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1 SUMMARY

1 Summary

1.1 English

Ever since its discovery, the nature of Dark Matter has been a subject of many studies, papers and
projects. Despite nearly a century of research we are still unable to explain what forms about 80% of
the matter in our Universe. While many believe that an unknown massive, collisionless elementary
particle that only interacts gravitationally with baryonic matter is responsible for this phenomenon,
there are some that argue that Dark Matter consists of MAssive Compact Halo Objects (MACHOs).

This hypothesis has received new attention following the results of the Laster Interferometer
Gravitational Wave Observatory (LIGO). Since 2015, this observatory has reported the detection
of 5 black-hole mergers (and one merger between neutron stars, containing an electromagnetic
counterpart). The masses of those black holes exceeded the ones expected for stellar remnants,
so that the discussion about primordial black holes received new input. These black holes formed
shortly after the big bang out of quantum density fluctuations and are speculated to exist until
today. They might be responsible for seeding the supermassive black holes in the centers of galaxies
and are argued to be a reasonable candidate for dark matter: As they posess an enormous density
they can be seen as nearly collisionless and, considering their mass, black holes are usually relatively
dark. The masses and abundances of primordial black holes are constrained by Cosmic Microwave
Background analysis, but there is a quite large mass range still open for these kinds of black holes.

One of the most useful tools to study Dark Matter is arguably gravitational lensing. This phe-
nomenon is sensitive to the total matter, baryonic and dark, of the lensing object. In contrast
to collisionless elementary particles, that form a smooth matter distribution and only significantly
change over galactic distances, MACHOs can engage in microlensing, which is a peculiar form of
gravitational lensing where the lensed object is not measurably displaced or distorted, but nonethe-
less immensely magnified. For this kind of gravitational lensing it is necessary that the source is
extremely small. Usually, sources for gravitational microlensing are either stars or quasars (QUAsi
StellAr Radio Sources). The unique aspect of microlensing is that it happens on small scales both
spatially (light-day scales over cosmological distances) and timewise (ranging from several hours to
months). This means that there are in general two kinds of study one can perform:

The first possibility is to observe objects over a long period of time and examine changes in flux,
which can then be attributed to microlensing. The other possibility is to observe a large number of
objects at one time and inspect the number of objects that are affected by microlensing. In both
cases a statistical analysis needs to be performed afterwards. It seems evident that gravitational
microlensing is an extremely helpful method to verify whether dark matter can exist of MACHOs.

In this thesis we will develop a method to probe the abundance of primordial black holes in
lens galaxies using data of gravitationally lensed quasars. These extremely luminous objects are
often lensed by other galaxies such that several images of the same quasar are visible, which allows
us to determine the magnification due to microlensing of the images. We want to use data on
several lensed quasars to determine this change in magnification and compare this with numerical
simulations. To do this we will first develop an algorithm that constructs magnification maps for an
arbitrary collection of microlenses. Afterwards we will write a script to extract the magnification
histograms out of those maps and perform a bayesian analysis, using data from lensed quasars.
We will discuss several uncertainties, especially the difficulty in determining the magnification of a
lensed quasar.

This thesis builds on the work of Mediavilla et al. (2017), who already performed this analysis
and concluded that the effect of primordial black holes would have been visible in microlensing data.
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1.2 Español 1 SUMMARY

In addition to their work, we will consider an additional aspect: Due to the nature and formation
of primordial black holes it is reasonable to assume that they primarily appear in clusters. We will
therefore perform one analysis for a uniformly distributed set of microlenses and another one for a
clustered set, comparing the results.

Apart from the fraction of mass in microlenses, which is the primary parameter in almost every
gravitational microlensing experiment, we chose to parametrize the cluster radius and the number
of black holes per cluster. Other possible parameters like the clustering efficiency or the source size
had to be neglected due to finite processing power. We will discuss which values to choose for the
seperate parameters and which effects the left-out ones could induce.

We find that, as expected, clustered black holes induce a slightly different magnification prob-
ability distribution and are in general less effective to cause microlensing (the mean values of the
magnification maps differ by up to a factor of 2). Although we can not yet compare our analysis
with real data due to limited processing power, we conclude that these differences might be enough
to explain the apparent contradiction with current microlensing data. The reduced efficiency in mi-
crolensing might be the reason as to why we have not yet seen the effects of primordial black holes in
quasar gravitational microlensing. However, determining the magnification of the real counterpart
of the simulations is more difficult than in the case of a uniform distribution: The clusters of black
holes appear for distant light rays as a single, massive lens which introduces huge caustics on the
magnification maps that have a physical size which is larger than the broad line emission region
and even spans a significant fraction of the narrow line emission region, both of which are usually
used to determine a baseline for the magnification of the quasar as they are normally large enough
that microlensing by single sources gets ‘washed out’.

The code developed in this thesis will in the following weeks be used on a computer cluster to
perform the analysis for a set of gravitationally lensed quasars and see whether the existence of
clustered primordial black holes is consistent with current microlensing data.

1.2 Español

Desde su descubrimiento, la naturaleza de la Materia Oscura ha sido objeto de numerosos estudios,
art́ıculos cientificos y proyectos. A pesar de casi un siglo de investigaciones todav́ıa somos incapaces
de explicar lo que forma alrededor de 80 % de la materia en nuestro Universo. Mientras que muchos
creen que una part́ıcula elemental desconocida y masiva que sólo interactúa gravitacionalmente
con la materia bariónica es responsable de este fenómeno, hay quienes argumentan que la Materia
Oscura consiste principalmente en ‘MAssive Compact Halo Objects’ (MACHOs).

Esta teoŕıa ha despertado nuevo interés tras los resultados del ‘Laser Interferometer Gravitational-
Wave Observatory’ (LIGO). Desde 2015, este observatorio ha reportado la detección de 5 fusiones
de agujeros negros (y una fusión entre estrellas de neutrones, detectándose la contrapartida elec-
tromagnetica). Las masas de estos agujeros negros han sobrepasado las esperadas para los restos
estelares, alentado la discusión sobre los agujeros negros primordiales. Estos agujeros negros se
formaron poco después del big bang de las fluctuaciones de densidad cuántica y se especula que
siguen existiendo hoy en dia. Podŕıan ser las lemillas de los agujeros negros supermasivos que hay
en los centros de las galaxias y son un candidato razonable para la materia oscura: Poseen una
gran masa, no colosionan entre ello y son obscuros. Las masas y abundancias de los agujeros negros
primordiales están restringidas por el análisis del fondo cósmico de microondas, pero todav́ıa hay
un rango de masas bastante grande, abierto para este tipo de agujeros negros.

Una de las herramientas más útiles para estudiar la materia oscura son las lentes gravitacionales.
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1.2 Español 1 SUMMARY

El fenómeno lente gravitatoria es sensible a la materia total, bariónica y oscura, del objeto bajo
estudio. A diferencia con las part́ıculas elementales, que forman una distribución de la materia
uniforme que sólo cambia significativamente sobre distancias galácticas, los MACHOs pueden actuar
como microlentes, una forma peculiar de lentes gravitacionales donde el objeto óptico no se desplaza
o distorsiona mensurablemente, pero sin embargo se magnifica intensamente. Para que este tipo
de lentes gravitacionales, es necesario que la fuente sea pequeña. Por lo general, las fuentes de
microlente gravitacional son estrellas o cuásares (QUAsi StellAr Radio Sources). Un aspecto único
del efecto microlente es que ocurre a pequeña escala tanto espacialmente (escalas de d́ıa-luz sobre
distancias cosmológicas) como cronológicamente (entre varias horas y meses). Esto significa que en
general hay dos tipos de estudios que se pueden realizar.

La primera posibilidad es observar los objetos durante un peŕıodo de tiempo largo y examinar
los cambios en el flujo, que pueden atribuirse al efecto microlente. La otra posibilidad es observar
una sola vez un gran número de objetos y estudiar el impacto del efecto microlente. En ambos
casos es necesario realizar posteriormente un análisis estad́ıstico. Estudios previos demuestran que
el efecto microlente es un método extremadamente útil para investigar si puede existir materia
oscura en forma de MACHOs.

