Soubeiga. Multi-objective hyper-
heuristic approaches for space allocation and timetabling. In Meta-heuristics:
Progress as Real Problem Solvers, page 129. Springer, 2003.

[45] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[46] C. L. Li and Z.L. Chen. Binpacking Problem with Concave Costs of Bin
Utilization. Naval Research Logistics, 53:298–308, 2006.

[47] P. Caamaño, A. Prieto, J. Becerra, F. Bellas, and R. Duro. Real-valued multi-
modal fitness landscape characterization for evolution. In K. Wong, B. Mendis,
and A. Bouzerdoum, editors, Neural Information Processing. Theory and Al-
gorithms, volume 6443 of Lecture Notes in Computer Science, pages 567–574.
Springer Berlin / Heidelberg, 2010.

[48] E. Cantú-Paz. A survey of parallel genetic algorithms. Technical report,
IlliGAL 97003. University of Illinois at Urbana-Champaign, 1997.

[49] E. Cantú-Paz. Migration policies, selection pressure, and parallel evolutionary
algorithms. Journal of Heuristics, 7:311–334, 2001.

251

BIBLIOGRAPHY

[50] M. Caserta and S. Voß. Metaheuristics: Intelligent problem solving. In
V. Maniezzo, T. Stützle, S. Voß, R. Sharda, and S. Voß, editors, Matheuristics,
volume 10 of Annals of Information Systems, pages 1–38. Springer US, 2010.

[51] K. Chakhlevitch and P. I. Cowling. Hyperheuristics: Recent developments.
In C. Cotta, M. Sevaux, and K. Sörensen, editors, Adaptive and Multilevel
Metaheuristics, volume 136 of Studies in Computational Intelligence, pages
3–29. Springer, 2008.

[52] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald.
Parallel Programming in OpenMP. Morgan Kaufmann Publishers, 2000.

[53] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared
Memory Parallel Programming. The MIT Press, 2007.

[54] I. Charon. The noising methods: A generalization of some metaheuristics.
European Journal Of Operational Research, 135(1):86–101, 2001.

[55] H. Chen, M. Li, and X. Chen. Using diversity as an additional-objective
in dynamic multi-objective optimization algorithms. In Proceedings of the
2009 Second International Symposium on Electronic Commerce and Security
- Volume 01, ISECS ’09, pages 484–487, Washington, DC, USA, 2009. IEEE
Computer Society.

[56] P.-C. Chen, G. Kendall, and G. Vanden Berghe. An Ant Based Hyper-heuristic
for the Travelling Tournament Problem. In Proceedings of IEEE Symposium of
Computational Intelligence in Scheduling (CISched 2007), pages 19–26, Hon-
olulu, Hawaii, April 2007.

[57] C. A. Coello and G. B. Lamont, editors. Applications of Multi-Objective Evo-
lutionary Algorithms. World Scientific, Singapore, 2004.

[58] C. A. Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Genetic and Evolutionary Com-
putation. Springer, 2007.

[59] C. A. Coello, G. Toscano, and M. Salazar. Handling multiple objectives with
particle swarm optimization. IEEE Transactions on Evolutionary Computa-
tion, 8(3):256–279, 2004.

[60] G. Colombo and S. Allen. Problem decomposition for minimum interference
frequency assignment. In Proceedings of the 2007 IEEE Congress on Evolu-
tionary Computation, CEC 2007, pages 3492–3499, 2007.

252

BIBLIOGRAPHY

[61] S. Cook. The P versus NP problem. In Clay Mathematical Institute; The
Millennium Prize Problem, 2000.

[62] D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V.
Price, editors. New ideas in optimization. McGraw-Hill Ltd., UK, Maidenhead,
UK, England, 1999.

[63] P. Cowling, G. Kendall, and L. Han. An investigation of a hyperheuristic
genetic algorithm applied to a trainer scheduling problem. In Proceedings of
the 2002 IEEE Congress on Evolutionary Computation (CEC 2002), pages
1185–1190, Honolulu, Hawaii, 2002. IEEE Computer Society.

[64] P. Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyperheuristic for
scheduling a sales summit. In Proceedings of 4th Metahuristics International
Conference (MIC 2001), pages 127–131, Porto Portugal, July 16-20 2001.

[65] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A robust optimi-
sation method applied to nurse scheduling. In J. J. M. Guervós, P. Adamidis,
H.-G. Beyer, J. L. F.-V. Mart́ın, and H.-P. Schwefel, editors, PPSN, volume
2439 of Lecture Notes in Computer Science, pages 851–860. Springer, 2002.

[66] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A tool for rapid
prototyping in scheduling and optimisation. In S. Cagoni, J. Gottlieb, E. Hart,
M. Middendorf, and R. Goenther, editors, Applications of Evolutionary Com-
puting: Proceeding of Evo Workshops 2002, volume 2279 of Lecture Notes
in Computer Science, pages 1–10, Kinsale, Ireland, April 3-4 2002. Springer-
Verlag, Springer-Verlag.

[67] P. I. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to
scheduling a sales summit. In Selected papers from the Third International
Conference on Practice and Theory of Automated Timetabling III, PATAT
’00, pages 176–190, London, UK, UK, 2001. Springer-Verlag.

[68] T. Crainic and M. Toulouse. Parallel Meta-Heuristics. Technical Report
CIRRELT-2009-22, May 2009.

[69] P. Crescenzi and V. Kann. A compendium of NP optimization problems.
Technical Report SI/RR-95/02, Dipartimento di Scienze dell’Informazione,
Universita di Roma “La Sapienza”, 1995.

[70] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-
Hill, 2008.

