
1

Trabajo Fin de Máster

Behind the App: Software Architecture
Dinesh Harjani

La Laguna, on Monday January 22nd, 2018.

2

D. José Luis Roda García, with Spanish D.N.I. 43356123-L, being
Associate Professor, belonging to the Departamento de Ingeniería Informática
y de Sistemas at Universidad de La Laguna, as tutor

C E R T I F I E S

That the present TFM titled:

“Behind the App: Software Architecture”

has been written under his direction by D. David Dinesh A. Harjani
Harjani, with Spanish D.N.I. 42220646-Y.

So that it may be stated, in compliance with current legislation and to the
appropriate future effects, that the present has been signed in La Laguna as
of Monday January 22nd, 2018.

3

Acknowledgements

Prof. José Luis Roda García

4

Copyright © 2018 Dinesh Harjani. All Rights Reserved. This paper is under
the Creative Commons Attribution-NonCommercial-NoDerivs

International license.

This license allows you to download our work and share it with others as
long as the author is properly credited. But you may not use the author’s
work for modification nor commercial distribution and/or sale of any

form.

Doing so would violate this license and subject the offender to legal
prosecution.

5

ABSTRACT
Modern-day software is anything but complex. From the early days of

school, be it at Higher Education, professionally-taught courses or even as
self-taught developers, we all begin learning how to write simple,
straightforward code, that does one thing, and one thing only. This is a
complete far-cry from what modern software development requires, which
pushes so much complexity into the developer’s hands, that building small
pieces of functionality without tying them up together in higher-level
structures will prove to be one of the greatest dangers to any project. With far
greater risks that those proposed by any technical challenge.

Keywords: Modern, Software, Architecture, iOS, Apps, Development,
Complexity, Programming.

6

Table of Contents

1.Introduction 10
1.1 Preface 11
1.2 How Is Complexity Solved? 12
1.3 How Is Architecture Reflected In Our Industry? 13
1.4 The Effects Of Poor Software Architecture 16
1.5 What Is Software Architecture, Then? 19

2.Case Study: Racing Tweets's Architecture 23
2.1 What Is Racing Tweets? 24
2.2 Layers 25
2.3 Timeline 28
2.4 Navigation 34

2.4.1 Settings Screen 35
2.4.2 Gluing It All Together 38

2.5 Standard Engine 41
2.5.1 Component Overview 41
2.5.2 Requirements / Features 44

2.5.2.1 Logical Coalescing 46
2.5.2.2 Time-awareness 46
2.5.2.3 Multi-threading & Responsiveness 47
2.5.2.4 Multi-queued 48
2.5.2.5 Gap Support 48
2.5.2.6 Bulletproof 48
2.5.2.7 User Protection 49
2.5.2.8 Highly Extensible 49
2.5.2.9 User Interface Customization 50
2.5.2.10 Developer-focused 50
2.5.2.11 Adaptable 51
2.5.2.12 Track-based Supplier Filtering 51

2.5.3 The Developer's Perspective 52
2.5.3.1 Data Items 52
2.5.3.2 Data Source 54
2.5.3.3 Engine Control 56
2.5.3.4 View Controller API 59

2.5.4 Looking Down (Pool Cycle) 60
2.6 Grab Bag 66

2.6.1 Self-Sizing UITableViewCell(s) 66
2.6.2 Aspect-ratio consistent UIImageView(s) 67

scrivlnk://3B5B72A5-E0A3-4F61-BCEE-855B9C40A1EF
scrivlnk://3B5B72A5-E0A3-4F61-BCEE-855B9C40A1EF
scrivlnk://EDFA9D7F-A4BA-493F-B2ED-6F29170A67EE
scrivlnk://EDFA9D7F-A4BA-493F-B2ED-6F29170A67EE
scrivlnk://EDB547A6-B365-47CD-A440-2A68C9122341
scrivlnk://EDB547A6-B365-47CD-A440-2A68C9122341
scrivlnk://BCD26B76-E7EC-4CA9-88FF-8C4087F731F5
scrivlnk://BCD26B76-E7EC-4CA9-88FF-8C4087F731F5
scrivlnk://8E15D3A2-0C98-43A7-BDBF-57312EF40D99
scrivlnk://8E15D3A2-0C98-43A7-BDBF-57312EF40D99
scrivlnk://239B5996-6D23-43C9-AA5F-5E123AF931D2
scrivlnk://239B5996-6D23-43C9-AA5F-5E123AF931D2
scrivlnk://72C5E27F-5A47-41E1-A04F-24C69F120591
scrivlnk://72C5E27F-5A47-41E1-A04F-24C69F120591
scrivlnk://EEDF500B-FFA7-4752-9081-E96189E78FDC
scrivlnk://EEDF500B-FFA7-4752-9081-E96189E78FDC
scrivlnk://1F9D7EE2-CF83-479A-B4BF-5455251B070F
scrivlnk://1F9D7EE2-CF83-479A-B4BF-5455251B070F
scrivlnk://77E7905E-2656-4FA7-870B-BEEEA8952879
scrivlnk://77E7905E-2656-4FA7-870B-BEEEA8952879
scrivlnk://AE93B083-2620-4E46-9679-B922FE79984C
scrivlnk://AE93B083-2620-4E46-9679-B922FE79984C
scrivlnk://0966B5CF-51E5-4EB3-B544-19DEB04F8FBB
scrivlnk://0966B5CF-51E5-4EB3-B544-19DEB04F8FBB
scrivlnk://D0E50E63-9548-49E8-A988-348E22C3DC69
scrivlnk://D0E50E63-9548-49E8-A988-348E22C3DC69
scrivlnk://68926DC1-A7CA-4F57-8116-632EE01E7413
scrivlnk://68926DC1-A7CA-4F57-8116-632EE01E7413
scrivlnk://142DDF0F-CDFC-463E-87B7-0CF0F8E2EE40
scrivlnk://142DDF0F-CDFC-463E-87B7-0CF0F8E2EE40
scrivlnk://BAFA54FA-6107-4E92-B487-60BC71D0B4CF
scrivlnk://BAFA54FA-6107-4E92-B487-60BC71D0B4CF
scrivlnk://70F3B01B-CAA8-4EAE-ABDC-983DB04FBCE5
scrivlnk://70F3B01B-CAA8-4EAE-ABDC-983DB04FBCE5
scrivlnk://3F5FE48F-280E-4E5D-82C7-3419EF665939
scrivlnk://3F5FE48F-280E-4E5D-82C7-3419EF665939
scrivlnk://A8A077CA-DAA5-4FEF-B931-C950C70949C1
scrivlnk://A8A077CA-DAA5-4FEF-B931-C950C70949C1
scrivlnk://430CE890-36DC-42D7-A4B6-60E007600F9C
scrivlnk://430CE890-36DC-42D7-A4B6-60E007600F9C
scrivlnk://7CFAB61E-9852-40EF-8899-1932958A730F
scrivlnk://7CFAB61E-9852-40EF-8899-1932958A730F
scrivlnk://F0607510-46C0-414B-828F-420D9E47E1AD
scrivlnk://F0607510-46C0-414B-828F-420D9E47E1AD
scrivlnk://396408D4-E597-4044-A4F8-3F76B6A91AFC
scrivlnk://396408D4-E597-4044-A4F8-3F76B6A91AFC
scrivlnk://6C65C0F9-7A21-4FC8-8C0E-CD485D2BCAFE
scrivlnk://6C65C0F9-7A21-4FC8-8C0E-CD485D2BCAFE
scrivlnk://562FF70A-15F5-4DDA-AF68-B38239AF7B57
scrivlnk://562FF70A-15F5-4DDA-AF68-B38239AF7B57
scrivlnk://DDC9CB6F-453B-4FE9-A653-B0E8E85104FC
scrivlnk://DDC9CB6F-453B-4FE9-A653-B0E8E85104FC
scrivlnk://618F9D07-528F-453D-8179-8BE6C09427F1
scrivlnk://618F9D07-528F-453D-8179-8BE6C09427F1
scrivlnk://3032FBB6-AD3E-463E-8CC5-EAF6347F3E80
scrivlnk://3032FBB6-AD3E-463E-8CC5-EAF6347F3E80
scrivlnk://5FC482B8-38A6-4727-AF6F-6FB5FCA65A3C
scrivlnk://5FC482B8-38A6-4727-AF6F-6FB5FCA65A3C
scrivlnk://EE5D8E52-F3F4-4DDD-AE79-03259B351350
scrivlnk://EE5D8E52-F3F4-4DDD-AE79-03259B351350
scrivlnk://9FAFC62A-27FE-4718-B03F-EABDDBD1CBCC
scrivlnk://9FAFC62A-27FE-4718-B03F-EABDDBD1CBCC
scrivlnk://935A267F-D461-4619-8544-BEB8B74100CD
scrivlnk://935A267F-D461-4619-8544-BEB8B74100CD
scrivlnk://8FB49478-D7D8-457A-A0DC-D209FD44FF5A
scrivlnk://8FB49478-D7D8-457A-A0DC-D209FD44FF5A
scrivlnk://AF6521D7-0BE5-4003-8C59-A87C5BD15298
scrivlnk://AF6521D7-0BE5-4003-8C59-A87C5BD15298
scrivlnk://FE9E1709-C947-438C-A842-9CBAAF24935F
scrivlnk://FE9E1709-C947-438C-A842-9CBAAF24935F
scrivlnk://84224F14-631A-4051-84E9-5FBAA8760E36
scrivlnk://84224F14-631A-4051-84E9-5FBAA8760E36
scrivlnk://7ACF173D-293D-417B-90FF-A36B69919C04
scrivlnk://7ACF173D-293D-417B-90FF-A36B69919C04

7

2.6.3 Text flowing around UIImageView(s) 68
2.6.4 Hacking UITextView to not accept user input 69
2.6.5 Custom-Drawn UIView(s) 69
2.6.6 Asynchronous background loading of UIImageView(s) 70
2.6.7 UIImageView Cache(s) 71
2.6.8 Tweetshot(s) 71

3.The Closing 74
3.1 What Does Software Architecture's Future Look Like? 75
3.2 Racing Tweets' Future 76
3.3 By the way 77

4.Annex I: Racing Tweets' Story 79
4.1 WPF Origins 80
4.2 What Happened? 82
4.3 The Revival 83
4.4 But, What Was Racing Tweets all About? 84
4.5 Phoenix Rising 87

5.Annex II: More On Racing Tweets' Tech 89
5.1 Shared State 90

5.1.1 Settings Management 92
5.1.2 Simplicity Caveats 95

5.2 Expanded Developer's Perspective 96
5.2.1 DHZESupplier API 96
5.2.2 Ticket Presentation 98

6.Bibliography 102
6.1 References 103

scrivlnk://2D491972-9D31-4915-BCC1-C7B51FB099DD
scrivlnk://2D491972-9D31-4915-BCC1-C7B51FB099DD
scrivlnk://43CAF576-20CA-4DA0-854C-0FCC5372ED3F
scrivlnk://43CAF576-20CA-4DA0-854C-0FCC5372ED3F
scrivlnk://A0BB8D55-BCEB-4096-AE99-654E8179795E
scrivlnk://A0BB8D55-BCEB-4096-AE99-654E8179795E
scrivlnk://9EB91A90-D240-4C01-B83F-A41022867B4E
scrivlnk://9EB91A90-D240-4C01-B83F-A41022867B4E
scrivlnk://6044F4AD-D845-4CB1-8FC5-2FF1247DC6D5
scrivlnk://6044F4AD-D845-4CB1-8FC5-2FF1247DC6D5
scrivlnk://E729578C-76AC-48B4-8B48-FF0F546D96D5
scrivlnk://E729578C-76AC-48B4-8B48-FF0F546D96D5
scrivlnk://17D8DCCE-EFE7-4CAD-B528-81FED2C53871
scrivlnk://17D8DCCE-EFE7-4CAD-B528-81FED2C53871
scrivlnk://31219B39-81FD-4DB2-B2C6-ED607945D20D
scrivlnk://31219B39-81FD-4DB2-B2C6-ED607945D20D
scrivlnk://AFC0331A-EFF2-46A4-97E0-3E54C8FE0565
scrivlnk://AFC0331A-EFF2-46A4-97E0-3E54C8FE0565
scrivlnk://781AA3A1-70DE-4FA9-B831-6F5DB10E63FA
scrivlnk://781AA3A1-70DE-4FA9-B831-6F5DB10E63FA
scrivlnk://A3D96D4C-9BB8-44CA-A0D0-7807C7186803
scrivlnk://A3D96D4C-9BB8-44CA-A0D0-7807C7186803
scrivlnk://FE688778-1294-4F73-A138-72693AFC4F25
scrivlnk://FE688778-1294-4F73-A138-72693AFC4F25
scrivlnk://BB99784F-DB22-49B1-BD27-697553595EB4
scrivlnk://BB99784F-DB22-49B1-BD27-697553595EB4
scrivlnk://E7F10856-4ED3-4B74-879F-4E18FEABF45D
scrivlnk://E7F10856-4ED3-4B74-879F-4E18FEABF45D
scrivlnk://8DF4E23A-63F6-4A8A-9484-5790ECB0921F
scrivlnk://8DF4E23A-63F6-4A8A-9484-5790ECB0921F
scrivlnk://BF464BD2-052F-4486-B648-A3764AA9B5CF
scrivlnk://BF464BD2-052F-4486-B648-A3764AA9B5CF
scrivlnk://1B4993D6-53F7-4A68-9A5A-B9B18EEE51D0
scrivlnk://1B4993D6-53F7-4A68-9A5A-B9B18EEE51D0
scrivlnk://E09F8E5D-C143-4308-8E04-C0B0F76EEC90
scrivlnk://E09F8E5D-C143-4308-8E04-C0B0F76EEC90
scrivlnk://3074FF34-926C-4218-BF4B-5464BE427A81
scrivlnk://3074FF34-926C-4218-BF4B-5464BE427A81
scrivlnk://583F2DAC-4B63-4ED9-8EA0-143830FBFEFF
scrivlnk://583F2DAC-4B63-4ED9-8EA0-143830FBFEFF
scrivlnk://B14B4BDE-F5CA-49D1-89B4-8D1906F918E4
scrivlnk://B14B4BDE-F5CA-49D1-89B4-8D1906F918E4
scrivlnk://25395CA3-62F3-4CE9-9207-AD69FF036F04
scrivlnk://25395CA3-62F3-4CE9-9207-AD69FF036F04
scrivlnk://C708D174-1806-4D57-8EBD-772D46818DF5
scrivlnk://C708D174-1806-4D57-8EBD-772D46818DF5
scrivlnk://AC07309E-5CC1-4CBA-84CE-EE641203D72E
scrivlnk://AC07309E-5CC1-4CBA-84CE-EE641203D72E
scrivlnk://BF7651EF-946E-4727-B639-D03CA665BE1E
scrivlnk://BF7651EF-946E-4727-B639-D03CA665BE1E

8

Index of Figures

Figure 1: A MacBook Pro mirroring Xcode’s code editor into an
iPhone.