En esta tesis desarrollaremos un método para estimar la abundancia de agujeros negros pri-
mordiales en galaxias lentes usando datos de cuásares en śıstemas lente. En estos śıstemas, varias
imágenes del mismo cuásar son visibles, lo que nos permite determinar la magnificación deb́ıda al
efecto microlente. Queremos utilizar los datos de varios śıstemas lente de quásares para determi-
nar este cambio en la magnificación y compararlo con simulaciones numéricas. Para ello, primero
desarrollaremos un algoritmo que construye mapas de magnificación para una colección arbitraria
de microlentes. Después escribiremos un código para extraer los histogramas de magnificación de
esos mapas y realizar un análisis Bayesiano, usando datos observacionales de cuasares en śıstemas
lente. Discutiremos varias tuentes de incertidumbre, especialmente la dificultad para determinar la
magnificación de un cuásar en un śıstema lente.

Esta trabajo fin de máster se se basa en el estudio de Mediavilla et al. (2017), quien ya realizó
este análisis y concluyó que el efecto de los agujeros negros primordiales habŕıa sido visible en los
datos de microlensing. Para amĺıar este trabajo, consideraremos un aspecto adicional: debido a
la naturaleza y formación de los agujeros negros primordiales es razonable suponer que aparecen
principalmente en cúmulos. Por lo tanto, realizaremos un análisis para un conjunto de microlentes
uniformemente distribuido y otro para un conjunto agrupado encúmulos, comparando los resultados.

Aparte de la fracción de masa en microlentes, que es el parámetro principal en casi todos
los estudios de microlentes gravitacionales, elegiremos como otros parámetros libres el radio del
cúmulo y el número de agujeros negros por cúmulo. Otros posibles parámetros como la eficiencia del
‘clustering’ o el tamaño de la fuente tuvieron que ser omitidos debido a la potencia de procesamiento
finita. Discutiremos qué valores elegir para estos parámetros.

Encontramos que, como era de esperar, los agujeros negros agrupados encúmulos inducen una
distribución ligeramente diferente de la probabilidad de magnificación y, en general, son menos
efectivos (los valores medios de los mapas de magnificación difieren hasta en un factor 2). Aunque
aún no podemos comparar nuestro análisis con los datos reales debido a la limitada capacidad de
procesamiento, concluimos que estas diferencias podŕıan explicar o reducir la aparente contradicción
con los datos de microlensing actuales encontrada por (Mediavilla et al. 2017). La reducción en la
eficiencia del efecto microlente podŕıa ser la razón por la cual aún no hemos visto los efectos de
los agujeros negros primordiales en los sistemas múltiples de cuásares. Sin embargo, determinar la
magnificación de las simulaciones es más dif́ıcil que en el caso de una distribución uniforme: Los
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2 INTRODUCTION, MOTIVATION AND OBJECTIVE

cúmulos de agujeros negros se comportan (para los rayos de luz distantes) como una sola lente masiva
que introduce enormes cáusticas en los mapas de magnificación. Estas cáusticas gigantes tienen un
tamaño f́ısico que es más grande que la región de emisión de ĺıneas anchas e incluso una fracción
significativa de la región de emisión de ĺıneas estrechas. Estas regiones se usan, habitualmente, para
determinar el estado de no ‘microlensing’, respecto del cual se mide la magnification inducida por
este efecto. Esta función podira verse afectuda por la puesencia de las cáusticas giganes.

El código desarrollado en esta tesis se utilizará en las próximas semanas en un clúster de orde-
nadores para realizar el análisis de los datos reales un conjunto de cuásares en śıstemas lente para
ver si la existencia de agujeros negros primordiales agrupados en cúmulos es consistente con las
observaciones actuales.

2 Introduction, Motivation and Objective

It is not hard to believe that since humankind became sentient, we have looked up to the stars
and wondered what they are, what they mean and what our place in the Universe might be. In
fact, detailed observations of stellar constellations, comets and even supernovae can be traced back
several millenia. But although the branch of astronomy is extremely old, we have just recently
discovered technological means to significantly improve the quality of our observations. One of the
most impactful discoveries of recent times was made by Zwicky (1933): Observing spectroscopic
images of galaxy clusters he found out that the kinetic energy of the single galaxies is by far too large
for the cluster to be a gravitationally bound structure. On the other hand, the crossing timescale of
a galaxy cluster is less than the Hubble time, which makes the assumption that galaxy clusters are
gravitationally bound highly likely. Zwicky concluded that something invisible has to be inside the
clusters, keeping them together – and Dark Matter was born. Despite nearly a century of research
and the development of far more advanced tools (as for example digital tracking systems and CCD
chips) we are still unable to understand and explain the nature of this phenomenon.

In modern Astrophysics, Dark Matter is needed to explain a variety of phenomena ranging
from large scales (galaxy clusters, cosmic web) to intermediate ones (dynamics of galaxies). This
distracts from the fact that Dark Matter is just a name for a phenomenon we can not yet explain.
While some argue that the underlying phenomenon is a modified theory of gravity, the more popular
opinion is that it is a collisionless form of matter that can only interact gravitationally with baryonic
matter. The favoured hypothesis is that Dark Matter consists of a still unknown elementary particle,
however even at the Large Hadron Collider no direct evidence for such a particle has been found
(one experiment that might change that is the DAMPE-satellite (DAMPE Collaboration et al.
2017)). This fueled the hypothesis that Dark Matter consists of MAssive Compact Halo Objects
(MACHOs), especially black holes. As black holes can also be considered invisible and collisionless,
they pose a reasonable candidate for Dark Matter. However a microlensing survey of the Small and
Large Magellanic Clouds yielded no conclusive result (Becker et al. 1999). Additionally to that,
these MACHOs must be of primordial nature (meaning that they formed very shortly after the
big bang, way before the time of recombination), as the fraction of baryons in our universe is well
constrained by the results of the Planck mission (Planck Collaboration et al. 2016). Due to this and
the fact that, under most formation models, those primordial black holes must have left a visible
imprint in the cosmic microwave background (Poulin et al. 2017), MACHOs did not seem to be an
interesting candidate to compose dark matter. However, they were never completely ruled out as a
potential candidate and many models of primary black hole formation are consistent with current
CMB analysis results (Nakama et al. 2017; Ezquiaga et al. 2017).
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3 METHODOLOGY AND CALCULATIONS

The debate has recently received new input by the LIGO-collaboration and their direct detection
of gravitational waves (Carr et al. 2016). An analysis of their results yielded the masses of the
colliding black holes: 36M� and 29M�, 14M� and 7.5M�, 31M� and 19M�, 31M� and 25M�,
12M� and 7M� (Abbott et al. 2017a, 2016a, 2017c, 2016b, 2017b). Those merging black holes
might just be stellar remnants, although their masses appear to be unusually high (Elbert et al.
2018; Cao et al. 2018). However they lie in a mass range which is not excluded as a potential
PBH mass range by CMB analysis (Ezquiaga et al. 2017). This might be a big coincidence, the
gravitational lensing of gravitational waves (Dai et al. 2017; Smith et al. 2017) or an unknown
selection bias, but another reasonable explanation might be the existence of primordial black holes
composing dark matter (Garćıa-Bellido 2017; Clesse & Garćıa-Bellido 2017b,a).

Mediavilla et al. (2017) suggested to determine constraints on the abundance of compact lensing
objects using microlensing magnifications of gravitationally lensed quasars. In contrast to previous
microlensing studies, a wider mass range exceeding stellar values was considered, still the results
are consistent with the assumed stellar population. However, in this thesis we will consider that
the lensing black holes are likely to be clustered, which might pose different results than uniformly
distributed lenses (Garćıa-Bellido & Clesse 2017).