253

BIBLIOGRAPHY

[71] L. Davis. Adapting operator probabilities in genetic algorithms. In Proceedings
of the third international conference on Genetic algorithms, pages 61–69, San
Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[72] J. de Armas, G. Miranda, and C. León. Hyperheuristic encoding scheme for
multi-objective guillotine cutting problems. In Proceedings of the 13th an-
nual conference on Genetic and evolutionary computation, GECCO ’11, pages
1683–1690, New York, NY, USA, 2011. ACM.

[73] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, Ann Arbor, MI, USA, 1975.

[74] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
Chichester, U.K., 2001.

[75] K. Deb. Evolutionary multi-objective optimization without additional param-
eters. In Lobo et al. [156], pages 241–257.

[76] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search
space. Complex Systems, 9:115–148, 1995.

[77] K. Deb and M. Goyal. A Combined Genetic Adaptive Search (GeneAS) for
Engineering Design. Computer Science and Informatics, 26(4):30–45, 1996.

[78] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2002.

[79] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for
Evolutionary Multi-Objective Optimization. Technical Report 112, Computer
Engineering and Networks Laboratory (TIK), Zurich, Switzerland, 2001.

[80] J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research, 7:1–30, 2006.

[81] T. Dereli and G. S. Das. A hybrid simulated-annealing algorithm for two-
dimensional strip packing problem. In 8th International Conference on Adap-
tive and Natural Computing Algorithms, volume 4431 of LNCS, pages 508–516.
Warsaw, Poland, Springer Berlin, April 2007.

[82] J. Dongarra. High Performance Computing: Technology, Methods and Appli-
cations. Elsevier, New York, 1995.

254

BIBLIOGRAPHY

[83] J. Dongarra et al. A Users’ Guide to PVM Parallel Virtual Machine, 1991.
http://www-unix.mcs.anl.gov/mpi.

[84] K. Dowsland, E. Soubeiga, and E. Burke. A Simulated Annealing Hyper-
heuristic for Determining Shipper Sizes. European Journal of Operational
Research, 179(3):759–774, June 2007.

[85] R. Duncan. A survey of parallel computer architectures. Computer, 23:5–16,
February 1990.

[86] H. Dyckhoff. A Typology of Cutting and Packing Problems. European Journal
of Operational Research, 44(2):145–159, 1990.

[87] R. C. Eberhart, Y. Shi, and J. Kennedy. Swarm Intelligence. Morgan Kauf-
mann (The Morgan Kaufmann Series in Evolutionary Computation), 1 edition,
Apr. 2001.

[88] F. Y. Edgeworth. Mathematical Psychics. Number edgeworth1881 in History
of Economic Thought Books. McMaster University Archive for the History of
Economic Thought, 1881.

[89] J. A. Egea, M. Rodŕıguez-Fernández, J. R. Banga, and R. Mart́ı. Scatter
search for chemical and bio-process optimization. J. of Global Optimization,
37(3):481–503, March 2007.

[90] A. Eiben and T. Bäck. An empirical investigation of multi-parent recombina-
tion operators in evolution strategies. Evolutionary Computation, 5(3):347–
365, 1997.

[91] A. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolution-
ary algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124
–141, jul 1999.

[92] A. Eiben and J. Smith. Introduction to Evolutionary Computing. Natural
Computing Series. Springer, 2003.

[93] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing (Natural
Computing Series). Springer, Oct. 2008.

[94] H. Esbensen and E. Kuh. Design space exploration using the genetic algorithm.
In Circuits and Systems, 1996. ISCAS ’96., Connecting the World., 1996 IEEE
International Symposium on, volume 4, pages 500 –503 vol.4, may 1996.

255

BIBLIOGRAPHY

[95] L. Eshelman. The chc adaptive search algorithm. In G. Rawlins, editor,
Foudations of Genetic Algorithms, pages 265–283. Morgan Kaufmann, 1990.

[96] L. J. Eshelman and D. J. Schaffer. Preventing Premature Convergence in
Genetic Algorithms by Preventing Incest. In R. K. Belew and L. B. Booker,
editors, Proceedings of the Fourth International Conference on Genetic Algo-
rithms, pages 115–122. San Francisco, CA: Morgan Kaufmann, 1991.

[97] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computation-
ally difficult set covering problem. Operations Research Letters, 8(2):67 – 71,
1989.

[98] T. A. Feo, M. G. C. Resende, and S. H. Smith. A greedy randomized adap-
tive search procedure for maximum independent set. Operations Research,
42(5):pp. 860–878, 1994.

[99] M. Fischetti, C. Lepschy, G. Minerva, G. Romanin-Jacur, and E. Toto. Fre-
quency assignment in mobile radio systems using branch-and-cut techniques.
European Journal of Operational Research, 123(2):241 – 255, 2000.

[100] H. Fisher and G. L. Thompson. Probabilistic learning combinations of local
job-shop scheduling rules. In Factory Scheuling Conference, Carnegie Institute
of Technology, 1961.

[101] M. Flynn. Some Computer Organizations and Their Effectiveness. IEEE
Trans. Comput., C-21:948+, 1972.

[102] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence through Simulated
Evolution. Wiley, Chichester, UK, 1966.

[103] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evol. Comput., 3(1):1–16, Mar. 1995.

[104] C. M. Fonseca and P. J. Fleming. On the performance assessment and com-
parison of stochastic multiobjective optimizers. In Proceedings of the 4th In-
ternational Conference on Parallel Problem Solving from Nature, PPSN IV,
pages 584–593, London, UK, UK, 1996. Springer-Verlag.

[105] L. D. Fosdick, E. R. Jessup, G. Domik, and C. J. C. Schauble. An Introduction
to High-performance Scientific Computing. MIT Press, 1996.