11

Figure 2: Facebook Autoscale Architecture. 14
Figure 3: I am CEO Phase 1 company creation flow. 18
Figure 4: I am CEO password protections creen. 21
Figure 5: Promotional artwork for Racing Tweets v2.0. 24
Figure 6: Racing Tweets v2.0 Software Architecture. 25
Figure 7: Early Standard Engine Concept drawing. 28
Figure 8: UITableView sample code and Twitter for iPhone app
comparison. 29

Figure 9: Twitter Client Timeline Interaction Diagram. 31
Figure 10: Standard Engine-powered Twitter Client Interaction
Diagram. 33

Figure 11: Different screens from Racing Tweets v2.0. 34
Figure 12: Racing Tweets’ Settings User Flow Diagram. 36
Figure 13: UITabViewController example. 37
Figure 14: Different screens from Racing Tweets v2.0. 38
Figure 15: Racing Tweets’ Complete User Flow Diagram. 40
Figure 16: Standard Engine Overview. 41
Figure 17: Early drawings of Standard Engine Gap Support. 45
Figure 18: iOS Event Loop Diagram. 47
Figure 19: DHZESupplier API required function. 54
Figure 20: DHZEManagedCacheSupplier protocol definition. 55
Figure 21: DHZEControlUnit API. 56
Figure 22: DHSEModularControlUnit API. 57
Figure 23: DHZEControlUnit Supplier Time Threshold API. 57
Figure 24: Supplier Time Threshold Sample implementation 58
Figure 25: Standard Engine instantiation. 59
Figure 26: Standard Engine Refresh call. 59
Figure 27: Standard Engine UITableViewDataSource protocol
implementation. 60

Figure 28: Standard Engine Pool Cycle Diagram 61
Figure 29: Drawing showcasing Tickets for Gap Support testing. 64
Figure 30: More Racing Tweets v2.0 Promotional Artwork 66

9

Figure 31: Racing Tweets comparison with other Twitter clients. 68
Figure 32: 3D Touch action on a UITableViewCell (Tweetshot). 72
Figure 33: Software Architecture. 75
Figure 34: Racing Tweets’ Standing On The Shoulders Of
screen. 78

Figure 35: Windows for Fiber prototype. 80
Figure 36: Standard Engine prototype pulling Formula One
tweets. 83

Figure 37: Promotional artwork for Racing Tweets 1.0 release 85
Figure 38: A close-up of Racing Tweets 1.0. 87
Figure 39: Another promotional image for Racing Tweets 1.0. 90
Figure 40: Code example for extending DHSEUserSettings class. 93
Figure 41: DHTdF1ServerCommunicator and DHSEUserSettings
relationship diagram. 94

Figure 42: DHTdF1ServerCommunicator Write Coalescing
algorithm. 95

Figure 43: Expanded DHZESupplier API. 96
Figure 44: Standard Engine prototype. 99
Figure 45: DHZETicketPresenter API. 100

10

1.Introduction

11

1.1 Preface

Figure 1: A MacBook Pro mirroring Xcode’s code editor into an iPhone.

The clock has just striked the year 2018, which means, we’re already a decade past
the App Store revolution introduced by Apple in the Summer of 2008. It seems like it
was just yesterday, when everyone was up in arms about Apple not allowing 3rd
party developers to write native apps for the iPhone, back when Android resembled
more a BlackBerry than what it eventually ended up shipping[1]. But it launched, and
the App Store was such a hit with consumers, that developers flocked to the new
mobile platforms hailing it as the Gold Rush of the 21st century. Today, what remains
of said Gold Rush is the dreams many of us have to become full-time indies, or in
other words, to make enough money writing apps that we love.

What many don’t give enough credit for though, is to the shocking amount of
progress we’ve made in another field of computing: the cloud. Ten years ago, “the
cloud” resembled more a trap everyone had fallen into, rather than a solution onto
itself. It was a necessary consequence to the ongoing demands of the web, still
recovering from the dot-com bust of 2001, but it was far in everyone’s minds from
becoming the de facto solution. There were many pioneers back then, but the
situation was nothing like it is now.

Make no mistake: everything you’re using from your smartphone right now, is
powered by the cloud. You might happen to call those colorful icons Instagram,
Twitter, LinkedIn, Reddit, Snapchat, WhatsApp, Telegram, Yahoo!, Netflix, YouTube,

12

Hulu, Spotify, TripAdvisor, or any other belonging to this endless long-tail of
etceteras. The secret to most of them though, is that their clouds are powered by a
backbone comprised primarily of Amazon, Microsoft and Google servers. It’s true
that they all keep some amount of servers in-house, but scalability throughout the
globe is ultimately provided by these big-whales, willing to exchange money, for the
use of their large-scale commodity-basedi server hardware plugged directly into the
spine of the Internet. Few, like Facebook and Apple, have the economic power to
build top-to-bottom walled-gardens of their own, to keep absolutely everything
under their corporate umbrella. Everyone else, specially startups, rely on the big
three to power their ideas at a reasonable cost.

But the consequences of all this progress is a great cost, known to mankind from
the very early days of engineering, in the form of complexity. If we want to build
bigger, better and cheaper entities, something’s got to give; as nature has shown
us, everything we can imagine is perfectly achievable, but getting there requires a
certain sense of balance. You can’t have everything, and if what you want is better,
bigger and cheaper, and you’re willing to throw as much manpower as possible to
the problem, then out-of-bounds complexity, is what you get.

It wasn’t always like this. In the early days, hardware was very slow. Therefore, we
prioritized making software as simple and efficient as possible, to make the most of
whatever silicon power we had. Even programming languages were written to focus
on computer efficiency, rather than human efficiencyii. But when the 2000s came
around, and Intel began its rain of ever-increasing performance products with its
tick-tock strategy[2], coupled with the rise of smartphone app development, one
thing became clear: hardware was now the commodity, and together with large-
sums of money plunged by investors in order to not miss “the next big thing”,
developers became the key to increase the company’s value. Complexity is no
longer a problem, as long as you can keep everyone working together towards the
company’s goals.

1.2 How Is Complexity Solved?

i. There was a time when servers relied on completely different architectures in order to meet
customer demand. After the rise of Intel’s multi-core solutions, hardware to serve hundreds of
requests per second became bargain-cheap, and with it came the benefits of knowing your software
was always running on x86-based hardware.

ii. Think programming languages like Assembly, Fortran, C and C++. Even Objective-C, which
predates Bjarne Stroutstrup’s own.

13

Complexity isn’t new to us humans. It’s been a staple of many other branches of
engineering: cars, ships, buildings, bridges, and really all kinds of construction.
Even in the computer industry, back in the days when software represented the
minimum amount of microcode necessary to make the hardware run, had to pull
from a very common, simple, and yet highly efficient concept accross all forms of
engineering: architecture.

As a word, “architecture” involves completely different concepts and ramifications
depending on where it’s placed, but at its core, it comprises a set of values that
have been fundamental in enabling us, humans, to work together and build bigger
and more complex structures than those we could build on our own, at a faster
pace. How? It begins with a vision for the complete structure of what we want to
make, how it should work, and what requirements it should have. Then, we break it
up into smaller components, each of which meets a subset of the criteria required
by the bigger structure. Once we’ve broken it down to the point where we can
differentiate two distinct levels, we continue this process recursively, until we reach
the bottom of the pyramid: where everything we need to do, is comprised of
problems we already have a solution for.

Sounds easy enough, but there are caveats. You need leadership to provide a
vision, and you need to be able to make people work together in the smaller
components, in order for the project as a whole to come to fruition. Once you’ve
solved that set of human-related problems, another one comes your way, and that
is: “did we miss something?” Because if you did, you need to re-architect and re-
engineer your solution to fit whatever new requirements you’ve discovered. This
does not necessarily mean that your entire architecture needs to be thrown out of
the window, but it might mean that you’ll need to make certain tradeoffs in order to
meet your deadline. Again, as nature has taught us, balance is at the core of any
great achievement.

1.3 How Is Architecture Reflected In Our Industry?

If you perform a quick Google Search, most of the results on software architecture
will either be platform architectures, like those based on Operating Systems or
programming environments, or, the most common one in vogue today, which is
back-end architecture. The first one has its origin back in the early 90s, when the
Computer Industry hadn’t yet settled on Windows, Linux and the Mac, and
everyone wanted to believe the market for a mass-market Operating System wasn’t

14

decided yetiii. In turn, the promise of being able to write great applications through
new software platforms was the bait set in place for software developers to flock to
the new platforms, which was the root for those conversations on what made great
System Architectures. History would repeat itself again 15 years later with the rise
of the smartphoneiv.

Today though, architecture in the software realm is mostly reserved to the myriad of
complex systems keeping alive the “clouds” we spoke about earlier, powering all
the apps that currently sit on your smartphone’s homescreen. Why is this the case?
Suppose, for example, that you’re powering up the Facebook app in your phone.
The first thing you’ll see is a strip of blue at the top, and a sea of white in the middle
of the screen. What do you think is happening here, while you’re waiting to see
content? That’s right - after powering up all of the app’s internal components, a
request is being made to fetch items for the app to show your News Feed. Who’s
birthday is it today? What happened in your life 6 years ago? Where are your friends
travelling to on holidays? What party did your ex go to last night? The app on your
phone, the Facebook app, makes a single request to its server, and gets everything
that it needs to show in the appropriate order for the current user, meaning the app
only needs to know how to show content, but not how to aggregate it.

Figure 2: Facebook Autoscale Architecture.

But how does this request really reach your phone? Independently of whether we’re
using an Android or iOS device, using the OS’ Developer API, the Facebook app

iii. Before Microsoft landed on its feet with Windows 95, companies like Commodore, NeXT, and Be
thought the market didn’t have to belong to MS-DOS and the Mac.

iv. BlackBerry and Palm would become the Commodores of the smartphone era, together with other
failed mobile endeavors such as FirefoxOS, Windows on mobile and MeeGo.

15

performs an HTTPS request that hits Facebook’s DNS Servers first. When it does,
the request will be redirected to one of Facebook’s load-balancers[3], which will
decide which physical server should serve said request, and transfer it for
processing. Once the request has been processed, and a response has been sent
back to the user, your phone will display your News Feedv. At the same time, the
chosen physical server that served your request will inform another component in
Facebook’s network about the work it just performed, so that the software running
the servers can perform administrative duties on their farms. This allows Facebook,
for example, to automatically expand and contract its pool of physical machines on
demand, in order to save as much money as possible, but without ever rejecting or
delaying a user’s request. Facebook, together with other industry giants, makes it
look extremely easy to adapt server infrastructure costs with on-demand network
requests to a back-end, and in their case, Instagram and WhatsApp also use
Facebook’s back-end infrastructure, including release engineering[4].

But what happens inside the physical web server, once the request reaches it?
What software is responsible for processing and returning a response? That’s a bag
full of complexity. You see, Facebook’s services aren’t written in any one language:
they can be written in Java. In C++. Or even, and actually most likely, in PHP, which
as we all know, is a slow interpreted language. So slow in fact, that Facebook spent
18 months writing a PHP Compiler to translate its PHP services into C++ code[5],
which is then re-compiled and executed using a standard compiler like GCCvi. And,
because a service can be written with any of these three languages, Facebook has
found itself using Apache Thrift[6] to dynamically call each service independently of
the language it was written in. And below the application layer?[7] We have services
like logical storage, which is handled through MySQL, Hadoop’s HBase, and of
course Memcachedvii. Back-ends also clearly differentiate between logical storage
and mass storage, which is where massive binary files like our Facebook pictures
and videos are stored. If we were the developers of the server’s application, it
shouldn’t be our responsability to know in exactly which data center node the photo
with ID 90210 happens to be in, right? In an ideal world, we would just like a quick

v. Which, let’s be honest, we both know it’s mostly filled with friends on holidays, getting engaged, or
taking selfies with their cats.

vi. We don’t have accurate information, but we hope that Facebook has since moved HipHop to use
LLVM instead of GCC.

vii. Memcached is an in-memory cache with a hit-rate upwards of 90% that stores both MySQL
queries and full request response objects to greatly speed up read-only requests and aid scalability.

16

method to obtain the Facebook CDN linkviii to the image so that we can return it to
the request client in JSON form. And this is exactly what Facebook built, in the form
of an entirely new software called Haystack[8]. And to be honest, after learning a bit
about what they need to do in order to keep all those petabytes of data in a
reasonable amount of physical space[9], I really can’t blame them for rolling-their-
own solution here.

As you can imagine, I’ve left out lots of other potential problems companies deal
with on a constant basis when building back-ends. But compounding the fact that
every single company wants to build their back-end their own way, and given the
massive scalability and reliability requirements of modern web-services, no one
could blame them for thinking that their back-end architecture is truly important;
modern businesses live & die by their normalized service uptime throughout the
year, lest they become literal whales[10]. Problem is, this is only the back-end; at
some point, front-ends need to be written too, or users won’t be able to reach
these services. And even though back-ends handle a lot of complexity, front-ends
aren’t complexity-free either. You can’t jump in and write a front-end by gluing code
together just because you think the back-end is handling most of the complexity for
you. Before you know it, that mountain of code will come back, and bite you. To
prove it, let’s have a look at a real-life example.

1.4 The Effects Of Poor Software Architecture

It was the Summer of 2011, and I was at the height of my programming powers - in
my mind only, of course. Back then, I believed that I was the best programmer in
the world; a sentimient I think others might’ve also felt at some point in their
careers, too.

I was at a crossroads: I’d had my first job as a mobile developer, but the company I
was working for lacked a viable business, so they couldn’t renew my contract.
When that was over, I had a ticket to Silicon Valley for Google’s Developer
Conference[11] lined up, so I went there, enjoyed the trip, and returned home
inspired. I had two options: I could look for a job, which I kind-of had in my hand
with an upcoming local game development studio, or, I could build an app. Filled

viii. CDN stands for Content Delivery Network; it’s where most photos and videos are stored in
distributed nodes across the world to minimize data loading times. Big companies like Facebook,
Twitter, Netflix, Apple, YouTube and so on rely on them for instant-streaming and downloading of
content.

17

with the confidence of being capable of building absolutely anything I set my mind
to, I chose the second.

In 2011, I was in awe of the iPad; I’d finally understood the point of tablets: they
were a lot more than just big phones. Instead, they could be an empowering tool - a
way to break from how the world perceived serious software - which still today
resembles Windows 95 apps, I might add -, and create a new beginning, in which
technology was the enabler, not a hoop through which you had to jump, with the
iPad at its core. And at the center of my idea, besides the iPad, were the people
sorrounding it: the iPad as a people management solution. I viewed it as a tool for
the everyday businessman, managing a low-tech enterprise such as a shop, a
package delivery service, an accounting firm, and maybe even perhaps a small
startup, where the number of tasks was reduced, and the amount of workers to
manage was between 7 and 15. Not too few that you could all hold it in your head,
and not too many that you required a much more complex solution. My app was
supposed to be an “employee performance tracker” of sorts, allowing you to define
tasks and assign them, keep track of meetings and their developments, set
reminders for work to be done, notes and ideas regarding your business, and more.
If you wanted to know what someone was working on, you simply had to open the
app, find the employee on the list, tap on their name, and you’d see everything
they’re associated with at the moment, plus automatically-generated data on their
performance. Sounds a lot like Asana[12], and like a dumbed-down version of Jira[13]
locked on your personal iPadix, if you ask me now. But back then, I knew better than
to simply Google-check if such a product existed. And if it did, I’d do it better by
kilometers. It was me we were talking about. In fact, I was so high in my own fever,
that I called it I am CEO, and made sure, no one could ever take that name away
from me, by locking it in Apple’s Developer Consolex.

ix. In 2011 I didn’t view “the cloud” as a good solution to build a product around. Now I think it’s rare
you don’t need a server component to implement a business idea. Even Racing Tweets v2.0 has a
server component, and it’s a Twitter client!

x. To this day, it still receives the name of “iTunes Connect”.

18

Figure 3: I am CEO Phase 1 company creation flow, circa September 2011.