The objective of this thesis is thus to analyse the microlensing capabilities of clustered mi-
crolenses, compared to those of uniformly distributed lenses. We want to see whether the existence
of clustered primordial black holes is consistent with quasar microlensing data, which is not the case
for uniformly distributed primordial black holes (Mediavilla et al. 2017). To do this, we will develop
a python code to create numerical simulations of gravitationally microlensed quasars (see Section
3.2). After that we will use another program to perform a bayesian analysis on these simulations
(compare Section 3.6). We will apply this procedure to some representative examples in Sections
4.3 and 4.4.

In the end the program should be used on a computer cluster to perform the simulations for a
sample of gravitationally lensed quasars, which then will be analysed in a Bayesian way. Due to
the huge amount of calculations needed this will not be a part of the thesis.

The reader of this thesis should know the basics of cosmology. A brief summary of gravitational
lensing, focusing on microlensing, will be given in Section 3.1.

3 Methodology and Calculations

3.1 Gravitational Lensing

At first, a brief introduction on gravitational lensing, introducing the most important quantities, will
be given. This section heavily relies on Schneider (2015); Meylan et al. (2006). In the framework of
general relativity, photons, as any other objects that are not subject to external forces, move along
geodesics in the four-dimensional spacetime manifold. Contrary to a baryonic observer, for photons
the proper time τ = c ds is zero. In practical contexts the gravitational potential Φ can mostly be
regarded as small, meaning Φ/c2 � 1, which is satisfied everywhere except in the immediate vicinity
of neutron stars or black holes. This means that one can linearize the Einstein Field Equations,
giving rise to a way easier mathematical framework.

As in a gravitational lensing event both the extent of the source and of the lens are neglible
compared to the distances involved, one usually speaks of a Source Plane and a Lens Plane. The
main advantage is that we can define the Surface Mass Density Σ for a two-dimensional coordinate
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3.1 Gravitational Lensing 3 METHODOLOGY AND CALCULATIONS

Figure 1: The Geometry of a Gravitational Lensing Event (Schneider 2015).

ξ as the line-of-sight integral

Σ(ξ) =

∫
dz ρ(ξ, z) ,

where ρ is the normal matter density. This consideration lets us handle every1 problem in grav-
itational lensing as a two-dimensional one. The geometry of a gravitational lensing event can be
depicted in Figure 1. Here, Dd is the (angular diameter) distance2 between observer and lens, Ds is
the distance between observer and source and Dds constitutes the distance between lens and source.
One might be tempted to set Dds = Ds−Dd, but this is not true for extragalactic distances due to
the nonlinearity of the Hubble flow. The parameter θ describes the apparent position of the source
in the sky, whereas β describes its true position. ξ = Ddθ and η = Dsβ are the corresponding
projected distances and α̂ is the deflection angle, which can be calculated by the field-equations of
general relativity. For a point mass, this deflection angle reads α̂ = 4GM

c2ξ2 . In linear order, we can
achieve a formula for a general mass distribution by superposition. If we define the scaled deflection
angle α via the lens equation

β = θ −α(θ) ,

simple geometry dictates

η =
Ds

Dd
ξ −Ddsα̂(ξ)

and by integration we get a lens equation for a general mass distribution:

α(θ) =
1

π

∫
d2θ′κ(θ′)

θ − θ′

|θ − θ′|2
. (1)

1Except the calculations involved in the analysis of cosmic shear.
2It should be noted that all distances in gravitational lensing are angular diameter distances.
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3.1 Gravitational Lensing 3 METHODOLOGY AND CALCULATIONS

Here the convergence κ is defined as

κ(θ) =
4πGDdDds

Dsc2
Σ(Ddθ) =:

Σ(Ddθ)

Σcr
. (2)

If one imagines a point-source, a compact lens and a perfect alignment of observer - lens -
source, symmetry dictates that the source should appear as a ring-like structure around the lens.
The radius of this ring is a characteristic quantity, called the Einstein Radius

θE =

√
4GM

c2
Dds

DdDs
. (3)

The Einstein Radius is usually projected onto the source plane my multiplying with the angular
diameter distance Ds.

Apart from the obvious change in position it is interesting to observe a change in the size of an
object. This change can be characterized by the matrix

A =
∂β

∂θ
(4)

where µ = det(A)−1 is the magnification at one coordinate.3 The magnification matrix can be
written in the following form (Meylan et al. 2006):

A =

(
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
,

where γ = (γ1, γ2) is the twodimensional shear. This quantity is especially important in the study
of weak gravitational lensing, whereas here we are just interested in its absolute quantity γ = |γ|.
Calculating the determinant we find that the magnification in a point becomes

µ =
1

|(1− κ− γ)(1− κ+ γ)|
. (5)

Small objects like stars, planets or stellar remnants normally can not produce any detectable dis-
placement of sources, however they can significantly magnify sources. The study of these magni-
fications falls under gravitational microlensing and is an exceptionally interesting subject, as it is
one of the only cosmological phenomena that are not stationary over human timescales.

Usually, microlensing is performed by compact objects which we can safely approximate as
point-masses. Scaling x = θ/θE and y = β/θE, the lens-equation for a point-mass becomes

y = x− x

|x|2
.

For a single point-mass lens one can find an analytical solution for the magnifications, however for
two or more lenses those are impossible to find (Meylan et al. 2006). The main reason for this is
that in the case of a more complicated lens system, multiple images of the same source can exist.4

3It should be noted that the surface brightness of an object never changes, only its angular extent. For point-like
sources like stars and quasars however, this corresponds to a direct increase in observed brightness.

4Technically this is also the case for a point-mass lens, but for all physical applications the second image is behind
the lens, so that it is not observable.
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3.2 Obtaining Magnification Maps 3 METHODOLOGY AND CALCULATIONS

Figure 2: Caustic pattern for a binary lens of different separations. The blue circles depict the
lenses.

If we imagine a source far away from the lens, then this source has one image as it is only weakly
distorted by the lens. However, when we move the source closer to the lens there has to be a point
where an additional image is created. This point lies on a curve called caustic (in the source plane)
or critical curve (in the lens plane). Whenever a source ‘crosses’ such a caustic, an image pair gets
either created or destroyed. One might think that this is a peculiar phenomenon: We are given a
function β(θ) with a differential A, so we can simply use the inverse function theorem, construct
a function θ(β) and the creation of image pairs should be impossible. One aspect prohibits us
from doing that: On these caustics the magnification µ diverges, which means that the determinant
det(A) vanishes. This permits us from creating an inverse function in these regions and is the
reason why analytical solutions for problems in gravitational lensing are extremely rare.

A sample of binary lenses and their respective caustics is depicted in Figure 2. As one can see,
if the lenses are far apart from each other, the point-like singularity deforms into a little asterisk.
When the lenses move closer to each other these asterisks get bigger and start to merge. Finally,
for close lenses the caustics form a single, big asterisk.

In this thesis we will analyze gravitational lensing by black holes scattered in a galaxy, or, in
other words, lensing by compact objects in a smooth background gravitational field. For this we
use the Chang-Refsdal lens equation (Chang & Refsdal 1979):

y =

(
κs + γ 0

0 κs − γ

)
x+

∑
i

mi
x− xi
|x− xi|2

. (6)

Here, γ represents the shear introduced by the galaxy whereas κs is the convergence in smooth
matter and the mi and xi represent the masses5 and positions of the single microlenses. As the
lens-equation is linear, we can simply summarize the deflections caused by the smooth matter and
the different compact lenses.

3.2 Obtaining Magnification Maps

The objective of this thesis is to perform a microlensing analysis on gravitationally lensed quasars.
To model a microlensing event, one has to compute a Magnification Map. This means one has
to construct a gravitational lens and compute the magnification pattern that arises in the source
plane, which allows us to estimate the probability of a given magnification of the source.