256

BIBLIOGRAPHY

[106] P. Garg. A comparison between memetic algorithm and genetic algorithm
for the cryptanalysis of simplified data encryption standard algorithm. Inter-
national Journal of Network Security & Its Applications, 1(1):34 – 42, April
2009.

[107] P. Garrido and C. Castro. Stable solving of cvrps using hyperheuristics. In
Proceedings of the 11th Annual conference on Genetic and evolutionary com-
putation, GECCO ’09, pages 255–262, New York, NY, USA, 2009. ACM.

[108] A. Ghosh and S. Dehuri. Evolutionary algorithms for multi-criterion optimiza-
tion: a survey. International Journal of Computing & Information Sciences,
2(1):38–57, April 2004.

[109] C. Glaßer, S. Reith, and H. Vollmer. The complexity of base station positioning
in cellular networks. Discrete Applied Mathematics, 148(1):1–12, 2005.

[110] F. Glober. Parametric combinations of local job shop scheduling rules. Tech-
nical Report 117, Carnegie Mellon University, Pittsburgh, USA, 1963.

[111] F. Glover and G. A. Kochenberger, editors. Handbook of Metaheuristics. Klu-
ver Academic Publishers, 2003.

[112] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1998.

[113] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path
relinking. Control and cybernetics Journal, 39:653–684, 2000.

[114] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Reading, Massachusetts,
1989.

[115] V. Granville, M. Krivanek, and J.-P. Rasson. Simulated annealing: a proof of
convergence. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 16(6):652 –656, jun 1994.

[116] J. Gratch and S. Chien. Learning search control knowledge for the deep space
network scheduling problem. Technical report, Champaign, IL, USA, 1993.

[117] D. Greiner, J. Emperador, G. Winter, and B. Galván. Improving compu-
tational mechanics optimum design using helper objectives: An application
in frame bar structures. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu,
and T. Murata, editors, Evolutionary Multi-Criterion Optimization, volume
4403 of Lecture Notes in Computer Science, pages 575–589. Springer Berlin /
Heidelberg, 2007.

257

BIBLIOGRAPHY

[118] P. Greistorfer. A tabu scatter search metaheuristic for the arc routing problem.
Comput. Ind. Eng., 44(2):249–266, Feb. 2003.

[119] W. Hale. Frequency assignment: Theory and applications. Proceedings of the
IEEE, 68(12):1497 – 1514, dec. 1980.

[120] L. Han and G. Kendall. Guided operators for a hyper-heuristic genetic algo-
rithm. In T. Gedeon and L. Fung, editors, AI 2003: Advances in Artificial
Intelligence, volume 2903 of Lecture Notes in Computer Science, pages 807–
820. Springer Berlin / Heidelberg, 2003.

[121] J. Handl, S. C. Lovell, and J. Knowles. Multiobjectivization by decomposition
of scalar cost functions. In Proceedings of the 10th international conference on
Parallel Problem Solving from Nature: PPSN X, pages 31–40, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[122] P. B. Hansen. Model programs for computational science: A programming
methodology for multicomputers. Concurrency - Practice and Experience,
pages 407–423, 1993.

[123] L. Hogie. Mobile Ad Hoc networks: modelling, simulation and broadcast-based
applications. PhD thesis, Le Havre University and Luxembourg University,
2007.

[124] L. Hogie, P. Bouvry, and F. Guinand. An Overview of MANETs Simulation.
Electronics Notes in Theorical Computer Science, 150(1):81–101, 2006.

[125] L. Hogie, M. Seredynski, F. Guinand, and P. Bouvry. A Bandwidth-Efficient
Broadcasting Protocol for Mobile Multi-hop Ad hoc Networks. IEEE, 2006.

[126] J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI, USA, 1975.

[127] T.-P. Hong, M.-W. Tsai, and T.-K. Liu. Two-dimentional encoding schema
and genetic operators. In JCIS. Atlantis Press, 2006.

[128] H. Hoos and T. Stützle. Stochastic local search: foundations and applications.
The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann
Publishers, 2005.

[129] J. Horn and et al. A Niched Pareto Genetic Algorithm for Multiobjective
Optimization. In Proceedings of the First IEEE Conference on Evolutionary
Computation, volume 1, pages 82–87, 1994.

258

BIBLIOGRAPHY

[130] S. Huband, P. Hingston, L. Barone, and L. While. A review of multiobjective
test problems and a scalable test problem toolkit. Evolutionary Computation,
IEEE Transactions on, 10(5):477 –506, oct. 2006.

[131] A. W. Iorio and X. Li. Solving rotated multi-objective optimization problems
using differential evolution. In Proceedings of AI 2004: Advances in Artificial
Intelligence, pages 861–872. LNAI 3339, Springer-Verlag, 2004.

[132] H. Ishibuchi, Y. Hitotsuyanagi, and Y. Nojima. An empirical study on
the specification of the local search application probability in multiobjective
memetic algorithms. In Proceedings of the 2007 IEEE Congress on Evolution-
ary Computation, CEC 2007, pages 2788 –2795, sept. 2007.

[133] H. Ishibuchi and T. Murata. Multi-Objective Genetic Local Search Algo-
rithm. In T. Fukuda and T. Furuhashi, editors, Proceedings of the 1996 Inter-
national Conference on Evolutionary Computation, pages 119–124, Nagoya,
Japan, 1996. IEEE.

[134] A. Jain and D. Fogel. Case studies in applying fitness distributions in evolu-
tionary algorithms ii. comparing the improvements from crossover and gaus-
sian mutation on simple neural networks. In Proc. of the 2000 IEEE Sym-
posium on Combinations of Evolutionary Computation and Neural Networks,
pages 91 –97, 2000.

[135] M. T. Jensen. Helper-objectives: Using multi-objective evolutionary algo-
rithms for single-objective optimisation. Journal of Mathematical Modelling
and Algorithms, 3:323–347, 2004.