Development was supposed to be split in three phases: Phase 1 would be about
building the basic framework for the app to be based on, plus the company creation
flow. Phase 2 would build most of the app’s features regarding people/employee
management, and Phase 3 would involve a testing/feedback cycle to perfect the
app before it was time to sell it to businesses. I later added a Phase Zero, to
“protect my creation”, with a password locking screenxi. Phase 1 took months,
about 3-4, and by the time I deemed it finished, rather than working on Phase 2’s
features, I kept working on the company creation flow, which kept failing and
crashing, because the code was a complete and utter mess. One of the company
creation flow steps was to pull employess from your Address Book, or a Social
Network such as Facebook or LinkedIn. The Facebook class clocked in at more
than 3.000 lines of Objective-C codexii, and what was worse: the code functions
within the same file jumped around the file all the time, without any clear codepath.
Meaning the code was not written to logically perform a series of steps, so
instead, I just added code wherever I saw fit inside the class as I discovered more
and more things were needed to perform the task. And achieving the list of fully
parsed Facebook friends wasn’t easy, either: first we had to obtain all our Facebook

xi. I’d later do the same with the Standard Engine. Until I realized it was pointless and I removed it.

xii. I wish I were kidding.

19

friends’ IDs, and if memory serves me right, we had to chain multiple requests
because only up to 50 friend IDs could be returned per request. Then we had to
chain another set of requests, this time for all of our Facebook friends’ JSON
Objects, in sets of 20. And parse them. And after parsing them, we had to write
another parser for the Facebook User profile images, which were also JSON
Objects.

Things got worse as time progressed. Because I’d invested so much brainpower
into fetching the list of Facebook friends, making them show up in the app, and
load their images asynchronously depending on the scrolling position the user was
inxiii, whenever the system failed I couldn’t help myself to not move on and fix it
instead. This was a big source of dissapointment, because even once I deemed
Phase 1 finished, I kept going back to it, without being able to fully fix it once and
for all, instead of working on Phase 2 features. And how could I build the “company
features”, if I couldn’t make my users reach that point flawlessly? This situation was
not emotionally sustainable for me, so as the Summer faded and my University
course-load picked up, I began to spend increasingly less amounts of time on the
project, until I signed for a new job, and didn’t look back at it.

If only I’d stopped, and tried to understand the problems I was going through… It is
clear to me now though, if we look over the business-side of the equation, that most
of my problems had roots in me not studying what I wanted my code to do and how
I could achieve it. Just a few notions on Software Architecture would’ve allowed me
to split the problem in parts and isolate them, allowing me to work on them
independently, without fear of breaking something due to small changes. It didn’t
even require the scale of architecture we’d apply for the Standard Engine/Racing
Tweets, but it needed something more that I couldn’t provide at the time.

1.5 What Is Software Architecture, Then?

Far from being a magic bullet to solve development problems, Software
Architecture is a tool necessary to build any kind of software-based product
that exceeds the length of a handful of code project files. It does not have any

xiii. When you have a UI element that can scroll, your current scroll position forms “a window” of
content, which is the currently visible set of items to the user. Because we wanted to “write it once
and forget about it”, we made the code listen to changes in the scrolling window’s position and only
load the images for the Facebook friends the user was currently seeing. We implemented this in a
much better way for Racing Tweets.

20

rules, nor frameworks, and sadly, no public figure to rally behind eitherxiv, telling you
exactly what to do to ensure your project enjoys from a healthy architecture. What
Software Architectures is, is a way of thinking, of breaking up your problem in
many smaller pieces, so that when you have to code 150 business requirements
plus another 100 User Interface features, everything has its place, and nothing that’s
completely unrelated breaks when you make a change. If you’ve realized people
can’t keep in their minds how everything in a big project works, or how all the
components are inter-related, and have taken steps to improve the way your team
visualizes tasks and the code they produce, you have taken steps toward
implementing a better Software Architecture. You might not have realized it yet, but
the important part is that you realized there was a problem, and rather than work
against it like me in I am CEO, you decided to turn it into an opportunity.

Sadly, there are many misconceptions regarding Software Architecture. Many
people believe they know Software Architecture, just because they took a class on
Design Patterns at school and a couple of years later realized they could refactor an
intricate web of source files using one of them. As I’ve explained before, good
Software Architecture isn’t based on recipes. Instead, it is a way of thinking, of
allowing Object-Oriented Programming to shine through our design choices, rather
than treating classes as boxes in which we simply paste code. Software
Architecture begins by modelling your problem into real-life elements of your
business, and making them actors in the form of Classes and Objects, in your code.
Good Software Architecture has the downside of requiring some amount of
documentation to communicate how the system is structured, but, it has the
massive benefit of enclosing logic into a single component: when a change is
required, you know exactly which class to touch, and can check for usages in that
class to find any code ramifications from your change. Plus, keeping this
documentation up to date will also aid you in ramping-up new hires, who will enjoy
the added comfort of knowing the system is well compartimentalized, and will not
fear modifying complex sub-systems because they will know how everything works
together.

xiv. “Uncle Bob”, also known as Robert C. Martin, comes close. Though he’s more a proponent of
Clean Code than good Software Architecture. Clean Code however, has the side benefit of
promoting good Software Architecture.

21

Figure 4: I am CEO’s password protection screen. Upon successful unlock, the
doors would unhinge in two distinct steps at different speeds, stopping in between

for an increased dramatic effect.

Obviously, what I explained above didn’t apply in any way to how I worked during
the I am CEO Summer. But the question now is, what can we learn from my failure?
I learnt that Software Architecture is not only fundamental for back-end
applications, but also, for front-ends. In the back-end, people already separate their
services in multiple elements: load balancers, databases, mass storage handling,
event queues, offline processing, and so on. But in the front-end? Everything is just
an app; it’s just code. From my experience, there usually is some kind of
organization, but no one is overseeing what the codebase looks like, or how it’s
evolving, and in which direction. And this is not scalable, especially in an era where
employers are asking us to write different versions of the same screen in an app for
cases like A/B testing[14]. Can you imagine having to solve many of the issues again,
by having to copy-paste code? It’s not only about being able to reuse parts of code;
this is software, we should be able to reuse everything but the parts that
change.

22

So, how would we go on and write a properly complex app, using good Software
Architecture as our guiding principle?

23

2.Case Study: Racing Tweets's
Architecture

24

2.1 What Is Racing Tweets?

Figure 5: Promotional artwork for Racing Tweets v2.0.

The main course for this chapter will be an iOS App, specifically the unreleased
version 2.0 of my personal project, Racing Tweets. We will not go through the full
history of the app here, though you can find it in the Annex I chapter of this paper. In
a sentence, Racing Tweets was meant to be a Twitter Client aimed at motorsport
enthusiasts, capable of de-multiplexing multiple streams of tweets by combining
them into a unified timeline, where everything the user saw was motorsport-related
content. To complement and enhance its user-perceived status as “just a packaging
of Twitter lists I can do on my own”[15], it offered innovative features such as:

• A striking Design.

• Choosing which motorsport(s) you want to follow, and in which language.

• A Racing Filter feature to prevent the user from seeing non-motorsport
related tweets.

• Motorsport-themed touches everywhere (racing wheels as loading bars,

scrivlnk://A3D96D4C-9BB8-44CA-A0D0-7807C7186803

25

Formula 1-lookalike “grids” for quoted content, an Energy Recovery System
battery load graphic to show available characters for a tweet, etc.)

• Tweetshot(s), or snapshots of tweets that made them look like Polaroids.

This concept, and many of its ideas, have roots on past projects, which you can
read about in the Annex. But there are two main points you need to know before we
proceed, the first being that version 1.0 was released in late 2015, and did not meet
expectations. The second, is that there’s an underlying component responsible for
handling all of the data, which I built, and which I named the Standard Enginei. And
because Racing Tweets is build atop of it, speaking about what powers Racing
Tweets requires speaking about the component responsible of powering its
main functionality. In fact most of what you’re about to read next, concerns
directly or indirectly to the Standard Engine. Many features written specifically for
Racing Tweets either plug-in to the Standard Engine, or were written directly in the
layers above it. However, due to word-budget constraints, we won’t be able to talk
about everything today.

2.2 Layers

Figure 6: Racing Tweets v2.0 Software Architecture.

We’re going to begin peeling back the layers that make up the complete product. If

i. You can read the entire story it in the aforementioned Annex I, including the inspiration for the
name.

26

you look closely, you’ll see that the Standard Engine is highlighted with a green
background, together with two other components. This is because the Standard
Engine was architected from the very beginning to be comprised of two layers,
with a third one being made formal later on, when we decided that we might
want to build multiple apps around it. In any case, whenever we refer to the
Standard Engine outside of this section, we will do so without distinction of the
three individual layers that comprise it, to protect the reader’s sanity.

Of all of the aspects that make up Racing Tweets, the Engine powering the core
feature of the app itself is very important, but it’s not the only piece of major
engineering required to make it all work. There are more, because the Engine itself
is built upon frameworks provided by our platform of choice: iOS.

• Foundation: This is the underlying framework, built by Apple, upon which all
MacOS and iOS appsii, are built upon. It includes basic elements for any
programming platform such as string management, mathematical functions,
date & time functions, formatting classes for dates, monetary amounts,
languages, and a lot more elements like data structures and their related
functions. Foundation is only available on Apple platforms for the Objective-
C and Swift languagesiii.

• UIKit: It’s the User Interface layer for application development in iOS. It
includes more than just UI-Level classes though, since it is responsible for
drawing all graphical elements on the screen, screen hardware management,
touchscreen event processing, animations, text management, accessibility,
and a lot more. This is the layer through which the developer accesses most
of the Operating System’s functionalities. And together with Foundation,
UIKit forms Cocoa Touch, a higher level framework containing everything
necessary to build iPhone, iPad, AppleTV and Apple Watch applications.

• Zealot Engine: When we first sat down on a table, and thought about how
we could solve the problem of mixing different social media feeds and
unifying them into a single list of ordered items, we came up with a blueprint
comprised of the major elements needed for this concept to happen. This
later grew into a toolbox attached to a set of concepts & interfaces that

ii. There are two OS’es deriving from iOS: watchOS and tvOS. Both also rely heavily on Foundation
and UIKit, though they do so on a subset of their features.

iii. In the Apple community, enabling Swift for server-side uses is an important thing. Therefore, a
port of Foundation is available to support the development of Swift-based servers. Racing Tweets’
own is one of them.

27

allowed for enough freedom, so as to not determine how the critical parts of
the system should be written. Together, all of these parts form the Zealot
Engine, which specifies what needs to happen, without specifying how. In
code, the Zealot Engine’s elements prefixed “ZE”, or “DHZE”iv.

• Standard Engine: As the layer directly above the Zealot Engine, the
Standard Engine is an implementation of the Zealot Engine concept. It
adds its own web of complexity on top of the tools supplied by the ZE, and
aims to offer a plug-and-play solution at the UI level, whilst keeping 90% of
its internal workings completely hidden to a 3rd party developer. It
encompasses the data, network and user interface layers, in a way that
allows the API user to keep their custom code highly modular, efficient and
clean in an architectural sense. Standard Engine components are primarily
prefixed “DHSE”, but some remain as simply “SE”.

• Fiber iOS Framework: As development of a working prototype for an app
concept called Fiber continued past the complex logic encapsulated within
the Standard Engine, complex User Interface features like a customizable
background wallpaper for the app, were written using Standard Engine
elements. As more and more UI code was written that could be reused
between different SE-powered apps, these elements were architecturally
placed within a third layer above the other two, retroactively named the Fiber
iOS Framework.

• [App] Racing Tweets: Last, but not least, is all the code required to make
the app’s features come true. In our case, this includes all of our custom
UIViewController(s), our own Standard Engine hooks, features like our
Racing Filter, allowing the user to switch between content languages and
motorsports, custom animations, custom user interface elements, custom
transitions, icons, etcetera. Most classes follow the “DHTdF1” naming
scheme at this level, since the app’s original name was “F-1 Tweets”, and the
shortened moniker in Spanish sounded better to us than the English one.

With this introduction in place, we can now begin to analyze how Racing Tweets is
structured, using some of the app’s features as our guiding light.

iv. In the Objective-C era, namespaces didn’t exist, so classes needed to be prefixed. After I began
working on the project, I discovered two-letter prefixes belong to Apple by coding convention, so I
had to rename the classes. This, however, has the problem of losing most of your Git history,
therefore some classes weren’t renamed.

28

2.3 Timeline

Figure 7: Early Standard Engine Concept drawing, circa 2013.

We cannot begin designing any system, if we don’t know what the problem, or set
of requirements, the system needs to meet. So before we enter into how Racing
Tweets is structured, and how the Standard Engine works, we need to picture how
complex everything the app needs to do really is. After all, Software Architecture
isn’t about introducing tons of boilerplate nor extra layers of indirection; it’s a tool.
And before picking up the hammer, we want to thoroughly analyze our nail[16][17]. So
let’s start from scratch: imagine the Standard Engine doesn’t exist, and that
we’re simply going into Xcode, and creating a new project from a template.

We’re going to start with the main interface for showing a list of tweets. As a Twitter
client of sorts, everything in Racing Tweets revolves around this main screen, from
where the user will be able to access the app’s content. But, contrary to how I’ve
done things in the past, we’re only going to design our solution top-to-bottom,
and write our code from the bottom-up. We know the main screen or timeline is
comprised of a list, which we will need to fill out somehow, with the latest tweets
from different kinds of motorsports. We’re going to deal with the complexity of
acquiring those tweets later, and for now, we’re going to suppose we already have
this list, in the form of a simple array of Tweet Objects, to focus on the interface.

29

Now that we’ve acquired this array of tweets, let’s put them on the screen. To make
these tweets visible and interactive to the user, we need to start using elements of
iOS’ User Interface framework, UIKit. Specifically, we’re looking for an object
called UITableView, which is capable of displaying a list of UITableViewCell(s).
These “cells”, represent information we want to display in this UITableView, and for
our project, each one of our tweets from the array maps exactly to a
UITableViewCell. Consequently, this is how 99% of Twitter clients, including
Twitter’s own, work.

Figure 8: UITableView sample application from Apple (Left) and an old screenshot
from the official Twitter for iPhone application (Right).

We have the list of tweets, and we know that, to show them, we need to put them in
a UITableView instance. But how do we get this UITableView to be drawn on the
iPhone’s screen? Each “screen” in iOS is managed by a subclass of another object,
UIViewController, which is responsible for each screen’s lifecycle, as well as
setting up the visual elements that make it up, including our UITableView. So we
need one of those.

We now have the UIViewController, we have our array of tweets, and we have a
UITableView for displaying our content. But how do we “plug in” our array of
tweets into the UITableView? Someone - an object - needs to be responsible for
communicating all of this information back to the UITableView, of being an adapter

30

between themv. Furthermore, our problems extend a lot further than just telling the
UITableView how many elements there are in the array; we also need to
transform every tweet into a corresponding UITableViewCell so that it shows
that tweet’s information. In the iOS world, this task can be carried out by any
object, as long as it conforms to the UITableViewDataSource protocolvi. If you
check iOS sample code online, you’ll see that the majority of projects put this
responsability into their UITableViewController, making it conform to the
UITableViewDataSource protocol and implement those methods. For the sake of
simplicity and good Object-Oriented Programming, we’ll put this task in a different
object, appropriately called UITableViewDataSource, whose sole responsability is
to be whatever kind of delegate the UITableView instance needs.

There’s more. We don’t want to just show a list of tweets, because the user needs
to be able to interact with them. Say, for example, that we want to allow the user
to retweet a tweet: this means that when an element in the UITableViewCell is
tapped, we need to call an object to perform the request, and then report us back
so that we can show that the tweet was in fact, retweeted, in the UI. And lest we
forget, when the tweet has been retweeted, we need to update the (data) tweet
array from which we’re displaying the list of tweets. Otherwise, if the user happens
to scroll up, and then back down to the tweet they tweeted, it might not show up as
retweeted, since the underlying data structure wasn’t updated. Again, adhering to
our principles, we’ll give this responsability to a different object, which we’ll simply
call the “Twitter Controller”.