As discussed in the previous section, the magnification µ = det(A)−1 is theoretically easy to
obtain. Unfortunately it is impossible to find a function that maps each point on the source plane

5The masses in this equation are unitless, they are scaled by the mass chosen in the Einstein Radius.
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to the corresponding point on the lens plane. The mathematical reason for that is the vanishing
determinant of A, but a more intuitive approach might be this:

We know that the number of images that a source has on the lens plane depends on its position,
i.e. there are sources that have only one images and sources with several images. This means that
we need to assign a different number of images to different points, which a function can not do.
Additionally, a source with five images, that can not be resolved by a telescope, will appear as
bright as the sum of all the five image fluxes. All things considered, we find that it is impossible to
construct an analytical function to assign a magnification to a point in the source plane. We thus
have to rely on a more brute-force method.

3.2.1 Inverse Ray Shooting

The easiest way to compute magnification maps is the so-called Inverse Ray Shooting (IRS) al-
gorithm (Schneider & Weiss 1987b). In this process, we use the fact that light-rays are invariant
under time-reversal. This means that instead of trying to construct an inverse function to the
lens equation we imagine a photon sent out from the observer that then gets deflected by the lens
and arrives at a coordinate of the source plane. As gravitational lensing does not change surface
brightness, the magnification at a point of the source plane is directly proportional to the amount
of rays that hit this point.

In our python script we choose a twodimensional grid (an empty array of size Ny) as the Source
Plane. We then shoot a certain number Nr of light-rays per unit area. Assuming a given κ, γ
and a distribution of microlenses N∗, each ‘light-ray’ gets deflected by the lens-equation (6) and
(sometimes) reaches a certain pixel on the source-plane. The value of this pixel then gets raised by
one. In the end the array is normalized by the amount of rays that would hit each pixel in absence
of lensing.

An important aspect is the size of the shooting region. We want the region to be big enough
to contain most of the rays that finally hit the source plane, but not too big to avoid unnecessary
computations. Especially, due to shear, the shooting region is not quadratic, but rectangular. In
general, one axis of the shooting region is taken to be xl,1 = 1.5∗Ny/|(1−κ−γ)| and the other axis
is xl,2 = 1.5 ∗Ny/|(1 − κ + γ)|. The denominators account for the magnification in the respective
axes (compare (6)) whereas the factor 1.5 ensures that enough rays hit the boundary regions.

Now one has to think about distributing an appropriate amount of microlenses. For this the
parameter α, the fraction of mass in microlenses is essential. From this one can calculate the
convergence in microlenses κ∗ = ακ and the smooth convergence κs = κ− κ∗. From the definition
of convergence we can conclude that for a square region of size L (again in Einstein radii) one would
need

N∗ = κ∗L
2/π (7)

microlenses. However, there is another issue that we need to consider:
Due to the fact that close encounters of microlenses may deflect lightrays significantly it is highly

likely that some of the lightrays that would originally hit the source plane instead miss it. On the
other hand it is also almost certain that some lightrays might hit our source plane due to deflectors
residing outside of the region where the stars are distributed. To consider all but a small fraction ε
(in our case we set ε = 0.02) of this diffuse flux, the number of stars needs to be at least (Schneider
& Weiss 1987a)

N∗ =
3κ2∗ε

−1

(1− κ)2 − γ2
,
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from which we can, using (7), calculate a minimum size of the deflector region Lmin. The size of
the deflector region is then

L = Lmin + 2 max(xl,1, xl,2) .

Inserting this in (7) we finally get the number of needed microlenses, that we can distribute in a
region of size L however we see fit. Normally a uniform distribution is preferred, but in our thesis
we will handle this process differently.

In Mediavilla et al. (2016) an example code is given. At first we replicated the code and started
performing some optimizations: As each row of rays is independent of the others, it is possible to
spawn n independent processes that each shoot every n-th row of rays and collect the result in their
seperate array.6 These arrays get, in the end, passed to a queue and the processes get terminated.
Upon adding the arrays an increase in performance of the factor 2-16 (depending on the number of
cores on the CPU) is achieved.

However an important issue of this method is still computing time. For each ray shot the
deflection is calculated for each lens, which leads to an amount of

N2
yNrN∗

|(1− κ− γ)(1− κ+ γ)|

calculations needed. To achieve good statistics (especially in the low-magnification regions where
not so many rays hit a pixel) a number of Nr � 100 is needed. For our needs, values of Ny = 1000,
κ ≈ γ ≈ 0.45 and N∗ & 10 000 are reasonable and we would need more than 1014 calculations.
Unfortunately even with our optimizations the calculation of a single viable map would take several
days. Fortunately, there are ways to improve on the inverse ray-shooting method.

3.2.2 Inverse Polygon Mapping

The main problem with the inverse ray shooting algorithm is its noise in low-magnification regions.
Each light-ray represents a unit area that gets mapped on the grid of the source plane. If such a
unit area is spread out over several pixels, still only the value of the pixel containing its center is
raised, all others are not affected. To ensure proper statistics, a huge number of rays per pixel is
necessary. The Inverse Polygon Mapping (IPM) algorithm (Mediavilla et al. 2011, 2006) improves
on this method, cutting the computational time by a factor of the order of 100.

As in the IRS algorithm, we shoot a uniform grid of rays that again gets deflected by the lens
equation. Now, instead of simply raising the pixel values by one, we consider the image of each
square of the ray-shooting grid. Due to a symmetry in the lens equation (Meylan et al. 2006), to first
order those squares are mapped to parallelograms, so we can interpolate a parallelogram between
the images of the four vertices. Then, as proven by Mediavilla et al. (2006), if the intersecting area
of a pixel and such a parallelogram is ∆S′, then the pixel has collected ∆S = ∆S′/ det(A) light of
the image plane, where A is the magnification matrix (4) which can, to linear order, be calculated
from the images of the vertices. The intersecting area can be computed using Green’s theorem,
which states that for a surface S with oriented, simple boundary C its area corresponds to the
integral ∫

C

−y2 dy1 .

6The rays are always shot row-wise as python handles arrays much faster than for-loops.
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A good intuitive comparison between inverse ray shooting and this method would be that IRS
corresponds to a zeroth-order taylor approximation and this method corresponds to a first-order
one. Still, one problem arises: If the square is crossed by a critical curve, the boundary curve is not
necessarily oriented and simple. These cells need to be treated specially, either by breaking them
down into smaller, regular cells or by treating these cells with an IRS algorithm.7

If instead of a square lattice one shoots square-centered cells, the additional information of the
center of the cell suffices (again due to symmetry in the lens-equation) to solve the second-order
taylor expansion of the lens-equation. In addition to a better representation of the mapped cells it
also gets easier to identify nonlinear regions (corresponding to cells on critical curves).

This process needs a considerable amount of calculation (instead of just raising the value of an
array by one), so with the same number of rays per unlensed pixel such an algorithm takes about
three times longer. However, the noise of an IPM algorithm is so much lower, that one can receive
better results with a value of about 0.12 rays per pixel than an IRS algorithm with 500 rays per
pixel. All things considered, the IPM algorithm offers a cut of a factor of 100 in computational
time while still offering better statistics.

Unfortunately, the construction of such an algorithm would go beyond the scope of the thesis,
so that we used one supplied by Mediavilla et al. (2011) and only modified it to fit to our needs.