[136] D. E. Joslin and D. P. Clements. ”squeaky wheel” optimization. J. Artif. Int.
Res., 10(1):353–373, May 1999.

[137] M. Jähne, X. Li, and J. Branke. Evolutionary algorithms and multi-
objectivization for the travelling salesman problem. In F. Rothlauf, editor,
Genetic and Evolutionary Computation Conference, pages 595–602, 2009.

[138] G. Kendall, P. Cowling, and E. Soubeiga. Choice function and random hy-
perheuristics. In Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution And Learning (SEAL 2002), pages 667–671, Singapore, Nov 2002.

[139] G. Kendall and M. Mohamad. Channel Assignment in Cellular Communi-
cation Using a Great Deluge Hyper-Heuristic. In Proceedings of the 2004
IEEE International Conference on Networks (ICON), pages 769–773, Singa-
pore, November 2004.

259

BIBLIOGRAPHY

[140] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Net-
works, 1995. Proceedings., IEEE International Conference on, volume 4, pages
1942 –1948 vol.4, nov/dec 1995.

[141] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4589):671–680, May 1983.

[142] J. Knowles. A summary-attainment-surface plotting method for visualizing
the performance of stochastic multiobjective optimizers. In Proceedings of the
5th International Conference on Intelligent Systems Design and Applications,
ISDA ’05, pages 552–557, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[143] J. Knowles and D. Corne. On metrics for comparing nondominated sets. In
Congress on Evolutionary Computation (CEC’2002), volume 1, pages 711–
716, Piscataway, NJ, May 2002. IEEE Service Center.

[144] J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assess-
ment of Stochastic Multiobjective Optimizers. TIK Report 214, Computer
Engineering and Networks Laboratory (TIK), Zurich, Switzerland, 2006.

[145] J. D. Knowles and D. W. Corne. Approximating the nondominated front using
the pareto archived evolution strategy. Evolutionary Computation, 8(2):149–
172, 2000.

[146] J. D. Knowles, R. A. Watson, and D. Corne. Reducing local optima in single-
objective problems by multi-objectivization. In Proceedings of the First Inter-
national Conference on Evolutionary Multi-Criterion Optimization, EMO ’01,
pages 269–283, London, UK, 2001. Springer-Verlag.

[147] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, Germany, 3rd edition, 2006.

[148] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection (Complex Adaptive Systems). A Bradford Book, 1
edition, Dec. 1992.

[149] A. M. J. Kuurne. On GSM mobile measurement based interference matrix
generation. In IEEE 55th Vehicular Technology Conference, VTC Spring 2002,
pages 1965 – 1969, 2002.

260

BIBLIOGRAPHY

[150] H. lan Fang, H. lan Fang, P. Ross, P. Ross, D. Corne, and D. Corne. A
promising genetic algorithm approach to job-shop scheduling, rescheduling,
and open-shop scheduling problems. In Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 375–382. Morgan Kaufmann, 1993.

[151] C. León, G. Miranda, and C. Rodŕıguez. Optimization techniques for solving
complex problems, chapter Divide and Conquer Advanced Techniques, pages
179–192. Wiley, 2008.

[152] C. León, G. Miranda, and C. Segura. METCO: A Parallel Plugin-Based
Framework for Multi-Objective Optimization. International Journal on Arti-
ficial Intelligence Tools, 18(4):569–588, 2009.

[153] Z.-f. Z. Li-xiao Ma, Kun-qi Liu and N. Li. Exploring the effects of lamarckian
evolution and baldwin effect in differential evolution. In Communications in
Computer and Information Science, volume 107 of Computational Intelligence
and Intelligent Systems, pages 127–136. Springer, 2010.

[154] R. F. Linton and T. B. Carroll. Computational Optimization: New Research
Developments. Nova Science Publishers Inc, 2010.

[155] X. Liu, P. M. Pardalos, S. Rajasekaran, and M. G. C. Resende. A GRASP for
Frequency Assignment in Mobile Radio Networks. In B. Badrinath, F. Hsu,
P. Pardalos, and S.Rajasekaran, editors, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, volume 52, pages 195–201, 2000.

[156] F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors. Parameter Setting in
Evolutionary Algorithms, volume 54 of Studies in Computational Intelligence.
Springer, 2007.

[157] D. Lochtefeld and F. Ciarallo. Multiobjectivization via helper-objectives with
the tunable objectives problem. IEEE Transactions on Evolutionary Compu-
tation, 16(3):373 –390, june 2012.

[158] D. F. Lochtefeld. Multi-objectivization in Genetic Algorithms. PhD thesis,
2011.

[159] D. F. Lochtefeld and F. W. Ciarallo. Helper-objective optimization strategies
for the job-shop scheduling problem. Applied Soft Computing, 11(6):4161 –
4174, 2011.

261

BIBLIOGRAPHY

[160] S. Louis and G. J. E. Rawlins. Pareto optimality, ga-easiness and deception.
In Proceedings of the Fifth International Conference on Genetic Algorithms,
pages 118–123. Morgan Kaufmann, 1993.

[161] H. R. Lourenço, O. C. Marin, and T. Stützle. Handbook of Metaheuristics,
chapter Iterated Local Search, pages 321–353. Kluver Academic Publishers,
2003.

[162] M. Lozano, D. Molina, and F. Herrera. Editorial Scalability of Evolutionary
Algorithms and Other Metaheuristics for Large-scale Continuous Optimization
Problems. Soft Computing - A Fusion of Foundations, Methodologies and
Applications, pages 1–3, 2010.

[163] F. Luna. Metaheuŕısticas avanzadas para problemas reales en redes de teleco-
municaciones. PhD thesis, Malga, Spain, Abril 2008.