So, to gather all of our ingredients, here’s an interaction diagram with what we have
so far:

v. By adapter we mean the Design Pattern, not a USB-C adapter.

vi. In both Objective-C and Swift, protocols are synonyms for interfaces.

31

Figure 9: Twitter Client Timeline Interaction Diagram.

We’ve only done the simplest of things, and yet, as you can see, this has already
gotten a bit more complicated than you would’ve expected it to. What happens in
real life is that most people dive head-first into writing code, and just put everything
they can into their UIViewController subclass, making it perform
UITableViewDataSource duties as well as the Twitter Controller’s ones, no to
mention it might even be responsible for updating our tweet array. And, the
UIViewController might also be the one instancing UITableViewCell(s) and
styling them to represent each data tweet object. This kind of code-bloat is no
different than what happens in other platforms like Windows or Android, where the
Form and Activity/Fragment objects end up being God-level controllers with
thousands of lines of code.

This really is a problem. Take into account that the Twitter network access needs
to happen on a different thread, so as to not cause the User Interface to get

32

blocked, and we also need to deal with returning this information back to the UI
thread, and handling error cases. Plus, in modern software, users expect apps to
serve them first, independently of the hidden complexity underneath. So good
apps are expected to enqueue multiple operations and do them in the background,
making the user come first, and technology second. For example: if the user tapped
the retweet button in 5 different tweets and then favored another 10, we can’t not

allow the user to perform the next action until the previous one is finished.
Instead, our job as developers is to solve this problem, by way of some sort of
operation queue allowing us to perform these tasks serially or in parallel, while
making the user believe we’ve performed their action. Behind the curtain though,
we will let the user know if the network operation failed through the corresponding
UI update (returning the modified tweet to the previous state, for instance). You
could even consider that we should automatically schedule the user’s task to be
performed later, if say Twitter itself went down, rather than being annoying, as
everyone else does[18]. I wasn’t kidding earlier when I said that modern software
development is no piece of cake.

With all of this in mind, and more, I had a very clear idea, when I began to work on
the first app that would use the Standard Engine, of what I didn’t want: a God-
level UIViewController. I wanted the UI, including all attached controller objects,
to have a clean break from whatever was needed to process all the social media
information and making sense of it. So this is what I pictured instead:

33

Figure 10: Standard Engine-powered Twitter Client Interaction Diagram.

To be fair, in reality the Standard Engine doesn’t provide as good as a clean-break
as it looks from over here, but it does show how the UIViewController’s task is
reduced to merely being the glue between the Standard Engine, and the Interface
components. The UIViewController makes no requests of its own, it merely
connects what the user sees with what the Engine delivers, including management
of error dialogs and navigation to other screens from it. The Engine is also
responsible for delivering the UITableViewCell instances representing each data
element or tweet, reducing the UIViewController’s UITableViewDataSource
implementation to just 3 lines of code in each method. You can read about it in
Annex II if you’re interested.

Finally, to express how good Software Architecture helps you in ways many have
not realized yet, consider how big the UIViewController class for Racing Tweets,
which follows the above pattern, might be. Any guesses? The absolute truth is that
it encompasses only about 650 lines of code, split into 5 different implementation
filesvii, where the biggest one clocks at around 370 lines, and the rest average 65
lines. This is important. Keeping files small allows our minds to focus a lot

vii. We’re using different UIViewController class extensions for this, allowing code to be reused by
different UIViewController(s) that might use the Standard Engine, too.

scrivlnk://C708D174-1806-4D57-8EBD-772D46818DF5
scrivlnk://C708D174-1806-4D57-8EBD-772D46818DF5

34

more on the code that’s in front of us, instead of having to create an underlying
map of how everything is connected, before being able to dive in and work. This
is exactly the reason why, when opening a big file, many of us have felt how our
mind just lost focus at the sight of how long its contents are. As rational beings, we
can’t begin to solve an equation if we don’t understand what the variables mean, or
how they might be related to each other. It’s the same with code.

2.4 Navigation

Figure 11: Tweet Editor, Tweetshot Preview, and Timeline screens from Racing
Tweets v2.0.

We’ve figured out, from the User Interface perspective, what we want the Standard
Engine to handle for the UIViewController:

• Asynchronous Data Fetching (including Network Requests)

• Data Visualization (in UITableViewCell format)

• Asynchronous Data Updating (including Network Requests)

I don’t know if you can tell just from reading the bullet points above, but the
Standard Engine is going to end up being pretty massive in size, given the large
number of responsabilities it has. And we’re not even counting with all the other

35

requirements it has by itself, which we’ll see in the next section.

But before we get into that, there’s more we need to dicuss. So far, we’ve only
looked at Racing Tweets from the perspective of what its main screen, the one
showing the combined list of tweets of different motorsports, will require. But is
there more to any app, besides delivering its main feature, regardless of how
complicated that feature might be? Well, of course!

2.4.1 Settings Screen

Not pictured at the beginning of this section, is an integral part of Racing Tweets
which the user absolutely needs access to, and that is the Settings screen. From
there, the user can choose which motorsports to follow, which language the press
and commentary Twitter accounts should be in, and whether or not one of our
marquee features, the Racing Filter, should be enabled or not. But besides all of
this, the Settings screen also serves as the hub for all the Developer options which,
once enabled, opens up the possibility of changing Racing Tweets’ server address,
looking at Standard Engine stats like the number of tweets currently loaded, reading
the engine’s logs, and more. In version 1.x, you could even enable a Navigation Bar
extension - the big purple stripe across the screen reading “Racing Tweets” -
updating the amount of memory used by the app, the timeline’s length, and the
current rate limit on the Twitter API[19].

But there’s more. Some tasks, within the Settings screen, need screens for
themselves for things like looking at the Standard Engine’s logs, checking which
tweets we’ve filtered for the user, or providing feedback to the developerviii. For all of
these and more, we need to navigate the user to a different screen, or
UIViewController, from within the Settings screen. This is something we need to
take into account when thinking about which UIViewController(s) “talk” or
interface with which other, since it allows us to place mental boundaries on the
communications within them, and thus, structure them and architect them
properly. For example: since the Settings screen needs to show the Standard
Engine’s logs, and also, allow the user to switch motorsports and control whether
the Racing Filter is turned on or off, it stands to reason that the Settings screen
needs access to the Standard Engine instance being used in the main screen’s
UIViewController, and that it must be passed on to it as a reference.

viii. That’s me!

scrivlnk://BAFA54FA-6107-4E92-B487-60BC71D0B4CF

36

Figure 12: Racing Tweets’ Settings User Flow Diagram. The red and green boxes
represent “screens”, or UIViewController(s), in some shape or form.

The Settings screen represents an adventure in and of itself, though at a different
level to the complexity that the Racing Tweets Timeline screen represents. We
need a clean way to separate these two, both at an architecture, and at a user
perspective level, so the user also understands that they’re in the Settings area,
navigating screens belonging to the Settings user interface. So now we need to
solve two distinct problems:

• Architecturally separate Settings-derived UIViewController(s), with
access to the main timeline’s Standard Engine.

• Inform the user they’re no longer in the Racing Tweets Timeline when
entering the Settings area.

The first bullet point is not really a problem. It’s simple: all the Racing Tweets
Timeline needs to do is fire up the Settings UIViewController, pass on a Standard
Engine weak referenceix, and then let the Settings UIViewController communicate
whatever is needed with its own UIViewController(s) as it sees fit. But the main

ix. Remember: the Timeline UIViewController is the owner of the Standard Engine, so it can pass a
weak reference to it.

37

UIViewController, showing Twitter content when the app starts, should remain
completely decoupled from these other UIViewController(s), because it has no
need to directly communicate with them.

As for the second point, we could argue a lot about how to structure navigation in
modern iOS Apps, but that’s not our goal here, so we’ll just hop straight into our
solution, and explain the thought process behind it.

Figure 13: UITabViewController example.

We are not fans of “tabs”, those buttons at the bottom of the screen that allow you
to drammatically switch contexts within the same app. We think they take away
precious screen real estate from the user, specially in an app like Racing Tweets
where we aim to show as much content as possible. So we never really considered
adding Settings as a tab option, or any tab control whatsoever. We are fans of the
UINavigationBar, which is the name of the piece of UI common to most iOS apps
standing right at the top of the screenx, so we added a Settings button over there.
When tapped, the Settings screen springs above the Twitter timeline with an
animation, giving the user a clear visual cue that they’re no longer in the same User
Interface plane as they were before. This is called a modal-style transition in the
land of iOS development. From there on, the user can navigate in an out of different

x. The strip of gray at the top of the different screens in the graphic above reading “World Clock”,
“Alarm” and “Stopwatch” is the UINavigationBar.

38

screens, or UIViewController(s), using the standard push and pop navigation
(screens moving right to left to enter, and left to right to exit), powered by the
common UINavigationController element.

2.4.2 Gluing It All Together

Other screens, like the Tweet Editor UIViewController(s), also appear above the
main timeline. Accessing the Tweet Editor is as easy as opening the Settings
screen: it’s the other button in the UINavigationBar, visible from the main screen.
And since, from the Tweet Editor, the only thing the user can do is either cancel or
post their tweet, there’s no new screens to navigate from there. Similarly, we have
two other modal screens the user can access from the Racing Tweets Timeline: the
full-screen photo viewer, and the Tweetshot screen. Both of these show up modally,
but the first one covers the entire screen, and doesn’t animate the Timeline to
appear below it, since photo viewing needs to be immediate, and not necessarily
cause a shift in the user’s perspectivexi. Tweetshots, on the other hand, represent a
screen capture of a tweet the user is either long-pressing, or applying pressure to
(3D/Force Touch)[20], so we do animate it like the Tweet Editor and the Settings
screen. But again, these are very simple screens, and unlike the more complex
Settings UIViewController, the user can’t navigate anywhere else from there.

Figure 14: Timeline, Settings screen, Tweet Editor and Tweetshot preview screens
from Racing Tweets v2.0.

For the 2.0 release, another screen was part of the specification: a tweet “details”

xi. The only reason we we fill the screen with a photo is to allow full user immersion in their content.

39

screen, accessible by sliding a tweet to the left. It borrows heavily from concepts
introduced by major iOS apps, including the official Apple Mail app, and instead of
relying on a 3rd party implementation, it uses new APIs introduced with iOS 11.
However, the screen was not completed before the project was terminated, and is
only used to view specific tweet data for debugging purposes. Still, the underlying
navigation structure was put in place, to allow the user to navigate past that tweet,
similarly to how the user moves through the various Settings’ screens, relying on
another UINavigationController.

With all the pieces on the board, we can finally start picturing what our app’s
navigational structure looks like.

40

Figure 15: Racing Tweets’ Complete User Flow Diagram.

Legend: Red boxes are UINavigationController instances, the UIKit element
responsible for backing the right-to-left (to enter or push) and left-to-right (to exit or
pop) transitions for UIViewController(s). There are only two places in our whole
app where we want to navigate between screens this way: the main Timeline screen
and in Settings, so those are our two UINavigationController(s). Green boxes
trigger modal transitions, causing a new UIViewController to show up above the
View Controller they’re transitioning from, while blue boxes stay inside the same
navigational level, by “pushing” or “popping” screens.

41

2.5 Standard Engine

2.5.1 Component Overview

Figure 16: Standard Engine Overview.

To begin our deep dive into the Engine, let’s introduce these new concepts:

• Ticket: it represents a single item of information that needs to be displayed
to the user. It contains a lot of varied information like a User object, a text
section, a timestamp, an id, a weak link back to its Supplier, multimedia
(URL) links such as photos, videos or weblinks and so on. In our context,
every Ticket represents a tweet. But a Ticket could also represent a
Facebook post, an Instagram photo, a Pinterest pin, an RSS feed item, and

42

so on.

• Supplier: it represents a stream, an input or source, of Tickets. The concept
behind a Supplier can be as coarse as fetching data from an entire social
network, such as Twitter, Mastodon[21] or micro.blog[22], or it can be as fine
as the tweets from a single user on a single social network. Generally, we
associate a Supplier with a single social network. In the case of Racing
Tweets, which targets 2 different languages and 4 different motorsport
branches, up to 12 Suppliers can be active at any single time delivering new
content. The requirements the Engine expects from the Tickets by a
Supplier are that they must be ordered logically and have unique IDs; the
Engine will take care of about making sense of all the Supplier’s streams.

• Track: it was envisioned as the data source for the UITableView. It is the
processed, chronologically ordered and logically correct sequence of Tickets
returned by the Standard Engine upon a request for new Tickets. Every
Ticket must have a unique combination of string ID, Supplier ID and
timestamp, which means no two Tickets from the same Supplier can have
the same ID nor the same date & time. The Track is not mutable from a 3rd
party perspective, so only the Standard Engine can make changes to its
Track. There is only one Track per Standard Engine instance.

• Control Unit: originally named Commander, the Control Unit is the means
through which a developer can alter the behavior of a Standard Engine
instance. Its most important role is returning the correct Suppliers to the
Engine when it requests them, in order to add new Tickets to the Track. But it
is coarsely-aware of the Engine’s lifecycle, so it can be used to plug-in
external behavior to the Engine, in conjunction with custom Suppliers. For
instance, the Racing Filter feature which allows the user to see which Tickets
have been filtered, is implemented through the Control Unit, which picks up
any Tickets filtered by the various Twitter Motorsport timeline Suppliers.

• Standard Engine: it is a single instance of a Standard Engine, an object. It is
not a Singleton, so there can be multiple Engine instances running in the
same application. It requires a Control Unit in its constructor to perform its
operations, and the Control Unit cannot be changed once the Engine is
instanced. Its API is mostly a façadexii, wherein all operations take place in
one or more background threads, so as to not block the UI from ever

xii. By this we mean the Façade Design Pattern.

43

handling any kind of user input.

There are many, many more elements and concepts that comprise the Engine as a
whole, but going through all of them here would not be practical.

What we do find interesting, is the fact that all of the above elements were shaped
in pen & paper before ever opening Apple’s IDE, Xcode. At the time, we thought this
made sense, since we didn’t know how complicated the algorithm for intertwining
Tickets from different Suppliers and ordering them would look like. So we thought
it’d be appropriate to explore these issues outside the bounds of a code editor, and
instead trust drawings, blueprints and pseudocode. This was an important step, as
it provided us with a very valuable standing ground from which to begin the coding
phase, once we were certain that the our logic for the code block adding new
Tickets to the Track was sound. However, the development phase hit multiple rocks
every time we discovered simpler concepts we’d not accounted for that were
needed. This meant that our existing concepts became bloated, absorbing more
responsabilities than originally intended, causing a lot of the logic to became
messierxiii.

A quick example was that of the Timeframe; a Timeframe is a block of time, from
A (start value) to B (end value), where B can be nil, in which case the Timeframe
represents everything that comes after A. Timeframes, like the Track’s Tweets, work
in descending order in the Standard Engine, so if a Timeframe begins today at 9:41
AM and lasts 10 minutes, the end value is 9:31 AM. If the end value were to be nil,
the Timeframe would cover from 9:41 AM until the beginning of time. Before we
made them a class, the constant use of Timeframe(s) for key pieces of logic meant
we were constantly carrying around a couple of time objects, or NSDate(s),
representing a Timeframe’s start and end values, plus related information about that
object, like whether it was infinite (no end value), or its timespan (amount of time
between its start and end values, measured in seconds). Once we decided to
refactor all Timeframe-related code, our logic became a lot easier to read, and many
other concepts evolved naturally from there, like asking: “how many Tickets does a
Supplier have within this Timeframe?” Questions like these, in turn, allowed us to
package other concepts into classes too, simplifying our code and improving our

xiii. We never reached I am CEO levels of code disorder, but it wasn’t pretty. A lot of our logic
contained ad-hoc’ed concepts that needed to become classes onto themselves, complicating
readability.