3.3 Clustered Primordial Black Holes

As already discussed, in this thesis we want to consider clustered black holes microlensing a back-
ground quasar. If primordial black holes in the mass range of the LIGO-detections do indeed exist,
they should leave a visible imprint due to their gravitational microlensing effects. Mediavilla et al.
(2017) have discussed the possible effects in the field of quasar gravitational microlensing and con-
cluded that the existence of PBHs is unlikely. In this thesis we will assume that those black holes
are likely to be clustered, which might significantly change their microlensing properties. The as-
sumption of a clustering of PBHs is justified: They originated due to density fluctuations shortly
after the big bang. At a point where the density is high and a PBH forms, there are likely other
points nearby that also allow for the formation of a PBH (compare Figure 3).8

For our IPM program, we need to construct a stars.dat file, containing positions and masses
of all considered microlenses. Garćıa-Bellido & Clesse (2017) analyzed the possible properties
of clustered primordial black holes taking into account results from LIGO, gravitational lensing
and CMB analysis. They assumed a lognormal distribution of black-hole masses centered around
∼ 25M� (Ezquiaga et al. 2017) and concluded that while the number of black holes per cluster at
formation was of the order of 2000, due to dynamical friction and mergers the number today should
be around 100 to 1000. Additionally they concluded that when the clusters extent is on sub-parsec
scales, then the existence of clustered primordial black holes is consistent with CMB restrictions.

In this thesis we will consider black holes of constant mass, as gravitational microlensing is not
very sensitive to the slope of the mass spectrum but rater to the average mass (Congdon et al. 2007).
The algorithm itself is unitless, so that we do not have to specify an average mass yet. Moreover,
the translation to physical values is via the Einstein radius (3), so to scale between different masses
one simply has to divide by the square root of their ratio. Whenever we use physical values, unless

7As critical curves are mapped onto caustics, which occur only in high magnification areas, the high noise of the
IRS algorithm in low magnification areas is insignificant.

8This Figure is not entirely correct as the limit for the collapse into a black hole is not only dependent on density
but also on the size of the region. However, it should serve to give a reasonably good understanding.
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Figure 3: A two-mode density fluctuation (green line) with an artificial density limit (black line)
imposing the collapse to a black hole.

otherwise specified, we will assume a black hole mass mBH = 30M�, a lens redshift of zL = 0.5 and
a source redshift of zS = 2.0.9 Considering Mosquera & Kochanek (2011), those seem to be quite
typical values.

Regarding the radial profile of the clusters one might be tempted to use a Navarro-Frenk-White
profile, as they are omnipresent when cold dark matter is considered (Navarro et al. 1996, 1997).
However, the equation rather describes the global structure of dark matter in a galaxy or a galaxy
cluster and is not supposed to be used on parsec-scales. As we have no prior knowledge about the
radial profile of clusters of black holes and we believe that among the many systematic uncertainties
this one is quite neglible we chose to apply a Gaussian radial profile with deviation σ.

3.4 Source Size Effects

Even to the best telescope every quasar looks like a point-source. However, while in microlensing
the Einstein radii of stars and black holes are still larger than the (continuum) source size by one
or two orders of magnitude (Mosquera & Kochanek 2011), the caustic patterns sometimes have a
much smaller extent, so that the source size plays a significant role in the magnification. If, for
example, a quasar has a twodimensional profile F (x) and the magnification map is a function µ(x)
then the total magnification of the quasar µQ at point x0 reads:

µQ(x0) =
∑
x

F (x0 − x) ∗ µ(x) ,

so it is a convolution between the source profile and the magnification map. However, while the
source size is extremely important, microlensing is less sensitive to the radial profile of the source

9For the calculation of the angular diameter distances we will assume a flat universe with H0 = 70km s−1 Mpc−1,
ΩM = 0.3 and ΩΛ = 0.7.
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(a) Unconvolved Map (b) Convolved Map (5px)

(c) Convolved Map (10px) (d) Convolved Map (20px)

Figure 4: Magnification Map of 1000 pixels convolved with a gaussian with deviation of 5, 10 and
20 pixels.

(Mortonson et al. 2005). Due to this fact, it is easiest to convolve the resulting magnification map
with a twodimensional gaussian. This leads to a ‘blurring’ of the magnification map, where the
high-magnification regions (i.e. caustics) get washed out (compare Figure 4). This effect is also
clearly apparent when one considers a histogram of the magnifications. Spikes in the histogram get
smoothed and the appearance changes significantly (compare Figure 5).

3.5 Determining the Magnification

While in our simulations the determination of the magnification is completely straightforward,
measuring the magnification of an observed quasar is surprisingly difficult. The intrinsic luminosity
of the quasar is unknown and one has to separate magnification by microlensing from the global
magnification and the intrinsic variability of the quasar itself. Additionally, effects like extinction
due to dust can play a significant role. Considering these effects, the determination of magnification
due to microlensing of a single image is impossible, one instead has to compare different images of
the same quasar. Mediavilla et al. (2009) present a good overview on how to approach this.

At first, it is important to construct a baseline describing the observed luminosity of a quasar in
absence of microlensing. Usually, the narrow line emission region and, to some extent, the broad-
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Figure 5: Magnification Histogram of a Map before and after convolution with a gaussian source.

line emission region are large enough that the effects from microlensing get ‘washed out’ (Mosquera
& Kochanek 2011; Chen et al. 2011; Yonehara 2006; Bennert et al. 2002). The continuum emission
region however, measuring only about 5 lightdays (Fausnaugh et al. 2016; Mediavilla et al. 2009),
is very sensitive to microlensing. If one analyzes multiply imaged quasars, then from the flux-ratio
of their emission line regions one can determine the difference in magnification due to the galaxy.
Then, considering the continuum emission data, one can calculate a magnification difference in
microlensing. In some cases the radio emission can also be used as a baseline, however radio
emission passes through dust differently, so possible extinction effects might go unnoticed. In the
most desperate case it is also possible to construct a global lens model using the astrometry of the
quasars, but it is completely impossible to account for extinction effects and naturally it is highly
model-dependent.

In our case we face another problem. Looking at Figure 6 it is apparent that in addition to the
caustic structure caused by the single black holes (which is barely visible) there is another structure
superimposed: The caustics caused by the clusters. If the light ray passes outside of the cluster it
acts like a microlens with a mass of all black holes combined, causing immense caustics. In this
image, which is 1000× 1000 pixels, one pixel corresponds to approximately 5 lightdays and one
can see that some structures easily span the whole map, corresponding to several parsecs. This
millilensing surpasses the broad line emission region by at least an order of magnitude, which means
that this region will be completely useless in determining the baseline. We will have to investigate
whether we could still use the narrow line emission region, but mostly we will probably have to
consider the quasars radio emission.

3.6 Statistical Analysis

The final goal of the numerical simulation is to compare the results with real observations. Let
the images A and B of a quasar have a difference in magnitudes of ∆m. From the constructed
magnification maps we can extract for each set of parameters αi magnification histogramsHA(m,αi)
and HB(m,αi) that assign a probability to each magnification m, for each image respectively. The
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Figure 6: Magnification Map produced by clustered black holes.

probability of observing a certain magnitude difference ∆m can be written as

P (∆m|αi) = P (mB −mA = ∆m|αi) =

∫
dmHB(∆m+m,αi)HA(m,αi) , (8)

which is a crosscorrelation of the histograms. After that we can use Bayes Theorem, which states
that the likelihood of a set of parameters reflecting the model, given a measurement, is proportional
to the probability of getting this measurement in the model, given the parameters:

L(αi|∆m) ∝ P (∆m|αi) .

This means that after extracting the histograms, we simply have to convolve the appropriate ones
for each choice of parameters, normalize the resulting histogram and consider the probability of
the bin reflecting the actual measurement. Finally we plot the probabilities respective to the
parameters. Special care needs to be taken with the normalisation of the histograms, as an unequal
normalisation would completely ruin the analysis. The set of parameters that we do not want to
consider gets marginalized.

It is the usual procedure to perform such a bayesian analysis on a huge sample of quasars,
instead of performing it on just one object. In this case the final likelihood distributions for each
of the quasars get multiplied, with the final likelihood distribution being the resulting product.
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Table 1: Values chosen for the computation of magnification maps.