[164] F. Luna, C. Blum, E. Alba, and A. Nebro. ACO vs EAs for solving a real-
world frequency assignment problem in GSM networks. In Proceedings of the
2007 Genetic and Evolutionary Computation Conference, pages 94–101, 2007.

[165] F. Luna, C. Estébanez, C. León, J. M. Chaves-González, E. Alba, R. Aler,
C. Segura, M. A. Vega-Rodŕıguez, A. J. Nebro, J. M. Valls, G. Miranda,
and J. A. Gómez-Pulido. Metaheuristics for solving a real-world frequency
assignment problem in GSM networks. In Proceedings of the 10th annual con-
ference on Genetic and evolutionary computation, GECCO ’08, pages 1579–
1586. ACM, 2008.

[166] F. Luna, C. Estébanez, C. León, J. Chaves-González, A. Nebro, R. Aler,
C. Segura, M. Vega-Rodŕıguez, E. Alba, J. Valls, G. Miranda, and J. Gómez-
Pulido. Optimization algorithms for large-scale real-world instances of the
frequency assignment problem. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 15:975–990, 2011.

[167] F. Luna, C. Estébanez, C. León, J. M. Chaves-González, E. Alba, R. Aler,
C. Segura, M. A. Vega-Rodŕıguez, A. J. Nebro, J. M. Valls, G. Miranda, and
J. Gómez-Pulido. Metaheuristics for Solving a Real-World Frequency Assign-
ment Problem in GSM Networks. In Genetic and Evolutionary Computation
Conference, pages 1579–1586, Atlanta, U.S.A., July 2008. ACM.

[168] A. Lusa and C. N. Potts. A variable neighbourhood search algorithm for the
constrained task allocation problem. The Journal of the Operational Research
Society, 59(6):pp. 812–822, 2008.

262

BIBLIOGRAPHY

[169] J. Macker and M. Corson. Mobile Ad Hoc Networking and the IETF. ACM
Mobile Computing and Communications Review, 2(1), 1998.

[170] C. Mannino and A. Sassano. An enumerative algorithm for the frequency
assignment problem. Discrete Appl. Math., 129(1):155–169, June 2003.

[171] E. Marchiori. Genetic, iterated and multistart local search for the maximum
clique problem. In Proceedings of the Applications of Evolutionary Compu-
ting on EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN, pages
112–121, London, UK, UK, 2002. Springer-Verlag.

[172] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-
plementations. John Wiley & Sons Ltd, 1990.

[173] O. Martin and S. Otto. Combining simulated annealing with local search
heuristics. Annals of Operations Research, 63:57–75, 1996.

[174] O. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for the
traveling salesman problem. Complex Systems, 5:299–326, 1991.

[175] H. Mauch. Closest Substring Problem - Results from an Evolutionary Al-
gorithm. In 11th International Conference on Neural Information Process-
ing (ICONIP), volume 3316 of LNCS, pages 205–211, Calcutta, India, 2004.
Springer.

[176] S. P. Mendes, G. Molina, M. A. Vega-Rodŕıguez, J. A. Gómez-Pulido, Y. Sáez,
G. Miranda, C. Segura, E. Alba, P. Isasi, C. León, and J. M. Sánchez-
Pérez. Benchmarking a wide spectrum of metaheuristic techniques for the
radio network design problem. IEEE Transactions on Evolutionary Computa-
tion, 13(5):1133–1150, Oct. 2009.

[177] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard, 1994. http://www-unix.mcs.anl.gov/mpi.

[178] H. Meunier, E.-G. Talbi, and P. REININGER. A multiobjective genetic algo-
rithm for radio network optimization. In In Proceedings of the 2000 Congress
on Evolutionary Computation, pages 317–324. IEEE Press, 2000.

[179] E. Mezura-Montes and A. Palomeque-Ortiz. Self-adaptive and deterministic
parameter control in differential evolution for constrained optimization. In
E. Mezura-Montes, editor, Constraint-Handling in Evolutionary Optimization,
volume 198 of Studies in Computational Intelligence, pages 95–120. Springer
Berlin Heidelberg, 2009.

263

BIBLIOGRAPHY

[180] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer,
December 2004.

[181] S. Minton. Automatically configuring constraint satisfaction programs: A case
study. Constraints, pages 7–43, 1996.

[182] G. Miranda. Algorithmic Skeletons for Combinatorial Optimization - Paral-
lelizations and Applications. PhD thesis, Tenerife, Spain, May 2009.

[183] M. Mitchell and C. E. Taylor. Evolutionary computation: An overview. An-
nual Review of Ecology and Systematics, 30(1):593–616, 1999.

[184] N. Mladenović and P. Hansen. Variable neighborhood search. Computers &
Operations Research, 24(11):1097 – 1100, 1997.

[185] G. E. Moore. Cramming more components onto integrated circuits. Electron-
ics, 38(8), April 1965.

[186] P. Moscato. On evolution, search, optimization, genetic algorithms and mar-
tial arts: Towards memetic algorithms. Technical Report C3P Report 826,
California Institute of Technology, 1989.

[187] M. Mouly and M. B. Paulet. The GSM System for Mobile Communications.
Mouly et Paulet, Palaiseau, 1992.

[188] J.-B. Mouret. Novelty-based multiobjectivization. In S. Doncieux,
N. Bredèche, and J.-B. Mouret, editors, New Horizons in Evolutionary
Robotics, volume 341 of Studies in Computational Intelligence, pages 139–154.
Springer Berlin / Heidelberg, 2011.

[189] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. A cel-
lular genetic algorithm for multiobjective optimization. In D. A. Pelta and
N. Krasnogor, editors, Proceedings of the Workshop on Nature Inspired Co-
operative Strategies for Optimization (NICSO 2006), pages 25–36, Granada,
Spain, 2006.