44

architecturexiv.

If there’s a lesson to be learnt from this process, is to never drop the pen & paper
attitude from your mind; always be on the lookout for concepts you didn’t realize
were needed before, but may have been relying on. Don’t just assume that, because
you’ve carefully analyzed what you need to do by hand first, that you haven’t
missed anything. In our case, we focused on what we thought was the most
complicated problem, and didn’t bother to even look to see if there’s something else
that needed our attention. Or even if we were making assumptions about concepts
that needed to be coded into a class, but that we weren’t, despite the amount of
times we reused them. The DRY principlexv really helped us in realizing how many
concepts we were missing, after we began converting repeated code into classes. It
is not easy to admit publicly that you’ve made mistakes, but we think it’s important
because once you do, you can take action, correct it, and open up yourself to
wonder if you’re missing other things, too.

2.5.2 Requirements / Features

xiv. To do this, you need to be willing to refactor your code constantly, whenever you understand
how a concept can be packaged into a class to improve your architecture. TDD is very helpful for
this workflow, to ensure you don’t break your use cases.

xv. DRY stands for Don’t Repeat Yourself.

45

Figure 17: Early drawings of Standard Engine Gap Support.

Thus far in this work, we’ve alluded to how the Engine itself had a set of logic
requirements, or features, it had to meet in order to fulfill the engineering task it set
out to achieve. For the purposes of diving even deeper into the inner workings of
the Engine, we thought now was the best time to lay out exactly everything the
Engine needs to do, and add some hints as to how those problems have been
resolved.

But before you go through them, I’d like to add that, in hindsight, it’s no wonder for
me that it took so long to fully implement the Engine, given the massive amount of
features it had, and how worried I was about building something that, again, could
break with a single change here or there. For sure, there are weak spots in the
Engine, which are outside the scope of this work, and it is not a perfect design,
but it meets its most important goals, and it works. Hopefully, you’ll also take away
from here that it’s important to measure the scope of your projects before
commiting to them, so that your “God-level Developer complex” doesn’t win the
battle against yourself. Having said that, I think there’s something to be said for
actually achieving whatever it is you set out to do, even if in our case the Standard
Engine hasn’t powered any commercially successful apps yet. After all, sometimes
you do need to be a little bit crazy, to make the impossible come true[23].

46

2.5.2.1 Logical Coalescing

The Standard Engine’s main purpose is to make sense of all the disparate content,
in the form of Tickets, produced by the Suppliers attached through the Control Unit.
This means they must be chronologically ordered and coalesced into a single,
unified, list or array, without ever losing any of the user’s content in the process.
This is critical, because if the end-user perceives the Standard Engine is not
performing well its duties and gives the impression of misplacing or losing user
content, by either changing its position in the list, or removing it but adding it later
through a different operation, it can seriously affect the perceived quality of any
product based on the Standard Engine.

Specifically for us, it was obvious that if we managed to build and release a break-
through product combining multiple social media feeds, anyone could verify the
validity of our technology by simply looking at the feeds individually and then
checking back with our app. This feature was also the main reason why we were
building the Standard Engine, so there was no way we wouldn’t be willing to do
anything it took to ensure this requirement was fully met.

2.5.2.2 Time-awareness

One of the first curve-ballsxvi we found a couple of months inside development is
that tests and fake data don’t represent the chaos of the real world, wherein a
subset of data can span widly different amounts of time, going from mere seconds,
all the way up to complete decades. For example, if we plug into a trending topic in
Twitter, we might have thousands of tweets in the same second. Yet, on a well-
known but hardly updated blog like Hypercritical[24], there are maybe only a hundred
posts going all the way back to 2005.

This has big consequences, because it means the Engine must be capable of both
cutting new content down to a reasonable amount of new items, as well as being
able to navigate backwards in time through history to find new content if there’s
nothing new. Timeframes were key to implementing this feature, as well as the idea
of the exponential backoff implemented in the TCP protocol[25], which we
shamelessly adapted into the Standard Engine.

xvi. “Trouble with the Curve”?

47

2.5.2.3 Multi-threading & Responsiveness

Figure 18: iOS Event Loop Diagram. Source: Apple.

Modern software development revolves around the concept of EDD, or Event-
Driven Development. This means that most of the code is executed in response to
an event, such as a user tap on a button, instead of applications being a set of
instructions executed serially like in a bash script. When the user taps on a button in
the interface, a call is made inside our codebase, and from there we can launch as
much complexity as is needed into the CPU/GPU to achieve the user’s desires. To
this end, the Standard Engine set out, from the very beginning, to have an
architecture based around these events, rather than fighting against them. We want
the Engine to exploit the ever-increasing parallelization abilities of modern hardware
as well, and support unobtrusive communications back-and-forth between the User
Interface layer and the Engine itself.

48

2.5.2.4 Multi-queued

This was not met. Neither back when the Engine was deemed finished in 2014 to
start building Racing Tweets, nor now, when we’re onto version Racing Tweets
v2.0, more than 3 years later. The idea behind this was to not only allow the
Engine’s operations to be backgrounded, but to also give Suppliers a “pipeline API”
for events, such as a status change in the UI after a Twitter retweet, a Facebook
Like, a Pinterest Pin or an Instagram comment. It was dropped due to the ever-
increasing complexity of the codebase, but on hindsight, it sounds like many hard-
coded features in Racing Tweets could be simplified if the Engine were to add this
feature. Future work?

2.5.2.5 Gap Support

This one’s pretty big. Like many other features, it emerged from inspiration of my
favorite iOS Apps from that time, one of which was the popular 3rd party Twitter
client Tweetbot. Back in 2010-2012, developers used to test their abilities and prove
their worth by writing their own take on a Twitter clientxvii, before Twitter severely
restricted access to its API[26]. Tweetbot emerged in 2011[27] causing a huge impact,
implementing complex features with a much better end-user experience, and
leaving the official Twitter client for iOS quite behind. One of the key features it
implemented better was “gaps”, or UITableViewCell(s) showing up in the timeline
that represented missing content and, upon being tapped, triggered a background
request causing said gap to be filled with new tweets. Even though Gap Support
was always part of our concept, the Engine had to be nearly scrapped in its entirety
in 2013[28] in order to properly implement it. This is because Gaps and the time-
aware requirement are intimately related, since content that has been cut from being
added to the Track must be covered, or included, inside a Gap, to ensure no
content is ever hidden or mismanaged by the app, and therefore not shown to the
user. We explain this a bit better in the Looking Down section.

2.5.2.6 Bulletproof

xvii. The trend seems to have shifted towards podcast clients now. The newest example being Jared
Sinclair’s ‘sodes app.

scrivlnk://AF6521D7-0BE5-4003-8C59-A87C5BD15298

49

From our prior experience attempting to write I am CEO back in 2011, we learnt
that constant refactoring and tests were essential to ensure the long-term health of
any project. With this in mind, we wrote tests for the Engine every step of the way,
attempting to both lock-in the behavior of small components like the Timeframe
class or the Ticket Containersxviii, as well as testing the Engine as a whole, to ensure
refactoring didn’t make it break or stop covering a particular use case. This has had
many reassuring moments, such as when large-scale changes were made. But it
came at a price of keeping the tests themselves up to date, and properly taking
care of them like any other part of the app’s codebase. As such, tests required
building their own separate framework to ensure the asynchronous Standard Engine
calls could even be testedxix, as well as the complicated subject of how the Engine
internally asks its Suppliers for Tickets, requiring the development of a test Supplier
stack as complicated, if not more, than real-life requests to a service like Twitter or
Facebook. Note that our tests cover the Engine, and not the UI.

2.5.2.7 User Protection

From the very beginning, we envisioned how, for the Fiber app, multiple Suppliers
would hit different servers across the world, and that any one of them might fail,
either because that service failed, or because the device suddenly lost connectivity.
It could even be that the developer wrote some bugs into the Supplier. With this in
mind, the Standard Engine not only controls the Tickets added to the Track, but it
also sets safeguards against Suppliers that don’t return any Tickets, or that take
indefinitely to return them, in which case the Track update is cancelled and an error
is bumped up to the user, in the form of a Standard Engine Notification, for the
UIViewController to show.

2.5.2.8 Highly Extensible

The Standard Engine exists to solve the complicated problem of unifying
information from completely different sources. To that end, specific API parts were
built to allow easy extension, such as the Supplier API. However, the Control Unit,

xviii. They’re what you think they are: classes that aggregate Tickets and enforce invariants, such as
ascending or descending order.

xix. From our experience, most testing frameworks, including Apple’s own, are designed to test
synchronous APIs, not asynchronous. We wrote our own framework, using semaphores.

50

as it name implies, is the easiest and most important way a 3rd party developer has
to influence how the Engine works, without having to deal with all of its internal
workings. Callbacks within the Control Unit API ensure it is always aware of the
internal Engine cycle, so different, unthought of features can be built on top of this
“plug-in” concept.

2.5.2.9 User Interface Customization

Even though from the start the Standard Engine was built to fill in
UITableViewCell(s), mirroring the style of a Twitter client, the API around it evolved
as the presentation became more and more complicated, allowing for the creation
of an API focused sorely on the presentation of Tickets. The level of customization
here can be as fine as having completely different presentation for Tickets from the
same Supplier, or as coarse as having all Tickets, even though they are technically
produced by different Suppliers, share the exact same presentation code. The latter
is actually the case with Racing Tweets, but wasn’t the case for Fiber, where we
expected to use different presentation styles for each Supplier. You can read more
on this topic in the Annex II chapter.

2.5.2.10 Developer-focused

The Standard Engine was built to solve a problem for the developer, and in this
predicament, we included making the Supplier API as friction-less as possible, as
well as complimenting the Standard Engine with tools that can reduce the amount
of work required to use it. For example, UITableView(s) accept being told the exact
rows that are about to change in the data they’re showing to the user, and to make
the job easier for the developer, there’s an API in the Track that returns which rows
have been removed and added, to enable easy animations for each case.
Furthermore, calls to the Standard Engine object itself are automatically enqueued,
so if the user calls for a Gap to be processed, and then also asks for a refresh
operation asking for the newest Tickets, the developer doesn’t have to add this
extra control layer above to ensure the operations are performed in the right order.
Instead, the Engine will do this on its own, and return back to the caller with the
appropriate state to keep the UIViewController as simple as possible. This is also
where the 2.5.2.4 Multi-queued facet, which was not implemented, starts to make
sense, as it was intended primarily to simplify the developer’s tasks and keep as
much complexity as possible within the Engine itself.

scrivlnk://C708D174-1806-4D57-8EBD-772D46818DF5
scrivlnk://430CE890-36DC-42D7-A4B6-60E007600F9C

51

2.5.2.11 Adaptable

Combinining feeds from multiple sources and coalescing them logically and
chronologically involves complexity, which might not be required, for example, if all
we want to do is use the Standard Engine to query a tweet’s replies. See what I
mean? We already have code that connects the Track to a UITableView and shows
our tweets just as we want, but now we might want a different screen where we
only need to show a simple set of tweets that doesn’t require coalescing nor
ordering work from the Engine. How would you solve this? One way could be
instancing a new Standard Engine and attaching a Control Unit that only returns a
single Supplier for said tweet’s replies.

But, if we could engineer a way for the Standard Engine to shed all the systems
required to coalesce and order multiple feeds, we could have a much more efficient
solution for simpler tasks like showing a tweet’s replies. Making the Engine
adaptable enough to support such an internal algorithm swap was indeed made,
but we didn’t effectively work on what we coined the Single-Supplier Standard
Engine. Like many other things from this list, we considered it to be an “easy task”,
but became well-versed enough in Software Development to know we had to
account for unforseen details. Just like the Multi-queued requirement, it holds
promise for future work though.

2.5.2.12 Track-based Supplier Filtering

Not to be confused with the Racing Filter feature, this is fully implemented and has
been working for many years now. It is also a good example of both implementing
features before needing them, and in doing so, implementing them the wrong way.
The idea behind this is to allow the user to filter out content from all Suppliers
except for one, which made sense in the context of Fiber, where we believed
filtering out all other social network Tickets and leaving those from just one Supplier,
was a feature the user would appreciatexx. In truth, this is not a hard feature to
implement, but the consequences for us are that this code is not effectively used,
because for the purposes of Racing Tweets it doesn’t make any sense. As stated
before, Racing Tweets works by combining more than 10 Suppliers, so filtering out

xx. For the Fiber app, we envisioned the use of one Supplier per social network.

52

all of them and leaving just one isn’t coherent because each motorsport/language
combination is comprised by at least 3 individual Suppliers. The feature could be
adapted to Racing Tweets to filter out all available motorsports except for one, but
due to the way the feature was implemented, it isn’t viable and would require some
architecture work to fix it. At this juncture, we’ve simply kept it going as it was
originally written, without investing more time in it other than ensuring we don’t
break its tests.

2.5.3 The Developer's Perspective

If we had to make any guesses, we’d say that at this point, your perception of
actually using the Standard Engine in one of your projects is pretty much none. So,
to convey what it’s like to work with the Standard Engine in an app, we’re going to
do a walk-through of what it takes to set it up. Be it to power a social media app like
Racing Tweets, or some other feature in a completely different kind of software. We
will go through as many details as possible within our word budget, while also
keeping the conversation light, so as to not turn this section into an excercise you,
the reader, have to follow paying careful attentionxxi. We don’t want to bombard
you with details; we just want to give you an outline.

There are three critical components to our discussion: Tickets, Suppliers, and the
Control Unit. There’s a fourth one, the Presenter, which we wrote about, but had
to move out into the Annex II chapter. In any case, dropping that section does not
affect us, since it does not change how the Engine itself works. What you do need
to know, is that Presenters are the API mechanism in the Engine where Tickets are
transformed into UITableViewCell(s). Having said that, let’s answer the following
question: what do we need to do to have a working Ticket?

2.5.3.1 Data Items

Nothing, really. The Standard Engine supplies the DHSETicket class, which has
been tested to within an inch of making me lose my sanity, and there’s nothing we
have to do other than to actually use it. Like most of the Standard Engine
components, it has been tested to comply with both Facebook and Twitter’s APIs,
and we can choose to either use it as-is, to extend it, or to dial it back as much as

xxi. I love reading technical books at night, too.

scrivlnk://C708D174-1806-4D57-8EBD-772D46818DF5

53

we need: we can use the DHZEBareTicket class, which is a barebones
implementation of the DHZETicket protocol that spares us the details of having to
implement Ticket equality and orderingxxii. As an API, DHSETicket provides:

• Everything included in the DHZEBareTicket implementation: String ID, a
weak link back to the Ticket’s Supplierxxiii, a timestamp (NSDate) and Ticket
equality and ordering implementation.

• Text field: A String, which represents the Tweet text itself, a Facebook post’s
text, an Instagram photo’s text, etc.

• User field: a weak linkxxiv to a DHSEUser object, which is not a requirement
within the DHZETicket protocol, but an addition of the DHSETicket class. It
contains basic user information such as an ID, a name field, a username field,
and a URL link to a profile image.

• Application Name field: a simple String with the name of the application or
Supplier that produced this Ticket.

• Image URL field: a URL object, or NSURL, pointing to an image that might be
attached to this Ticket.