Parameter Values

α 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0
NBH 100, 300 and 1000
σ 2, 4 and 10

4 Results

4.1 First Considerations

The main limit to this analysis is computational power. As we want to observe phenomena that
happen on quite large scales (compared to other microlensing events), the maps need to have a
large size. Unfortunately, an increase in size does not only increase the number of rays that need
to be shot but also in the same way the number of microlenses. If one doubles the map size, one
should expect the computational time to increase by a factor of 24. Due to this reason we chose to
model relatively small maps (with an extent of 40 Einstein radii). To obtain statistically significant
results we chose to compute 100 maps for each choice of parameters. As the main parameters, as
discussed in Section 3.3, we chose the fraction of mass in microlenses α (which is our main interest),
the number of black holes per cluster NBH and the extent of the cluster σ (in Einstein radii). The
values chosen can be seen in Table 1. Due to lack of computational power we were unable to consider
other variables like source size, radial cluster profile, clustering of clusters or clustering efficiency
(i.e. the fraction of loose black holes that not belong to a cluster). Also, one important aspect
is that we could not consider is the population of stars present in the galaxy: As we are dealing
already with up to 50 000 microlenses per image, adding a population of stars, whose mass is two
orders of magnitude lower, would skyrocket our number of microlenses to a point where we would
need a medium sized computer cluster to run the calculations. However, Mediavilla et al. (2017)
analyzed the effects of such a bimodal distribution and concluded that even in such a case, the
microlensing effects by primordial black holes would not have gone unnoticed. An alternative idea
to circumvent this problem would be to analyze the microlensing magnification of the broad-line
emission region, which is relatively insensitive to microlensing by small objects like stars.

An important consideration is the expected fraction of microlenses. The stellar population is
responsible for a fraction in microlenses of about α = 0.2 (Jiménez-Vicente et al. 2015a,b). On the
other hand, we can expect diffuse matter like interstellar gas and dust to contribute to the total
matter by about the same amount (Draine 2011). This means that PBH’s can consitute to the
total matter to a fraction of up to α ≈ 0.6. However, we do not know how the stellar population
will play a role in our analysis, so our results might be a bit off. Anyhow, every result yielding
α > 0.2 would point towards the conclusion that we might have detected MACHOs outside of the
stellar population.

4.2 The Used Code

The numerical code has undergone many changes and improvements that can not all be discussed
in this thesis. Instead we will briefly present the final version and discuss the single programs. A
link to the exact code can be found in the Appendix.
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4.2.1 draw.py

This routine is responsible for creating the file containing all microlenses. It takes the number of
lenses, the extent of the map and the parameters NBH and σ as input. It then calculates the number
of clusters and distributes their centers randomly. After that it assigns each microlens randomly
to one cluster and computes the relative position to the cluster center. It then adds this position
with the position of the cluster and checks whether the microlens is still within the map. If it is
outside the map, the whole process (including the assignment to one cluster) gets repeated until
the lens is within the map. The result of this method is that the size of the clusters is subject to
small random fluctuations and, most importantly, that clusters that overlap with boundary regions
contain appropriately less stars.

4.2.2 ipm.f

This is the IPM code developed by Mediavilla et al. (2011, 2006) in a slightly modified version. It
takes the microlenses and some parameters of the macro-lens as input and calculates the magnifi-
cation map, which is with the help of a small routine pat2fits.py saved as a fits file.

4.2.3 createhistogram.py

This routine extracts magnification histograms, one linear and one in magnitudes, out of each
magnification map and afterwards deletes the map.

4.2.4 magmap.py

This script manages the creation of the magnification maps. It takes the necessary parameters (κ,
γ, α, NBH, σ) as input. It then creates folders for each parameter choice, compiles the ipm.f file,
prepares the inputs and calls the IPM program. Afterwards it calls the createhistogram.py file
and cleans up remaining files. This code is written such that multiple computers, writing to the
same directory, can use it simultaneously. Also, it can call the IPM program on each computer on
multiple processes, substantially increasing the number of maps generated per computer and unit
time.

4.2.5 routine.py

This program handles the calling of the magmap.py file. Depending on the computer architecture
it needs to be modified appropriately. In our case we manually enter our desired parameters,
including convergence and shear, but for the use on a computer cluster it is written to read the
latter two values out of a file containing a list of gravitationally lensed quasars. It then calls the
main routine magmap.py for each set of parameters.

4.2.6 correcthistogram.py

This program is written for the analysis of the histograms. It adds all linear histograms and
computes the mean magnification, which is then compared to the mean magnification of the maps to
rule out errors. Afterwards it adds the histograms in magnitudes and shifts them by the appropriate
amount, determined in the previous calculation.
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4.2.7 bayes.py

This program performs the Bayesian analysis on the files produced by the correcthistogram.py-
algorithm. Given two quasar images, it convolves the respective histograms and performs the
Bayesian analysis, given a certain magnification range. While producing the main and final result,
its workload is rather small.

4.3 The first Run

The first run was a short test to see if the code works and produces appropriate results. For this we
created magnification maps for the values κ = 0.4 and γ = 0.2, yielding an average magnification
of µ = 3.125. While not extremely realistic for a lens system, the low magnification allows for a
relatively fast computation of maps. We chose to make the map 40 Einstein radii wide with 1000
pixels in each dimension. This leads to the fact that one pixel is about 5 lightdays, so a convolution
of the magnification maps is not necessary. We expect with an increased clustering of black holes
more dominant features in the high magnification region but an overall tendency towards lower
magnifications, while less clustered constellations should lead to a smoother histogram. We extre-
acted the histograms from the magnification maps and performed an autocorrelation, comparing
the results for different parameters. This can be seen in Figure A.1.10 As expected, the most
prominent change arises in the modification of α. The higher the fraction of mass in microlenses,
the more likely are high magnifications. There are some curious features for low values of α around
±1.5 magnitudes, which could be attributed to noise: In the regions of smaller alpha, especially
with an already small magnification, the number of microlenses is very low. As these microlenses
are additionally clustered, this leads to an increased shot noise.

The other changes are more subtle: An increasing number of black holes per cluster overall seems
to reduce the microlensing efficiency, however the effect is less prominent than we had hoped and
expected. The image is even less clear when one considers different cluster radii. There, a turnover
seems to happen, where a value of 4 Einstein radii for σ seems to favor higher magnifications with
respect to 2, but the value 10 significantly disfavors higher magnifications. An example bayesian
analysis was conducted for magnifications of ∆m = −0.3 and ∆m = −0.4. What is important
is that both analyses seem to be relatively insensitive towards both cluster radius and number of
black holes per cluster, but produce different results for the fraction of mass in microlenses (compare
Figures 7, A.2 and A.3). We also created twodimensional plots checking for degeneracies between
the parameters, an example of which can be seen in Figure A.4. Due to limited computational power
and this consideration, we chose to perform the analysis of the most likely lens (in the next section)
with α as the only variable and set NBH = 300 and σ = 4. One surprising aspect was that the mean
magnification 〈µ〉 of the maps differed from the one calculated via (5). Of course we expected some
fluctuations between maps, but even after averaging many maps the mean magnification seemed
off. At first we suspected an error in the code, but despite a thorough search we were unable to
locate one. Then another consideration came to mind: Due to the existence of microlenses the κ in
Equation (5) randomly fluctuates. By expecting that the mean magnification of the maps equals
the theoretical one we implicitly assumed the equation〈

1

|(1− κ− γ)(1− κ+ γ)|

〉
=

1

|(1− 〈κ〉 − γ)(1− 〈κ〉+ γ)|
to be true, which is generally not the case.

10All figures labeled with ‘A’ can be found in the Appendix.
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(a) ∆m = −0.3 (b) ∆m = −0.4

Figure 7: Comparison of the likelihoods for the fraction of mass in microlenses for a bayesian
analysis with a magnification of ∆m = −0.3 and ∆m = −0.4.

4.4 The most likely Lens

In the next step, we consider the most likely lens, which has two images A and B, where A has
γ = κ = 0.45 and B has γ = κ = 0.55, imposing a magnitude difference due to microlensing of
∆m = −0.3. We created 100 magnification maps for each value of α, keeping the parameters σ
and NBH constant. As we want to compare our results to the case of unclustered black holes, we
also chose to compute magnification maps for a uniform distribution of microlenses. In this case we
expected to encounter significantly less shot-noise, so we chose to compute only 36 magnification
maps for each value of α.