[190] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. Design is-
sues in a multiobjective cellular genetic algorithm. In S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion
Optimization. 4th International Conference, EMO 2007, volume 4403 of Lec-
ture Notes in Computer Science, pages 126–140. Springer, 2007.

264

BIBLIOGRAPHY

[191] F. Neri, C. Cotta, and P. Moscato. Handbook of Memetic Algorithms. Studies
in Computational Intelligence. Springer, 2011.

[192] F. Neumann and I. Wegener. Can single-objective optimization profit from
multiobjective optimization? In J. Knowles, D. Corne, K. Deb, and D. R.
Chair, editors, Multiobjective Problem Solving from Nature, Natural Compu-
ting Series, pages 115–130. Springer Berlin Heidelberg, 2008.

[193] Q. H. Nguyen, Y. S. Ong, and M. H. Lim. Non-genetic transmission of memes
by diffusion. In Proceedings of the 10th annual conference on Genetic and evo-
lutionary computation, GECCO ’08, pages 1017–1024, New York, NY, USA,
2008. ACM.

[194] Q. H. Nguyen, Y. S. Ong, and M. H. Lim. A Probabilistic Memetic Framework.
IEEE Transactions on Evolutionary Computation, 13(3):604–623, 2009.

[195] S. Nguyen, M. Zhang, M. Johnston, and T. K. Chen. A coevolution genetic
programming method to evolve scheduling policies for dynamic multi-objective
job shop scheduling problems. In X. Li, editor, Proceedings of the 2012 IEEE
Congress on Evolutionary Computation, pages 3332–3339, Brisbane, Australia,
10-15 June 2012.

[196] J. Nievergelt. Exhaustive search, combinatorial optimization and enumera-
tion: Exploring the potential of raw computing power. In Proceedings of the
27th Conference on Current Trends in Theory and Practice of Informatics,
SOFSEM ’00, pages 18–35, London, UK, 2000. Springer-Verlag.

[197] M. G. Norman and P. Moscato. A Competitive and Cooperative Approach to
Complex Combinatorial Search. Technical Report Caltech Concurrent Com-
putation Program, Report. 790, California Institute of Technology, Pasadena,
California, USA, 1989.

[198] OpenMP Architecture Review Board. OpenMP Application Program Inter-
face. Version 2.5, 2005. http://www.openmp.org.

[199] P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers,
1997.

[200] V. Pareto. Cours d’Économie Politique, volume I and II. Lausanne, 1896.

[201] B. Parhami. Introduction to parallel processing: algorithms and architectures.
Plenum series in computer science. Plenum Press, 1999.

265

BIBLIOGRAPHY

[202] J. Pearl. Heuristics: intelligent search strategies for computer problem solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[203] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press,
1992.

[204] K. Price. Dr. Dobb’s Journal, pages 127–132, October 1994.

[205] K. Price, R. Storn, and J. A. Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer-Verlag, 2006.

[206] P. Rattadilok, A. Gaw, and R. Kwan. Distributed choice function hyper-
heuristics for timetabling and scheduling. In E. Burke and M. Trick, editors,
Practice and Theory of Automated Timetabling V, volume 3616 of Lecture
Notes in Computer Science, pages 51–67. Springer Berlin / Heidelberg, 2005.

[207] I. Rechenberg. Evolutionsstrategie: optimierung technischer systeme nach
prinzipien der biologischen evolution. Frommann-Holzboog, 1973.

[208] C. Ribeiro, I. Rosseti, and R. Vallejos. Exploiting run time distributions to
compare sequential and parallel stochastic local search algorithms. Journal of
Global Optimization, pages 1–25, 2011.

[209] M. Rocha and J. Neves. Preventing premature convergence to local optima in
genetic algorithms via random offspring generation. In I. Imam, Y. Kodratoff,
A. El-Dessouki, and M. Ali, editors, Multiple Approaches to Intelligent Sys-
tems, volume 1611 of Lecture Notes in Computer Science, pages 127–136.
Springer Berlin Heidelberg, 1999.

[210] P. Ross, J. Marin-Blazquez, and E. Hart. Hyper-heuristics applied to class
and exam timetabling problems. In Congress on Evolutionary Computation,
CEC2004, volume 2, pages 1691 – 1698, june 2004.

[211] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of multiobjective optimiza-
tion. Academic Press, Orlando, 1985.

[212] J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. PhD thesis, Vanderbilt University, 1984.

[213] H.-P. P. Schwefel. Evolution and Optimum Seeking: The Sixth Generation.
John Wiley & Sons, Inc., New York, NY, USA, 1993.

266

BIBLIOGRAPHY

[214] J. Seybold. Introduction to RF Propagation. Wiley-Interscience, 2005.

[215] D. Sheskin. The handbook of parametric and nonparametric statistical proce-
dures. CRC Press, 2003.

[216] Y. Shi1 and D. Ye. On-line bin packing with arbitrary release times. In First
International Symposium on Combinatorics, Algorithms, Probabilistic and Ex-
perimental Methodologies, volume 4614 of LNCS, pages 340–349. Hangzhou,
China, Springer Berlin, April 2007.

[217] M. K. Simon and M.-S. Alouini. Digital Communication over Fading Channels:
A Unified Approach to Performance Analysis. Wiley, 2005.

[218] K. Sindhya, A. Sinha, K. Deb, and K. Miettinen. Local search based evolution-
ary multi-objective optimization algorithm for constrained and unconstrained
problems. In Proceedings of the Eleventh conference on Congress on Evolu-
tionary Computation, CEC’09, pages 2919–2926, Piscataway, NJ, USA, 2009.
IEEE Press.