Because both Fiber and Racing Tweets were very tied to the use of Twitter, a
DHSETicket subclass, called DHSETwitterTicket, is also included as part of the
Engine. It adds support for basic items such as number of favorites, number of
retweets, attached media items (URLs), weak links to another Ticket representing a
quote or retweet (which themselves are DHSETwitterTicket instances), and a new
class, DHSETweetEntity, which is used to help format the eventual text shown to
the user, such as username (@dinesharjani) syntax coloring, hashtag
(#RacingTweets) coloring, URL (www.racing-tweets.com) coloring and highlighting,
etc. The engine also includes a Tweet parser, and a Twitter Supplier that can be

xxii. Ticket equality and order revolves around a unique combination of Ticket ID, timestamp and
Supplier ID.

xxiii. This prevents a reference cycle (see next footnote); the Supplier is the Ticket’s owner, not the
other way around.

xxiv. In languages like Java, (post-ARC) Objective-C and Swift where the developer does not need to
manage memory, objects are kept alive in memory by referencing one another. If two objects
reference each other, neither can be evicted from memory, even if they’re not used, because they’re
both being strongly referenced. To this end, weak links are used, to clearly define an object owner,
and therefore break these “reference cycle(s)”.

http://www.racing-tweets.com

54

reused for many API queries.

2.5.3.2 Data Source

For the purposes of our example, we will assume what the DHSETicket class
provides is enough for our purposes, so we must now follow on to a more important
subject, the Supplier itself. Suppliers have a very simple API, wherein they must
have a Supplier ID, a name, a Presenter, and they must conform to a couple of
functions which belong to the DHZESupplier protocol, in which the following
function is key:

Language: Objective-C

- (void) fetchTicketsFrom:(id<DHZETicket>)sinceTicket until:
(NSDate*)until withBlock:(TicketsDeliveryBlock)block;

Figure 19: DHZESupplier API required function.

This is the function the Standard Engine will call to request new Tickets from the
Supplier. The last argument is the least important one: it’s a callback in which we
return to the Engine the Tickets it’s requesting from us. Which Tickets is it
requesting from us? Let’s look at the first argument, in which the Engine provides a
reference Ticketxxv that can, and will be, nil on accasion. If it is nil, the Supplier
must assume the Engine is requesting the newest content (Tickets) available, and if
it’s not nil, the Supplier must return the Tickets that immediately follow the
sinceTicket argument. The second argument is when things start getting tricky:
the Engine is also asking us, the Supplier, to return all of the Tickets that belong in
the Timeframe starting at the sinceTicket argument’s timestamp, and end in the
until argument timestamp. This means the Supplier is not only responsible for
fetching the content, but that it must also do a small amount of work for the Engine.

I didn’t like this design. But I understood too late that I was adding more work to the
Suppliers than I had already envisioned, once I began to consider actually
implementing a Facebook or Twitter Supplier, instead of the test Supplier for my
tests, which generated Tickets programmatically in intervals of one second. To solve
it, rather than altering my protocol definitions, I added more tools to the Zealot
Engine layer:

xxv. id<DHZETicket> is Objective-C for “a reference to anything conforming to the DHZETicket
protocol”.

55

Language: Objective-C

//
// DHZESupplierCacheManager.h
// FiberiOSFramework
//
// Created by Dinesh Harjani on 10/13/13.
// Copyright (c) 2013 Dinesh Harjani. All rights reserved.
//

/*!
 This protocol must be implemented by any Supplier who wishes
to have its Cache management to be taken care of by an
instance of DHZESupplierCacheManager.
 */
@protocol DHZEManagedCacheSupplier <DHZESupplier>

/*!
 Returns an array of hard-fetched Tickets
 This method is a requirement for all users of the
DHZEManagedCacheSupplier class. It requires Suppliers to hard-
fetch new data happening after the given Ticket or, In its
absence, from the given reference Date.
 Under no circumstances is the callee asked to perform any
form of optimizations with this data: the caller guarantees
these calls will be kept to a minimum since it assumes
fetching new Data is expensive.
 */
- (NSArray*)fetchTicketsSince:(id<DHZETicket>)sinceTicket
withDateReference:(NSDate*)reference;

@end

Figure 20: DHZEManagedCacheSupplier protocol definition.

In other words, if we write a Supplier that conforms to this new
DHZEManagedCacheSupplier, we only have to worry about a single callback, -
fetchTicketsSince:withDateReference:, and always return Tickets that
follow sinceTicket, without worrying about calculating which Tickets belong to
the requested Timeframe. If more Tickets are needed, we will be called again for
them - no additional logic is required to keep track of which Tickets we’ve been
previously asked for accross different calls to this function.

In practice, there’s another class, the DHSEBaseSupplier abstract class, which
forces us to implement that callback, and it also provides us with DHSETicket
presentation for free, in the form of the DHSETicketPresenter. What we don’t get

56

for free is management of the DHSEUser pool of objects, because it might not be
necessary; in the context of Twitter, Facebook or Instagram, it is quite likely that the
same user will post multiple items, so we might want to reuse User objects to
reduce our memory consumption. But in a personal blog’s RSS feed, all items
belong to the same user, so we didn’t feel the need to add this in. Other tasks, such
as data parsing and authentication, also need to be handled by the Supplier
subclass we’re writing.

2.5.3.3 Engine Control

This is the DHZEControlUnit API:

Language: Objective-C

//
// DHZEControlUnit.h
// FiberiOSFramework
//
// Created by Dinesh Harjani on 4/10/13.
// Copyright (c) 2013 Dinesh Harjani. All rights reserved.
//

@protocol DHZEControlUnit <NSObject>

- (NSDate*)suppliersTimeThreshold;

- (void)prepareForNewPool;

- (NSArray*)suppliersCoveringTimeframe:(DHZETimeframe
*)timeframe;

- (void)cleanupAfterPool;

- (void)restartSuppliers;

@end
Figure 21: DHZEControlUnit API.

As was the case with Tickets, we don’t really have to strictly implement any of
these. We can just compose our own DHZEControlUnit protocol-compliant class
with a DHSEModularControlUnit instance, which we can simply call-through for
each of the above calls, and also set up using its own API:

Language: Objective-C

57

//
// Created by Dinesh Harjani on 7/12/14.
// Copyright (c) 2014 Dinesh Harjani. All rights reserved.
//

@interface DHSEModularControlUnit : NSObject<DHZEControlUnit>

- (void)addSupplier:(id<DHZESupplier>)supplier forKey:
(NSString*)supplierKey;

- (id<DHZESupplier>)supplierForKey:(NSString*)supplierKey;

- (void)removeSupplierForKey:(NSString*)supplierKey;

- (BOOL)supplierInstalled:(NSString*)supplierKey;

@end
Figure 22: DHSEModularControlUnit API.

Essentially, these four methods allow us to dynamically add and remove Suppliers
whenever we need toxxvi, whether it’s only once on app startup, or multiple times
during app execution, and not have to worry at all about any kind of logic
whatsoeverxxvii. Still, the complete power of the underlying API is available if we ever
need to use it. And for the sake of adding yet a little bit more light into the magic
that happens within the Standard Engine, we’re going to cover two items of the
DHZEControlUnit API:

Language: Objective-C

@protocol DHZEControlUnit <NSObject>

- (NSDate*)suppliersTimeThreshold;

[…]

- (NSArray*)suppliersCoveringTimeframe:(DHZETimeframe
*)timeframe;

[…]

@end

xxvi. You could even change a Control Unit’s Supplier while the Standard Engine is fetching new
Tickets, but why would you want to do that?

xxvii. By logic we mean keeping track of whether a Supplier has been already added or not. That’s
what the Supplier keys are for in the DHSEModularControlUnit API.

58

Figure 23: DHZEControlUnit Supplier Time Threshold API.

We really hope you don’t actually hate us for this, but, there’s a piece of the Supplier
API we’ve been hiding from you, which is their time threshold. Now, to understand
what it is, we’re going to look at it from the perspective of the Control Unit itself. As
we’ve mentioned before, the Engine asks the Control Unit for Suppliers to query
for new Tickets, and it does this specifically with the second API call, -
suppliersCoveringTimeframe:. This call basically means give me the Suppliers I
can ask for content within this Timeframe, which the Control Unit is expected to
return. Failure to do this, effectively means the Engine cannot work properly, since
its safeguards will prevent it from adding Tickets to the Track belonging to a
Timeframe it isn’t asking Tickets for. However, this has a reverse implication you can
use to your advantage: as the Control Unit developer, you can alter where and
when the Standard Engine tries to pull content from the Suppliers.

Of course, the latter is not the intended use case scenario; if you wanted to license
from me the Standard Engine for use in one of your products, you’ll most likely just
want it to work as it was intended to do. And to do that, you can safely rely on the
aforementioned DHSEModularControlUnit to handle all of this for you, but, your
Suppliers still need have to properly implement their time threshold property.
Essentially, a Supplier’s time threshold is the limit back in time at which point it is
known that there won’t be any new content (Tickets) available.

Language: Swift 4

@objc override open var timeThreshold: Date! {
 let dateComponents = DateComponents(calendar:
Calendar.current, timeZone: TimeZone.current, year: 2006,
month: 1, day: 1)
 return Calendar.current.date(from: dateComponents)
}

Figure 24: Supplier Time Threshold Sample implementation.

As a practical example, consider an account that only has 3 tweets, but our user
expects to see at least 30-40 Tickets on each query for new Tickets. The Engine will
attempt by all means possible to extract those 30-40 Tickets from its Suppliers, but
it’ll be impossible to find more than those 3 Tickets. And once it backtracks in time
past January 1st 2006, it’s impossible for any Twitter Supplier to deliver any Tickets,
because 2006 is the year in which Twitter was founded. By checking against the
time threshold, the Engine can enjoy a quick exit in its algorithm to fetch new
Tickets knowing it isn’t missing any user content, because there isn’t any. Starting

59

from there, we can choose how efficient we want our Suppliers to be; an RSS feed
Supplier might return as its time threshold the timestamp of the feed’s first post,
instead of returning March 1st, 1999[29], to cover its back. Conversely, the time
threshold can get tricky if Facebook suddenly elects to support backdating posts all
the way back to the 1800s, but that complexity will be handled by the
DHSEModularControlUnit class for you, as long as you set proper values for your
Suppliers.

2.5.3.4 View Controller API

This is the easiest part! All we have to do, is essentially copy and paste existing
code from Racing Tweets :) We’re going to begin with instancing the Standard
Engine, and setting up some of its initial parameters, from within our
UIViewController:

Language: Objective-C

DHTdF1EngineControlUnit *controlUnit =
[[DHTdF1EngineControlUnit alloc] init];
self.standardEngine = [[StandardEngine alloc]
initWithControlUnit:controlUnit];
self.controlUnit = controlUnit;

Figure 25: Standard Engine instantiation.

Those are all of the steps required to set-up a working Standard Engine instance,
provided we have a Control Unit with the appropriate Suppliers. To start filling its
Track with a fresh batch of new Tickets, this is all we have to do:

Language: Objective-C

[self.standardEngine fillAt:[DHSERefreshMarker ticket]];

Figure 26: Standard Engine Refresh call.

That only covers the logic side of things. But what about actually showing those
Tickets? Well, provided we have a working UITableView instance, all we have to do
is properly implement the functions defined in the UITableViewDataSource API:

Language: Swift 4

60

override open func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let ticket =
self.standardEngine.track.ticket(atTrackIndex: indexPath.row)
 let presenter = ticket.supplier().presenter
 let cell = presenter.cell(for: ticket, for: tableView, at:
indexPath)
 return cell
}

override open func tableView(_ tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
 return self.standardEngine.track.count
}

Figure 27: Standard Engine UITableViewDataSource protocol implementation.

Barring some logic safeguards, this is all you need to do to see your Tickets show
up in your iOS app’s UITableView. Complexity begins when we need to start
thinking about UI State management, error states, bi-directional communications
between the Engine and the UIViewController and so on which, to the best of my
knowledge, is complexity we will always have to deal with. Until I get angry enough
that I write my own “Standard Engine for User Interface complexity”.

2.5.4 Looking Down (Pool Cycle)

61

Figure 28: Standard Engine Pool Cycle Diagram.

We’d like to finish our discussion about the Standard Engine giving you a rough idea
of how it all comes together to produce new Tickets and adding them to the Track.
This explanation will not be perfect, since we will not cover exactly every single
function at hand coordinating this effort. But if we do our job well, you’ll be able to
walk away from this section knowing, more or less, what the Standard Engine’s
internal algorithm is.

We begin with the User Interaction box at the top, which essentially stands for a
callback in the UIViewController or similar class, which is part of the topmost
presentation layer of the app. This component has access, directly or indirectly, to
the Standard Engine instance. For this example, we’re going to assume we’ve
already set up our Standard Engine with our UITableView, as seen in the previous
section. When our User Interface code is called, we presume the user wants to

62

either add new Ticketsxxviii, or to fill in one of the two types of Gaps supported: a
Standard Gap, which has a beginning and and end, and is sandwiched between
two sets of Tickets. Or an Infinite Gap, which is always the last Ticket in the Track,
and represents old Tickets we’ve not loaded into the Track yet.

When we perform a call to the Standard Engine, said call is actually enqueued, and
then the code directly returns to the User Interface Thread. The real execution for
the requested operations happens from within a serial background queue, so we are
free to make multiple calls from the User Interface, and have the Engine work
through them in succession, while informing us at the User Interface layer, of all the
changes as they’re processed. The key call to perform all Gap filling operations
happens upon the Standard Engine Core, which is a small class co-ordinating the
efforts between all the appropriate actors to correctly add new Tickets to the Track.
The true owner of both the Track and the Control Unit, in programming terms, is the
Core; not the outer layer Standard Engine instance. The Core is also the owner of
the Track Processor, which is the “pluggable” component responsible for
implementing the Standard Engine algorithmxxix. The Core is also responsible for
handling the Engine’s state (has the operation succeeded? Are we cancelling it?),
and of communicating back to the User Interface Layer, through a different
component, whether the operation was successful or not.

In order to move forward though, we need to add a new concept: the Pool. And the
easiest way to explain what the Pool is, is to have a look at the Track, which we
view as our source of truth, and the final result of any new Standard Engine
operation involving pulling content from the Suppliers. The Track needs to be
logically perfect, with no duplicate Tickets of any kind, nor any missing Tickets, and
said Tickets must also be ordered in descending timestamps. But handling this
ever-increasing succession of Tickets is complicated, in the sense that the more
Tickets get added, the more complex it is to keep everything in order. That’s what
the Pool concept aims to do, but in reverse: the Track is static and doesn’t change,
other than when new Tickets are added. This means we only have to worry about
maintaining the Track’s logical requirements when new Tickets are added, and we
only need to worry about the new Tickets, not the old ones. So in truth, the
structure that enforces all of the Track’s invariants is the Pool, which
represents the new Tickets we want to add to the Track, and not the Track

xxviii. This would be a “Refresh” operation in Standard Engine parlance, hence the
DHSERefreshMarket ticket class seen before.

xxix. Our “Single Supplier Standard Engine” concept, would actually only need to swap over this
Track Processor component to completely change the Engine’s behavior for filling the Track.

63

itself. And the component responsible of filling the Pool with new Tickets, is
the Track Processor.

Upon the Standard Engine Core’s request, the Track Processor begins a loop that
stops when at least one of the following two conditions is met:

1. The Pool has more Tickets than the defined maximum number of
Tickets per Poolxxx. This usually happens due to two reasons:

⁃ The initial batch of Tickets returned by the Suppliers covers our
initial Timeframe and the Pool’s length already exceeds the maximum
number of Tickets per Pool.

⁃ The Track Processor has iterated through the loop, extending the
Timeframe covered by the Pool, until the length of the Pool
exceeds the maximum number of Tickets per Pool.

2. It is impossible for the Track Processor to add more Tickets to the Pool,
because all the Time Thresholds of the Suppliers returned by the Control
Unit have been met.

xxx. This number can be programmatically changed easily by a 3rd party developer.

64

Figure 29: Drawing showcasing programmatically generated Tickets for Gap
Support testing, circa 2013.