The first surprising result was the behaviour of the mean magnifications: In the case of clustered
black holes the mean magnification was typically lower than the theoretical one. For κ = 0.45, γ =
0.45, an increasing parameter α yielded lower average magnifications for the clustered microlenses,
dipping down to below 7. However, in the case of a uniform distribution the mean values increased
with the parameter α up to about 14. In the case of κ = 0.55, γ = 0.55 the magnifications in both
cases decreased with increasing α, whereas this decrease was extreme for the clustered case and
barely noticeable for the uniformly distributed lenses (compare Table 2). While the dependence on
α itself is understood,11 it is still an open question as to why those values behave so differently.12

This leads to an interesting consideration: If we use a macro model of the lens to obtain the
magnification baseline of the observed quasar we will obtain the value of the theoretical mean
magnification (compare Section 3.5), whereas if we use the narrow line emission region or the radio
emission, we will obtain the average mean magnification of the maps as a baseline. So, depending

11The higher the paramter α, the lower is the contribution of the parameter κs (compare (6)), which is exact, to
the mean magnification and the higher are the random fluctuations.

12A random sampling of κ in Equation (5) showed that for small fluctuations the mean magnification tends to be
higher and for high fluctuations the mean magnification tends to be lower. However, the different behaviour between
(κ, γ) = (0.45, 0.45) and (κ, γ) = (0.55, 0.55) can not be explained by this.
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Table 2: Mean values of the magnification maps.

κ = 0.45, γ = 0.45 κ = 0.55, γ = 0.55
α Clustered Uniform Clustered Uniform

0.1 9.95 10.16 9.01 9.74
0.2 9.64 10.37 8.12 9.48
0.3 8.96 10.59 7.52 9.29
0.4 8.57 10.94 6.59 9.15
0.5 7.98 11.33 6.37 9.00
0.6 7.78 11.84 5.78 8.75
0.7 7.66 12.56 5.18 8.66
0.8 7.25 13.45 5.37 8.53
0.9 6.61 14.07 4.80 8.31
1.0 6.78 14.17 4.60 8.26

on our method to determine the magnification of the real quasar, we need to adjust our analysis of
the simulations.

4.4.1 Using the mean magnification of the maps

This method should be used if one uses the radio emission or the narrow line emission region to
determine the magnification of the quasar due to microlensing. We will compare the results of the
clustered distribution with the ones from the uniform one. While the magnification histograms
had an overall similar behaviour, they still differed significantly from one another and focused on
different features. An example for this can be seen in the upper part of Figure A.5.

As one can see in the upper left part of the figure, the histogram for the clustered black holes
shows a quite strong peak around a magnification of 0 magnitudes, whereas the histogram for the
uniform distribution has a way lower peak at this value. Also, it is apparent that although we
computed almost three times as many maps for the clustered case, the noise is still way higher.
This is even more striking when one compares the single histograms, as can be seen in Figure A.6.

A comparison of the magnification histograms for different values of α can be seen in Figure 8.
Here we notice that the case κ = 0.45, γ = 0.45 behaves as expected. An increase in α leads to a
higher number of microlenses which in turn leads to a broadening of the magnification histogram.
However, the case κ = 0.55, γ = 0.55 is another matter: First of all, the magnification histograms
are way broader which is partly expected as the number of microlenses is again higher. However,
in this case the general tendency seems to be that the histograms are broader for low values of
α and get narrower with increasing α. This behaviour was unexpected. A partly explanation for
that is that this image is a so called high magnification saddle-point image, which sometimes exerts
peculiar behaviour.

Due to the fact that the saddle-point image behaves so differently, we chose to perform two
Bayesian analyses: One where we cross-correlate the histograms for the values (κ, γ) = (0.45, 0.45)
with the ones from (κ, γ) = (0.55, 0.55) (from here on reffered to as Case 1) and one which might be
more representative for a ‘normal’ lens where we perform an auto-correlation of the histograms for
(κ, γ) = (0.45, 0.45) (which we will refer to as Case 2). The resulting histograms for these analyses
can be found in Figure 9. A Bayesian analysis for a magnitude difference of ∆m = −0.3 showed
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4.4 The most likely Lens 4 RESULTS

(a) Uniform Distribution (b) Clustered Distribution

(c) Uniform Distribution (d) Clustered Distribution

Figure 8: Magnification histograms for different values of α in the clustered and unclustered case,
normalizing with respect to the mean magnification of the maps.
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4.4 The most likely Lens 4 RESULTS

(a) Uniform Distribution, Case 1 (b) Clustered Distribution, Case 1

(c) Uniform Distribution, Case 2 (d) Clustered Distribution, Case 2

Figure 9: Correlated histograms for different values of α in the clustered and unclustered case,
normalizing with respect to the mean magnification of the maps.
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5 DISCUSSION

that in this region the cases are fairly degenerate (compare Figure A.7). However, note that while
the changes in the likelihood distribution might appear small, they become quite substantial when
one analyzes a large number of quasars and multiplies their respecitive likelihood distributions.

4.4.2 Using the theoretical magnification

This method should be used when one determines the magnification of the quasar due to microlens-
ing by a macro model of the lens. In this case we will normalize the histograms by the theoretical
mean value obtained from the parameters κ and γ. The change from a magnification of 7 to 10
resp. from 14 to 10 are responsible for a shift in the histograms of about 0.35 magnitudes. As one
can see in Figure A.5, for low values of α the different shift of the histograms is barely noticeable,
but for high values of α the appearence differs significantly.

We performed an analogous analysis as in the previos section. Inspecting Figure A.8 we see
that in contrast to Figure 8 especially the histograms corresponding to higher fractions of mass
in microlenses are noticeably shifted. The correlated histograms also exhibit a slightly differnt
behaviour (compare Figure A.9 with Figure 9), although in the overall picture they look fairly
similar. However, a bayesian analysis with magnitude difference ∆m = −0.3 does indeed yield a
different result (compare Figures A.10 and A.7).

5 Discussion

Due to the huge amount of computation time needed to construct the magnification maps (and the
huge amount of maps needed due to shot-noise) we were yet unable to perform an analysis based
on real data. We need to perform these calculations, times 9 (to include the variables NBH and
σ), for about 30 observed quasars. With that in mind, answering the question ‘Is the existence of
primordial black holes consistent with the data from quasar gravitational microlensing?’ based on
this thesis is impossible. Within the next weeks we will be able to run the code on a computer
cluster and with the resulting data we will be able to find an answer. For this thesis, the question
reads: ‘Do the results of Mediavilla et al. (2017) exclude the existence of clustered primordial black
holes?’ and to this we can answer: Maybe not.

We have seen that in general the probability distribution of magnifications for clustered lenses
behaves roughly like the one for unclustered ones. The general features (broadening of the distri-
bution with different α’s, number of peaks in the histogram, . . . ) are mostly the same, however
the histograms still differ by a significant amount: Sometimes the location or height of the peaks
change and one can observe that the histograms for clustered lenses are in general broader. For
some lens systems (i.e. Case 2) the correlated probability distributions are, albeit a bit broader in
the clustered case, almost the same. However, for other lenses (i.e. Case 1) the correlated prob-
ability distributions exhibit very different behaviour (compare Figure 9). Our bayesian analysis
was conducted in a region where the histograms are quite similar, but it is not unlikely that the
analysis of the real lenses will include the study of those regions that differ between the clustered
and unclustered case.

Also, we can conclude that one has to pay close attention to the method which is used for
the determination of the quasar magnification baseline. The differences in the mean magnification
between a clustered and a uniform distribution of microlenses are fairly substantial and may have
a significant impact on the results of the analysis. The fact that the average magnification in the
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5 DISCUSSION

clustered case was so much lower shows that, as expected, clustered lenses seem to be less efficient
in microlensing, compared to a uniform distribution.