[219] S. K. Smit and A. E. Eiben. Comparing parameter tuning methods for evo-
lutionary algorithms. In Proceedings of the Eleventh Congress on Evolution-
ary Computation, CEC’09, pages 399–406, Piscataway, NJ, USA, 2009. IEEE
Press.

[220] J. Smith and T. Fogarty. Adaptively parameterised evolutionary systems: Self
adaptive recombination and mutation in a genetic algorithm. In H.-M. Voigt,
W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Proceedings of the 4th
Conference on Parallel Problem Solving from Nature, number 1141 in Lecture
Notes in Computer Science, pages 441–450, 1996.

[221] M. Snir and S. Otto. MPI-The Complete Reference: The MPI Core. MIT
Press, Cambridge, MA, USA, 1998.

[222] E. Soubeiga. Development and application of hyperheuristics to personnel
scheduling. PhD thesis, School of Computer Science and Information Techno-
logy, University of Nottingham, Nottingham, United Kingdom, 2003.

[223] M. Srinivas and L. Patnaik. Adaptive probabilities of crossover and mutation
in genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics,
24(4):656 –667, apr 1994.

[224] N. Srinivas and K. Deb. Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, 1994.

267

BIBLIOGRAPHY

[225] J. Stoer and R. Bulirsch. Introduction to numerical analysis. Texts in applied
mathematics. Springer, 2002.

[226] R. Storn. On the usage of differential evolution for function optimization.
In Proceedings of the 1996 biennial conference of the North American fuzzy
information processing society - NAFIPS’96, pages 519–523. IEEE Press, 1996.

[227] R. Storn and K. Price. Differential Evolution- A Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces. Technical report,
1995.

[228] P. Strenski and S. Kirkpatrick. Analysis of finite length annealing schedules.
Algorithmica, 6:346–366, 1991.

[229] G. Sywerda. Uniform crossover in genetic algorithms. In Proceedings of the
third international conference on Genetic algorithms, pages 2–9, San Francisco,
CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[230] E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics,
8(5):541–564, 2002.

[231] E.-G. Talbi. Metaheuristics - From Design to Implementation. Wiley, 2009.

[232] E.-G. Talbi and H. Meunier. Hierarchical parallel approach for gsm mobile
network design. J. Parallel Distrib. Comput., 66(2):274–290, 2006.

[233] F. Thabtah and P. Cowling. Mining the data from a hyperheuristic approach
using associative classification. Expert Syst. Appl., 34(2):1093–1101, Feb. 2008.

[234] A. Toffolo and E. Benini. Genetic diversity as an objective in multi-objective
evolutionary algorithms. Evolutionary Computation, 11:151–167, May 2003.

[235] R. K. Ursem. Diversity-guided evolutionary algorithms. In Proceedings of the
7th International Conference on Parallel Problem Solving from Nature, PPSN
VII, pages 462–474, London, UK, UK, 2002. Springer-Verlag.

[236] Van Der Steen, A. and Dongarra, J. Overview of recent supercomputers -
http://www.top500.org/resources/orsc, 2007.

[237] J. A. Vázquez-Rodŕıguez and S. Petrovic. A new dispatching rule based genetic
algorithm for the multi-objective job shop problem. Journal of Heuristics,
16(6):771–793, Dec. 2010.

268

BIBLIOGRAPHY

[238] V. Černý. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applica-
tions, 45(1):41–51, Jan. 1985.

[239] D. A. V. Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, USA, June 1999.

[240] D. A. V. Veldhuizen, J. B. Zydallis, and G. B. Lamont. Considerations in en-
gineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evo-
lutionary Computation, 7(2):144–173, 2003.

[241] T. Vinkó and D. Izzo. Learning the best combination of solvers in a distributed
global optimization environment. In Proceedings of Advances in Global Opti-
mization: Methods and Applications (AGO), pages 13–17, Mykonos, Greece,
June 2007.

[242] K. V. Viswanathan and A. Bagchi. Best-First Search Methods for Constrained
Two-Dimensional Cutting Stock Problems. Operations Research, 41(4):768–
776, 1993.

[243] A. Wai-Sing Loo. Peer-to-Peer Computing: Building Supercomputers with Web
Technologies. Computer Communications and Networks. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[244] B. H. Walke. Mobile Radio Networks: Networking, protocols and traffic per-
formance. Wiley, 2002.

[245] S. Watanabe and K. Sakakibara. A multiobjectivization approach for vehi-
cle routing problems. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and
T. Murata, editors, Evolutionary Multi-Criterion Optimization, volume 4403
of Lecture Notes in Computer Science, pages 660–672. Springer Berlin / Hei-
delberg, 2007.

[246] N. Weicker, G. Szabo, K. Weicker, and P. Widmayer. Evolutionary multi-
objective optimization for base station transmitter placement with frequency
assignment. Evolutionary Computation, IEEE Transactions on, 7(2):189–203,
April 2003.

[247] T. Weise. Global Optimization Algorithms - Theory and Application. 2008.

[248] L. D. Whitley, V. S. Gordon, and K. E. Mathias. Lamarckian evolution, the
baldwin effect and function optimization. In Proceedings of the International

269

BIBLIOGRAPHY

Conference on Evolutionary Computation. The Third Conference on Parallel
Problem Solving from Nature: Parallel Problem Solving from Nature, pages
6–15, London, UK, 1994. Springer-Verlag.

[249] B. Williams and T. Camp. Comparison of broadcasting techniques for mobile
ad hoc networks. In Proceedings of the ACM International Symposium on
Mobile Ad Hoc Networking and Computing, pages 194–205, 2002.

[250] G. Wilson. Practical parallel programming. Scientific and engineering compu-
tation. MIT Press, 1995.