The Track Processor’s guiding principle is to fill the Pool. It does this by defining a
standard Timeframe of 5 minutes, and by filling the Pool with the Tickets that
logically belong into that Timeframe. If the first few Tickets from the Suppliers don’t
cover that Timeframe or don’t hit the minimum number of Tickets required (both
need to be true), we iterate again extending the Pool’s Timeframe and requesting
new Tickets from our Suppliers, until we’ve met both requirements. Only if we
reach all of our Suppliers’ Thresholds does the Track Processor drop the
minimum number of Tickets required, since there aren’t any more, and we can
be certain, from a logical standpoint, that we’re not missing any of the user’s
content. Remember: the Track Processor knows which Suppliers have valid content
(Tickets) for the Pool it is trying to fill because it can ask them, through the Control
Unit. Also note that, in practice, there’s more logic involved regarding the Pool’s
Timeframe, since the Pool might be trying to fill a Standard Gap whose Timeframe
is less than 5 minutes.

Once finished, the Track Processor will return said Pool back to the Standard
Engine’s Core. At this point, the Pool contains both logically and chronologically
ordered Tickets from all of the Suppliers; we know they’re logically correct
because Suppliers need to worry only about returning Tickets that follow each other

65

logically. And we know they’re chronologically correct because both the Track
Processor and the Pool enforce this invariantxxxi.

When control is handled back to the Standard Engine’s Core, it will call upon the
Pool Object itself to perform what turned out to be one of our nightmares: Pool
Cutting, also known as the Gap-Aware Pool box in the above diagram. Pool
Cutting is the process of fitting the new Pool into the Track; this includes
making sure the continuity between the Track and the Gap we are filling isn’t
broken, and that no duplicates are added in the process. To do this, we first cut
down the Pool to be our maximum number of Tickets per Pool, or lower. This is
necessary because when the Pool is filled, the Track Processor stops looping when
the Pool size exceeds the minimum, so the Pool might be larger than we intended it
to be. Once cut, we now face another problem, which is that the Timeframe
covered by the Pool is not deemed complete; in other words, we don’t know if
we have all the content between the newest and the oldest Ticket in the Pool. For
example; our Pool may now have Tickets ordered chronologically between 16:00.00
and 16:05.20, but we don’t know if we have all the Tickets that belong to the
second between 16:05.00 and 16:06.00, because they may have been cut; all we
know is that we have a Ticket in our Pool with a timestamp of 16:05.20xxxii. As a
solution, during Pool Cutting we cut again down to the second, so in our
example, our Pool’s Timeframe would be clocked with a start value of 16:00.00 and
an end value of 16:05.00, because we are once again certain that we’re not missing
any content within its bounds. We know because the Pool is chronologically correct,
and because we had Tickets in the Pool past 16:05.00, therefore, we have
everything in between 16:00.00 and 16:05.00.

Now that our Pool is both logically and chronologically correct, smaller than our
maximum Pool size, and the Timeframe it covers is complete, we need to fit it into
the Track. This involves continuity checks regarding what comes after and before
the new Tickets we’re adding to it, and more checks to see whether the Pool
sufficiently covers the Gap, or if it adds another one. This is the reason why we keep
Pool Timeframe(s) and Gap(s) independent of each other, and in different steps of
the process: a Pool might initially cover a Timeframe, but once it’s been cut
down, it might no longer do so.

xxxi. The Pool itself is a TicketContainer class.

xxxii. Complicating matters is the fact that we had to write Timestamp comparisons of our own,
because Foundation’s NSDate class wouldn’t return true to 16:05.19 being older than 16:05.20, and
so on.

66

Finally, when the Track has been updated with the Pool’s Tickets, and the Ticket
row changes calculated, the Core sends a DHSENotification to the User Interface
layer, informing it that the operation has been completed, and our background
queue operation concludes, allowing for the next operation, if there is any, to be
performed.

2.6 Grab Bag

Figure 30: More Racing Tweets v2.0 Promotional Artwork.

Unfortunately for us, there are many, many, many things we don’t have time to talk
about. But I want to do more than just say “I want you to know they’re there”[30],
and bail out. Instead, what we’re going to do is close this chapter by going through
some interesting tidbits we didn’t get to talk about in detail, to further extend your
knowledge of what is required to build a modern mobile application.

2.6.1 Self-Sizing UITableViewCell(s)

67

This one has to be the holy-grail for all iOS Developers. UITableView(s) have been
a part of iOS Development since the very beginning, much like the ListView and its
Adapter classes have been for Android. However, making the UITableViewCell(s)
have different sizes has always been a bit of a nightmare, and has required a lot of
different tricks over the years. Back in the day for example, one possible strategy
was to split a UITableViewCell’s height into the height you knew about, and the
height of the elements you didn’t know about, which was usually some text
element. Then, you’d insert an invisible UILabel item into your UI, outside the
UITableView, and every time a new cell needed to be drawn, you’d set its text into
the invisible UILabel, force it to resize, measure it, and then return the
corresponding UITableViewCell’s height. And again, you’d do this for every
cell. It wasn’t pretty, but the upside was that once you got it to work, there were no
messy hairs to contend with.

Nowadays, UITableView has some magic[31] to avoid these games, but the
downside is that UITableView never ends up behaving the same way across iOS
releases, since the underlying API class, and its cell height calculation algorithm, are
constantly being tweaked. In turn, you end up having to hack the API forcing it to
present itself like you’d expect it toxxxiii.

2.6.2 Aspect-ratio consistent UIImageView(s)

Because I’m never happy, I decided that solving variable-length text-based
UITableViewCell(s) wasn’t enough for my ego, so I decided to tackle having full-
bleed images, going edge-to-edge, that were resized to always keep their aspect
ratio. This proved to be an utter nightmare, until I decided I couldn’t go against a
simple fact: UITableViewCell(s) need to know their height, for a given Ticket,
before they are shown. Notice the bolded text, because that is the key here; when
we had to size the cells for ourselves in Racing Tweets 1.0, our images were of a
fixed height, and we managed to calculate the height of the text, and of the cell,
before it was shown to the user. What doesn’t work is what we tried for a long time:
to show a cell, and then dynamically change its height to that of the image we have
fetched after showing the cell to the user. In this case we were constantly seeing
cells have the wrong height for the image they’re trying to show, because they were
assuming the height of the wrong image. Then, we’d fight the API to make the cell
adapt to a new image’s height and wonder why it didn’t have the correct height in

xxxiii. We admit to not being the most knowledgeable people on the subject, but if only Stack
Overflow wasn’t full of similar complaints…

68

the first place. We were not very smart going about this problem to be honest, and
much energy was spent complaining about the API, rather than thinking about
where the problem really was.

Thankfully, Stack Overflow came to our aid in explaining this to us, and Twitter
made its part in making it possible, by providing in its API the dimensions of each
image entity in the Tweet object itself. Once we parsed that data and added it to our
DHSETwitterTicket class, we knew the image’s aspect ratio, and together with the
screen size, we had the corresponding aspect-ratio corrected height for each image
before it was downloaded from the CDN, meeting UITableView’s requirements.

2.6.3 Text flowing around UIImageView(s)

Figure 31: Comparison with other Twitter clients. Left to Right: Twitter for iPhone,
Twiterrific for iPhone and Tweetbot 4 in their dark trim, followed by Racing Tweets

v2.0.

Apple loves to pride itself in its APIs, some times for good reason. Android, for
example, had to hack a way together upon release to recicle View(s) and show
them in a ListView, lest the Garbage Collector kicked in and caused scrolling to
stall, making the developer responsible for implementing this needed optimization.
iOS had this from day one, and it was also the first modern mobile platform that
was launched. This means Apple can really provide great APIs, as they often do.
The problem comes when you try to use shiny Apple APIs outside the realms of the
cool demo they used to announce them, like the TextKit API that allows you to set
boundaries around which your text elements should be able to flow[32]. To get the
UITableViewCell’s text to flow around the user’s image (see above), we had to

69

place the UI element underneath the title and make it avoid the UIImageView to its
left, rather than placing the text element at the top, and giving it the username and
the profile picture’s boundaries for it to avoid on its own. I can confidently say that
no other Twitter client, nor social media client, does this. For what it’s worth,
we’ve done our part by trying to share and spread the knowledge[33].

2.6.4 Hacking UITextView to not accept user input

The API to achieve flowing text mentioned above, can only be used with a particular
class that is designed for user input (writing text with the soft keyboard). We didn’t
want to enable the user to write on top of our Standard Engine Tickets’
UITableViewCell(s), and we couldn’t just make the UI element non-user
interactive, because otherwise the user can’t tap on any links, nor press down on a
UITableViewCell to take a Tweetshot. We tried so many things that[34], to this day,
we still haven’t figured it out completely how to solve all the small issues, but we
moved on past a certain point, and now we’re not sure if we’ll be able to come back
and finish it completely.

2.6.5 Custom-Drawn UIView(s)

We are incredibly strong proponents of keeping app sizes as small as possible, and
one of the culprits of bloated apps is the amount of resources, namely images of
different kinds of shapes and sizes suited for all kinds of devicesxxxiv, that are
required in a modern app. Our solution for this is one being adopted by high-profile
indie developers in the industry: using code to draw, primarily through tools like
PaintCode[35]. At a practical level, it’s not that different from loading a bitmap into
memory, uncompressing it, and sending it over to the GPU to show in the display.
The only difference is, instead of loading an existing image, we use code to draw
the image in a buffer, convert it to a bitmap, and from there on the process ramains
the same. For us, the advantages of using code rather than bitmap graphics far
outweighed the inconvenience of having to use custom software to draw them:

xxxiv. Contrary to what many believe, the iOS ecosystem does suffer from device fragmentation:
iPhone SE, iPhone 6/7/8, iPhone Pluses, and now the iPhone X, all need their own sets of resources.
The issue is further excarberated by API changes through OS releases, and the iPad’s own
fragmentation.

70

• No increase in app package sizexxxv.

• No need to add new resources every time there’s a new type of device
introduced.

• Images are always drawn in memory to fit the size, in pixels, they’re going to
occupy, so they’re both pixel-perfect and a lot more efficient than their
bitmap counterparts.

On our Timeline, the blue tick sign signaling Twitter Verified User(s) and the circle
around each user profile image are both drawn from code. Other elements drawn in
real-time using code include the image loading graphic, which is an F-1 tyre with
accompanying rim, the ERS batteryxxxvi for the Tweet Editor, the downward facing
arrow for modally-shown screens, the rounded buttons, and more.

2.6.6 Asynchronous background loading of
UIImageView(s)

We could go miles and miles about this one, and we’re kind of embarrassed to say
that we haven’t completely nailed it yet, but we at least have a much better solution
than what we hacked together for I am CEO. The subject at hand is that whenever
a UITableViewCell is about to be shown, we fire a background request to fetch
any images it might have. When the images arrive, we need to set them in the right
UIImageView, which gets incredibly tricky because UITableViewCell(s) are
recycled within their parent UITableViewxxxvii. So the user might be flicking through
the list of tweets, firing lots of requests, stop at some point, and then multiple
images will be returned for the same UITableViewCell, because while the user
was scrolling, that UITableViewCell represented many different Tickets. And once
the background queue starts returning multiple images for the same
UITableViewCell, how do we know which one is the one we need to show right
now?

xxxv. Compared to images, code does not add any significant amount of weight (size in MB) to our
app.

xxxvi. Under current regulations, F-1 cars harvest their wheels’ kinetic energy to charge the Energy
Recovery System’s battery. This battery energy can then be deployed to the vehicle’s rear wheels.

xxxvii. UITableViewCell recycling also affected us when we were trying to have full-bleed images that
kept their aspect-ratio.

71

Our current solution is to use the tag field of the UIImageView class, and assign it
the hash of the latest image’s URL. When multiple images are requested for the
same UIImageView, all of these requests will have multiple hashes, but only one of
them will have a hash matching the tag field of the UIImageView. Said image is the
one we set.

2.6.7 UIImageView Cache(s)

We wrote a full blog post covering most of this subject[36], so we’ll be even more
sparse than usual on the details here. What we want here is to keep a good cache
of all the images we’ve had to fetch for the user, so they may not be re-fetched, and
thus use more battery power and network data, if the user scrolls back up through
the Track to reveal an image we downloaded earlier. Also, we want to avoid having
to reload all the images if the user leaves our app, and then returns. Initially, and
going as far as the first two releases of Racing Tweets, we implemented a cache
ourselves, until we tried a 3rd party library, and never looked back since.

2.6.8 Tweetshot(s)

72

Figure 32: When a UITableViewCell is 3D-Touch’ed, the above UI element pops
above said cell. This use case was the root of the Tweetshot idea.

We would really, really love to show you how these were implemented. They we
such a beautiful headache; beautiful because even though the Tweetshot as such
exists on Product Hunt[37], we don’t think people really know what they are. Maybe
for good reason, since Racing Tweets hasn’t caught on either. Tweetshots were our
way of showcasing how the user could customize Racing Tweets via custom
backgrounds, as well as a quick and easy way to share tweets not via links, but via
images. Even though links are cool, images still have this raw feeling of showing
others exactly what we’ve seen and how we experienced it, therefore containing
more meaning. This is something you lose when sharing a link, where usually, the
other person needs to open the link for themselves.

In any case, photographing a UITableViewCell, wherever it may be in the
UITableViewxxxviii, in a way that allowed for their background to also be drawn into
the image buffer, was a wonderful technical experience, knowing very few have
actually attempted, and been successful, at something like this. I’d even go as far
as saying that very few would be able to produce a good knock-off given the

xxxviii. Even if you hard-pressed on a Ticket’s UITableViewCell that only had its title visible, we’d be
able to snapshot the whole Ticket and show it to you in an instant.

73

months of engineering it took to reach our level of polishxxxix.

Breathe Dinesh, breathe.

xxxix. To give you an idea, in the iPhone SE, a UITableViewCell might be taller than the space the
user has to see the Ticket in their screen, specially if said tweet has a tall image. We also solved that

! .

74

3.The Closing

75

3.1 What Does Software Architecture's Future Look
Like?

Figure 33: Software Architecture.

It is hard to tell. One would hope that, as time goes on and our craft grows, together
with our systems’ complexities, that our knowledge and understanding of how to
work better with code, grows too. After all, this isn’t too much different compared
to how airlines have learnt that training their crews as individuals isn’t enough, and
that they must be trained too in the human arts. To help them enable each other to
work together towards a common goal, rather than everyone pulling in their own
direction under wraps[38]. We face the same problem: code is not written in a
vacuum by computers, it is (mostly) written by people working in teams, each one
building a piece of the bigger puzzle. It’s true that you can’t prepare for how all the
pieces should fit together - God knows I’ve had to rewrite tons of code around the
Pool, Track Processor and Track classes to adapt - but when the new knowledge
hits you, you’ve got to take a step back, and see the big picture. And if you’re afraid
to do it, you need to speak up and find someone else to do it, or your project will
crash at some point.

It’s actually not that hard to understand: there’s hardware, and then there’s software.

76

Everybody knows not to mess up with hardwarei, because it’s really scary for many.
But gluing code together just because you can, turns everything into a pile of
strapped-together code codepaths that, in consequence, make code not malleable,
but as static and immovable as silicon itself. Have you ever wondered if, perhaps,
that thing your Product Manager thought would be easy to do, like changing your
business model’s logic, should actually be easy to change, instead of you
complaining about how he doesn’t understand software engineering? It’s in the
name itself: software should be soft, and therefore lend itself to change. That’s
what good Software Architecture truly enables, as well as a lot of other side
benefits, like component de-coupling, error contention, sub-systems division and
reuse, pain-free open-sourcing of code with continous integration, and so on.

You’re simply not a professional if you don’t pay attention to how the code you write
fits into the larger system. And even if you don’t want to do it for your legacy within
the company you’re currently working at, or for your co-workers, do it for you. Yes,
do it for you: do it for the next time a crazy bug no one has any idea about gets
assigned to the one who last touched that file, and you were the unlucky one who
last modified that file because you opened it by accident, it got modified, and you
didn’t bother removing it from your pull request. Git blame, you know?