We are of course far from giving a definite answer to the question, but we have shown that there
are indeed subtle differences between the behaviour of clustered and uniformly distributed lenses.
It is now up to the oncoming analysis to show whether these differences are significant enough to
explain gravitational microlensing data under the premise of the existence of primordial black holes.

A study involving this many assumptions is naturally prone to systematic errors, of which we
have already discussed a few in the thesis:

• The radial profile of a cluster of primordial black holes is probably not a Gaussian one.
More suitable candidates might be some truncated form of the singular isothermal sphere,
for example a King profile often used in the analysis of star clusters (King 1962). However,
trading our one-parameter profile for a two- or even three-parameter profile does not seem
like a good idea considering our already large parameter space. We believe that among all
systematic errors, the contribution of the radial profile is not significant as in our group we
have performed a comparison with a uniform radial profile and found no significant differences
in the resulting histograms.

• We are considering a source size of 5 lightdays for the continuum emission region. This
source size is consistent with results from reverbration mapping, which is independent from
gravitational microlensing thus avoiding circularity of our model. However, subtle changes in
the size of the source might still have an impact on our results.

• We are neglecting the stellar population and the clustering efficiency of the black holes. Both
are physically very motivated: Obviously a stellar population in galaxies exists and the fact
that not all stars and galaxies are bound in clusters gives rise to the assumption that the
same would hold for primordial black holes. However, both of these aspects would increase
our computational time again by a large amount (one by adding an additional paraemter, the
other by multiplying the number of microlenses by about 100) and Mediavilla et al. (2017)
showed that even neglecting these effects the existence of primordial black holes would lead
to a result inconsistent with the values for the current stellar population.

• We have just considered clusters of a constant size (albeit with some random fluctuations).
As microlensing is fairly insensitive to the slope of the mass spectrum of the lenses, one might
be tempted to assume that similarly it is just sensitive to the average size of the clusters and
not to the distribution of their sizes. However, to our knowledge this has not yet been studied.

• We have already discussed the different methods of determining a baseline for the quasar
magnification, each of which is prone to its own systematic errors (extinction, uncertainties
in the macro model, magnification of the narrow line emission region due to the huge caustics
introduced by the clusters). We have also discussed that depending on the method of baseline-
determination, a different analysis has to be performed.

• As in all studies involving the nature of Dark Matter we face a certain circularity. The
unterlying ΛCDM model we use to calculate distances (which is essential for our study)
already uses assumptions about Dark Matter. Unfortunately there is no satisfying way to
avoid this problem.
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6 CONCLUSION

All things considered, we are relatively confident that the systematic uncertainties are less important
than factors like the shot noise of the magnification maps and the limited number of quasar images
available for study (especially since the determination of the baseline is more difficult in this case).
However, if we were to be able to increase our computational resources, we would probably include
a background stellar population and a variable factor for the clustering efficiency.

6 Conclusion

During this thesis we have created a python script that can be used to build magnification maps for a
clustered distribution of lenses, extract the probability distribution functions, normalize them with
respect to the mean magnification and perform a cross-correlation including a following bayesian
analysis. This code has been used on a small laptop, on a computer farm and on a large computer
cluster. It can be run on every system that has python (and a few submodules) installed and uses
the GNU fortran compiler (although using another fortran compiler would just require the change
of one line of code). The initial values (κ, γ) can be either entered manually or taken from a lens.dat
file. The values for the parameters can also be changed if one prefers another set. Everything except
the creation of magnification maps and the extraction of the respective histograms (which should
be done on a computer farm or cluster) can be handled by a small laptop in a matter of seconds.

We used this code to perform a short test run and a case-study for the most likely lens, finding
that, although the results are fairly similar to the ones based on a uniform, unclustered distribution
of lenses, there are subtle differences that might make an impact in further analysis. Especially we
found that clustered lenses appear to be generally less efficient in microlensing, although the effects
are dependent on the chosen κ and γ. Due to this consideration we found that one has to perform
a different analysis depending on which method was used to determine the magnification baseline
of the lensed quasar.
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A APPENDIX

A Appendix

A.1 Additional Figures

Figure A.1: Comparison of the autocorrelated histograms for different parameter choices.
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A.1 Additional Figures A APPENDIX

(a) ∆m = 0.25 (b) ∆m = 0.4

Figure A.2: Comparison of the Likelihoods for the number of black holes per cluster for a bayesian
analysis with a magnification of ∆m = 0.25 and ∆m = 0.4.

(a) ∆m = 0.25 (b) ∆m = 0.4

Figure A.3: Comparison of the Likelihoods for the extent of the clusters for a bayesian analysis
with a magnification of ∆m = 0.25 and ∆m = 0.4.
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A.1 Additional Figures A APPENDIX

Figure A.4: Example of a twodimensional likelihood distribution between the parameters NBH and
α in a bayesian analysis with ∆m = −0.4.
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A.1 Additional Figures A APPENDIX

Figure A.5: Two examples for magnification histograms comparing the clustered and unclustered
case. The upper ones are normalized with respect to the mean magnification of the maps, whereas
the lower ones are normalized with respect to the theoretical mean magnification.
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A.1 Additional Figures A APPENDIX

(a) Clustered Distribution (b) Uniform Distribution

Figure A.6: Two examples for magnification histograms comparing the clustered and unclustered
case. The colored lines correspond to the single histograms extracted from each map, the thick
black line represents the average.
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A.1 Additional Figures A APPENDIX

(a) Uniform Distribution, Case 1 (b) Clustered Distribution, Case 1

(c) Uniform Distribution, Case 2 (d) Clustered Distribution, Case 2

Figure A.7: Results of the bayesian analysis for a magnitude difference of ∆m = −0.3, normalizing
with respect to the mean magnification of the maps.

Page 31 of 38



A.1 Additional Figures A APPENDIX

(a) Uniform Distribution (b) Clustered Distribution

(c) Uniform Distribution (d) Clustered Distribution

Figure A.8: Magnification histograms for different values of α in the clustered and unclustered case,
normalizing with respect to the theoretical mean.
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A.1 Additional Figures A APPENDIX

(a) Uniform Distribution, Case 1 (b) Clustered Distribution, Case 1

(c) Uniform Distribution, Case 2 (d) Clustered Distribution, Case 2

Figure A.9: Correlated histograms for different values of α in the clustered and unclustered case,
normalizing with respect to the theoretical mean.

Page 33 of 38



A.1 Additional Figures A APPENDIX

(a) Uniform Distribution, Case 1 (b) Clustered Distribution, Case 1

(c) Uniform Distribution, Case 2 (d) Clustered Distribution, Case 2

Figure A.10: Results of the bayesian analysis for a magnitude difference of ∆m = −0.3, normalizing
with respect to the theoretical mean.
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A.2 The used code A APPENDIX

A.2 The used code

Below the reader can see a short example for the ‘routine.py’ module which is used to run the
code on the computer farm. All in all, over 1300 lines of code were written, which can not all be
displayed here. All files used for the creation and analysis of the magnification maps can be found
in the google drive: https://goo.gl/nRqG2h

import subprocess

import os

alphas = [0.0625,0.125,0.25,0.5,0.75,1.0]

radii = [1,2,4]

concentrations = [100,300,1000]

numruns = 25

data = open(’lenses.dat’,’r’)

lenses = data.readlines()

data.close()

nl=0

for lens in lenses:

[name,kappa,gamma,dl,ds,dls] = lens.split()

nl=nl+1

for alpha in alphas:

for radius in radii:

for concentration in concentrations:

alpha = str(alpha)

radius = str(radius)

concentration = str(concentration)

for j in range(numruns):

command = [’python3’, ’magmaps.py’, name, alpha, concentration, radius,

kappa, gamma, str(j)]

subprocess.call(command)
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