[251] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of
cutting and packing problems. European Journal of Operational Research,
183(3):1109–1130, December 2007.

[252] K. Zielinski and R. Laur. Adaptive parameter setting for a multi-objective
particle swarm optimization algorithm. In The 2007 IEEE Congress on Evo-
lutionary Computation, pages 3019 –3026, sept. 2007.

[253] K. Zielinski and R. Laur. Stopping criteria for differential evolution in con-
strained single-objective optimization. In U. Chakraborty, editor, Advances in
Differential Evolution, volume 143 of Studies in Computational Intelligence,
pages 111–138. Springer Berlin / Heidelberg, 2008.

[254] E. Zitzler. Evolutionary algorithms for multiobjective optimization: Methods
and applications. PhD thesis, Zurich, Switzerland, November 1999.

[255] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

[256] E. Zitzler and S. Künzli. Indicator-based Selection in Multiobjective Search.
In X. Y. et al., editor, Parallel Problem Solving from Nature - PPSN VIII,
pages 832–842, Birmingham, UK, September 2004. Springer-Verlag. Lecture
Notes in Computer Science Vol. 3242.

[257] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization. In Evolution-
ary Methods for Design, Optimization and Control, pages 19–26, Barcelona,
Spain, 2002. CIMNE.

[258] E. Zitzler and L. Thiele. An Evolutionary Algorithm for Multiobjective Op-
timization: The Strength Pareto Approach. Technical Report 43, Computer

270

BIBLIOGRAPHY

Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Tech-
nology (ETH), Zurich, Switzerland, 1998.

[259] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca.
Performance assessment of multiobjective optimizers: an analysis and review.
IEEE Transactions on Evolutionary Computation, 7(2):117–132, Apr. 2003.

271

	Portada
	Acknowledgements
	Abstract
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	List of Acronyms

	Part I. Fundamentals and Background
	1. Introduction
	1.1. Optimisation Problems
	1.2. Optimisation Strategies
	1.2.2. Stagnation Avoidance
	1.2.3. Performance Metrics

	1.3. High Performance Computing
	1.3.1. Parallel Computer Architectures
	1.3.2. Trends of used Architectures
	1.3.3. Parallel Programming Models
	1.3.4. Metrics in Parallel Systems

	1.4. Research Questions
	1.5. Contributions
	1.6. Overview

	2. Metaheuristics
	2.1. Mono-Objective Metaheuristics
	2.1.1. Evolutionary Algorithms
	2.1.2. Differential Evolution
	2.1.3. Population-based Incremental Learning
	2.1.4. Local Search with Heuristic Restarts
	2.1.5. Scatter Search
	2.1.6. Iterated Local Search
	2.1.7. Variable Neighbourhood Search
	2.1.8. Simulated Annealing
	2.1.9. Greedy Randomised Adaptive Search Procedure

	2.2. Multi-Objective Metaheuristics
	2.2.1. Multi-Objective Evolutionary Algorithms
	2.2.2. Multi-Objective Particle Swarm Optimisation
	2.2.3. Non-dominated Sorting Differential Evolution

	2.3. Memetic Algorithms
	2.4. Parallel Metaheuristics
	2.4.1. Island-based Model

	3. Recent Developments in Optimisation
	3.1. Hyperheuristics
	3.1.1. Principles and motivation
	3.1.2. Classification
	3.1.3. Mono-objective hyperheuristics
	3.1.4. Multi-objective hyperheuristics

	3.2. Multiobjectivisation
	3.2.1. Principles and Motivation
	3.2.2. Best-known Approaches

	Part II. Problem-Independent Proposals and Validation
	4. General Algorithmic Proposals
	4.1. Innovation in hyperheuristics
	4.1.1. Mono-objective hyperheuristic
	4.1.2. Multi-objective hyperheuristic
	4.1.3. Dynamic-mapped Island-based Model
	4.1.4. Other tested hyperheuristics

	4.2. Innovations in multiobjectivisations
	4.2.1. Multiobjectivisation with parameters
	4.2.2. Adaptive Multiobjectivisation

	5. Validation with Benchmark Optimisation Problems
	5.1. Mono-objective Benchmark Problems
	5.1.1. Problems Description
	5.1.2. Experimental Evaluation of the Mono-objective Hyperheuristics
	5.1.3. Experimental Evaluation of Schemes Based on Multiobjectivisation

	5.2. Multi-objective Benchmark Problems
	5.2.1. Problems Description
	5.2.2. Experimental Evaluation

	Part III. Practical Applications
	6. Communication Optimisation Problems
	6.1. Antenna Positioning Problem
	6.1.1. General Problem Description
	6.1.2. Mathematical Formulation
	6.1.3. Proposed Optimisation Schemes
	6.1.4. Experimental Evaluation

	6.2. Frequency Assignment Problem
	6.2.1. General Problem Description
	6.2.2. Mathematical Formulation
	6.2.3. Proposed Optimisation Schemes
	6.2.4. Experimental Evaluation

	6.3. Broadcast Operation in Mobile Ad-hoc Networks
	6.3.1. Introduction
	6.3.2. Problem Description
	6.3.3. Proposed Optimisation Schemes
	6.3.4. Experimental Evaluation

	7. Two-dimensional Packing Problem
	7.1. Introduction
	7.2. Problem Description
	7.3. Proposed Optimisation Schemes
	7.3.1. Local Search
	7.3.2. Memetic Schemes
	7.3.3. Multiobjectivised Approaches
	7.3.4. Hyperheuristics

	7.4. Experimental Evaluation
	7.4.1. Mono-objective Schemes
	7.4.2. Multiobjectivised Schemes

	Part IV. Conclusion
	Part V. Appendices
	A. List of Publications

	Bibliography