3.2 Racing Tweets' Future

I guess many of you might be wondering what happens now to the impressive
structure you built? I guess my answer has two distinct parts, one for the product
we’ve been talking about, and another one for the technology underpinning it.

Racing Tweets has a very special place in my heart - it has helped me regain the
confidence in myself to actually build products from start to finish, instead of
dropping them midway through development. It’s tricky because, I’m not sure I can
just stop using it; for the purposes I use it for, which is to follow motorsports, it
provides a much better experience than my previous solution, which was using a
Twitter client and attaching it to a massive Twitter listii. And if I’m using it, chances
are that I might start Xcode from time to time to fix something, but it’s not my goal.
My goal is to move to my next product, and build something that has an
audience larger than just me, willing to pay for it, whilst remaining an indie

i. Case in point: 20 years after researchers published papers on the dangers of CPU speculative
execution, we got Meltdown and Spectre.

ii. Called “formulaOne”.

77

developer. Some have managed to make this work at a small scale, but I, well, I
just want more.

As for the Standard Engine, I find it hard to believe that I won’t find something
for it to do in my upcoming projects. After all, something the Standard Engine
does pretty well is to interface data with one of the most used structures in all of
iOS: UITableView. And as soon as things get even a tiny bit complicated, I’m sure
the ease of use of the Presenter API will allow me to gain significant speed and
leverage using everything the Standard Engine has to offer. It won’t go the way I am
CEO has thus far. I’m even thinking of improving its internal structure just for the
sake of it, inspired by the great insights I eventually had into software development
through working on it. Plus, like I said: I’m willing to license the Engine if you’re
interested :)

3.3 By the way

78

Figure 34: Racing Tweets’ Standing On The Shoulders Of screen.

There’s one last thing I’d like to say, and that is, thank you. Thank you for
everyone belonging to this immense community, for helping me out in arriving at
this destination. Because really, without being able to stand atop the works of
many others who’ve come before us, plus, those who are more knowledgeable
than us and can save us significant amounts of time (and money), we wouldn’t be
able to craft any kind of products at the speed we currently do. From the bottom
of my heart, thank you for helping out; whether it was through a tweet, a blog
post, a Medium post, a Stack Overflow comment or even a real-life conversation
that has sparked an idea within me. Thank you.

79

4.Annex I: Racing Tweets' Story

80

4.1 WPF Origins

Figure 35: Windows for Fiber prototype, with MetroTwit on the background to
verify a tweet was posted.

The journey begins a few months after I am CEO stopped being a thing, back in
2012, when I felt very close to a group of friends. To keep in touch, I’d have
Facebook, Twitter, Instagram and maybe even LinkedIn, open every day using a
combination of both browser tabs and apps, to check for any new posts from any of
them. This was easy to do, because back then social networks prioritized content
from those you knew and cared about, and with this group of people every post and
comment meant something to me. The alternative being having conversations
online with the big void that represents the Internet. As a true believer in native
apps, it started dawning on me that no one had done an app with that focus:
filtering out all the noise, and showing you only the content of the people you really
cared about.

This meant that, for example, whenever this fictional app notified you that there
were 1 or 2 pending posts to read, reading them when taking a break from work
actually meant something to you, instead of making you constantly scroll through
lists of endless content, leaving you unsatisfied after spending all of that time
scrollingi. And if there wasn’t any new notifications, you would know there was
nothing important, and therefore you were free to invest your valuable break time in
something else. But when you did have notifications, you’d feel connected with the
people you cared about, instead of you having to do the work of a computer: being

i. To this day, this still happens.

81

the information filter.

It’d be a challenge to write, I knew. But I loved challenges! And besides, there was a
successful app that was able to kind-of-do the same thing, but only with Twitter:
Hootsuite[39]. Hootsuite rose to power by allowing you to combine multiple Twitter
streams into one single feed, but it never - to my knowledge, at least - attempted to
combine content from other sourcesii. I knew that I was capable of doing it. After all,
the APIs were there: to improve my own Facebook experience, I’d created a favorite
list with all the people I cared about, and all I ever did when opening the dark blue
button in my iPhone was check for any new posts in that list. Twitter had explicit
lists, so that was a done deal. LinkedIn, Pinterest or Instagram didn’t make it easy
to follow specific people with list-like structures, but since I believed Twitter and
Facebook were the main focus, I could either tackle that locally, by filtering out
posts within the app, or I could figure it out later with a more complex solution, such
as with my own feed server.

I knew doing this would require a significant time investment, but I was busy with
both a full University course load and a 40-hour day-job as an Android Developer.
My energy and excitement for the project were at its peak between April and May,
when a big personal setback meant the only thing I had to cling onto was this idea.
So I began to write it… in Windows. Why Windows? Because all of my potential
testers were Windows users, and despite me being a converted Apple-person
through and through, I still recognize good software when I see it, and the MetroTwit
client for Windows[40] made me believe it was possible to make cool software for
Redmond’s OS. I got to the point where, as you can see on MetroTwit’s leftmost
column, I was able to tweet, from Fiber.

Fiber was the name I came up with, but there were many others. Most notably, I
can remember Socialité, or simply Socialiteiii, but it was already taken by another
social media app more focused on dating. For me, the word Fiber meant strength,
but also, it meant union: a fiber is composed of multiple individual strings which,
separately, are weak and easy to break. But, if you intertwine many strings together,
eventually you’ll end up with something a lot stronger, capable of withholding a lot
more strain. That was what the name meant to me, but it wasn’t how I was going to
sell it to the press; instead, Fiber is composed of multiple strings, because each

ii. Perhaps Hootsuite never had the capability of coalescing multiple streams, and simply used
Twitter’s API to do it for them? I wonder.

iii. I squarely blame this name on a teen drama taking place on the Upper East Side.

82

stringiv is a social network whose feed we’re pulling in and combining with others, to
have a Fiber.

4.2 What Happened?

What you saw in the previous section is as far as the Windows iteration of Fiber
made it. I don’t remember all of the details of what pushed me back, but on the
non-technical side, lack of motivation was one of them. I do remember thinking that
the project was really daunting, in part because WPF and C# were incredibly
complex compared to what I knew about Android and iOS development: it took
houndreds of lines of code to add a UI panel and make it slide to one side, because
you had to write the animation code yourself. I wanted to pull my hair out back in
2012 - no wonder all Windows apps were (and are) so damn horrible. Even worse
was the code to show a list of tweets on the screen; I don’t remember the specifics,
but I remember not feeling like it would be any worth it, even if my low-levels of
motivation fueled me that far.

And last, but not least, I had the feeling that the hardest part was going to be
building the Engine. Because if I got through all the other stuff, and I was able to
animate stuff on the Windows Presentation Formv, and also set up a list or table of
items of sort to go through, I still, after all that, had to figure out the most complex
part: being able to pull data from all of the aforementioned social networks,
including the task of dealing with their OAuth 2.0 interfaces, and then figure out a
way to mix them, and support loading the items in small batches. And because this
was me, I also wanted all of this to work in an efficient way: I wanted to do multi-
threading in Windows to use all the cores a modern PC had to offer. And to this day,
I still think Microsoft and Google need to make this a lot easier for developers than
just offering Thread Pool APIs[41][42].

So that killed it. And apparently, I tossed the source code somewhere, because I
can’t find it even if it’s just to reminisce about it.

iv. A “fiber” is comprised of multiple strings, just like the Standard Engine’s Track, is comprised of

Tickets from multiple Suppliers "

v. In both WinForms (classic Win95 apps) and WPF, a “Form” is a “window”, just like in iOS a
UIViewController is a “screen”.

83

4.3 The Revival

Figure 36: Standard Engine prototype pulling Formula One tweets, circa August
2014.

The project’s idea never truly left me. After giving up on WPF in the Summer of
2012, life called me to Silicon Valley, and although I picked up the phone, I didn’t do
a good enough job telling them how much they needed me at the time. But I started
believing that I could do so with other companies, so I made up my mind on quitting
my employer once I resolved some issues. Once I did that, I was the one who
began calling for jobs away from home in early 2013, and in the meantime, bored of
Android - sorry! - I decided to pick up iOS development again, through Ray
Wenderlich’s fantastic set of books and articles[43].

While I re-learnt iOS development, I was also sending CVs for Android-based jobs,
since that was where I had the most amount of experience. But after going through
enough tutorials and not feeling motivated to do more, I wondered what could I do
to improve my skills, and paired with blogging, I came up with the idea of retaking
the Fiber project, but this time doing it the other way around: instead of starting at
the interface level, and then finding out what I needed to do, I’d work on the core, or
engine of the project first, and then build an eventual product around it. The engine
was eventually named the Standard Engine, in honor of the Higgs Boson
discovery a year earlier, but first confirmed in 2013[44]. I feel too embarrased now

84

to tell you where the Zealotvi Engine’s name came from, so I’ll just try to hide it as a
footnote.

Come Summer of 2013, I got a job in Germany, and the Standard Engine was in
early stages, working under some very shaky tests; I wanted to make sure that, the
day I plugged in Facebook and Twitter content, I wouldn’t have to doubt the
Engine’s results. That eventually wouldn’t happen until almost a full year later, but
when it did, it lit my heart on fire. In the meantime, I’d moved to Germany and
resumed my job as an Android Developer, taking every chance I could get to snatch
a few commits into the inhouse iOS App that was being developed over there.

I was scheduled to travel to Italy in September 2014. Just a few weeks before, I
started seeing Facebook and Twitter content being actively processed by the
Standard Engine. It dawned on me then, with all the complexity it took to switch on
and off the couple of social networks that I had, and the problems I was having to
style them properly, specially with my concept of custom backgrounds, that maybe
I could walk down an alternative solution: why not release a simpler app, powered
by the Standard Engine, and once this simple app was out of the way, and we’ve
come to find all of the bugs and quirks of the engine’s design, then release Fiber?

Enter Racing Tweets.

4.4 But, What Was Racing Tweets all About?

vi. Between 2011 and 2013, Starcraft 2, a strategy-game by Blizzard Entertainment, was known as
“Silicon Valley’s Chess”, which included leagues and championships between all the major Silicon
Valley companies. The Zealot is an infantry unit from one of the game’s three races.

85

Figure 37: Promotional artwork for Racing Tweets 1.0 release.

Fiber began with the idea of open one app, and see what the people you care about
are doing across all social media. Racing Tweets never had a business idea, it was
just a package around the Standard Engine that I could sell. Its seed also dates
back to 2013, when I discovered how Twitter allowed for much closer following of
my favorite sport, Formula One. I was already a pretty good F-1 geek, but Twitter
opened me to lots of insights: communications (tweets) straight from the teams,
immediate links to the best analysis and reporting articles, insight from journalists
and lots of theories and gossip that, most of the time, would have a kernel of truth
in them, but that were not reported by bigger news outlets like the ones
broadcasting the Grand Prix races. Not to mention live tweets from the track on
racing weekends, as well as spy shots on all the car development happening
throughout the seasons. This offered a lot of value to me personally, and since
millions of people watch Formula One, both inside and outside Spain, I thought,
surely this must also be valuable to all of them. What could go wrong?

In October 2014 I commited myself to making Racing Tweets a product in the App
Store, and proceeded to work feverishly on it until the Xmas holidays. During the
festivities, I kept the project mostly under wraps, because I had this stupid feeling in
me that if I said it out loud, then some of the magic would be lost, and that my drive
to keep working on it would somehow vanish in a thin puff of smoke. Come early

86

2015, I rejoined work in Germany and was beginning to suffer from a poor working
environment, which in turn pushed me to focus more on me, on Racing Tweets.
The Summer of 2015 was very tense, because many things needed to happen, very
quickly, for me to release on the same date as iOS 9, when all major apps would
launch in the App Store. I didn’t make it in time for iOS 9, and instead during the
month of September I was caught in the web of trying to push people to beta-test it
for free instead. I tried, I really tried to get as many testers as possible. And I only
recently remembered how much I tried to contact people & press to try it out, when
I started going through all of my past Twitter DM conversations in order to do the
same thing for v2.0. Most of my attempts to gather interest, both then and now,
ended up with people turning me away, including a majority that wouldn’t reply
back. Some were extremely funny, and said that “they didn’t believe in any product
made for Apple platforms”, or even better, that they “didn’t believe in it, but wanted
to be told when it was released”. I don’t remember how I did it, but eventually I
found a group of 10-ish people to test it, and then I hit another rock, or rather, a
fruit.

Version 1.0 was cleared by App Store Review for release, to the point where all I
had to do, was press a button in iTunes Connect. Then, I don’t remember how, a
colleague of minevii who was an iOS Developer and tested my app, found a bug. Try
as I might I can’t gather the details about it, just the feeling I had that the bug we’d
found affected a common scenario, and would cause crashes for a lot people. Of
course, I was counting on the app to be a moderate success, and since I wanted to
charge 3.99€ for every sale, I thought the appropriate thing to do was to delay the
launch, fix it, and upload version 1.0.1 for App Review. My colleague told me to
release the app anyway, but I wanted to do the right thing. So I delayed the release,
fixed the bug, and when I uploaded v1.0.1, it was rejected.

You see, the original name for Racing Tweets, was not Racing Tweets. It was F-1
Tweets in English, and Tweets de Fórmula 1 in Spanish, abbreviated to TdF1 on
your homescreen. Version 1.0 was approved with these names, but 1.0.1 was
inspected by a different reviewer at Apple, and was rejected. I remember thinking
months before, when I first came up with the name, that this shouldn’t be a
problem. Because sure enough, a quick App Store search detailed many apps with
“F1” or “F-1” in their names, having absolutely no official license from the sport. The
reviewer didn’t say as much, but it seemed like the name was the only issue holding
us back. I had a couple of options: change the name, or be sneaky, upload it again,

vii. This colleague was actually my iOS mentor throughout the last year of Racing Tweets v1.0’s
development. I’ll never forget the moment he took me through the process of “filing a radar”, which
is Apple-speak for reporting bugs back to the mothership.

87

and pray that a different reviewer approved it. I chose the first, since the second
didn’t seem a good way of doing business; after all, what prevented them of
blocking a very important release, or another bug fix, down the line? It was left as
Racing Tweets in English, and “Tweets de Vuelta 6”viii in Spanish.

4.5 Phoenix Rising

Figure 38: A close-up of Racing Tweets 1.0. Notice the muted (purple) color, the
blurry background partially showing a user-defined wallpaper, how the text

doesn’t flow around the user profile image, and how the tweet’s image doesn’t fill
the screen edge-to-edge.

After one more App Review rejection, this time because “images can’t show
trademarked content”ix, the app went live on October 29th, 2015 at 18:55 GMT. It
was not a success. No reviews on websites, besides one that I paid for[45], and
barely any purchases. I pushed hard with discounts and targeted advertising

viii. I was frustrated by the fact that my best name was rejected, after it’d been approved. I tried to
come up with something with meaning towards F-1, and “Vuelta 6”, which meant “Lap 6” in Spanish,
had the double meaning of “V6” when shortened, which is the engine architecture of current F-1
cars.

ix. This meant that none of my promotional artwork was allowed to reference Formula One directly.

88

through Facebook, to no avail - no one purchased it. Over Xmas 2015, I set it free
on the App Store and managed some high-profile retweets with people familiar with
the sport in Spain, garnering 83 downloads. Sadly, most people either didn’t open
it, or opened it once, never to do so again.

It hurt a lot - to this day, it still does, making it incredibly hard to write down these
words. But back then, I was full of energy - I’d made it! The Standard Engine was
now out in the open! It didn’t matter that no one was buying it, I still had a lot of
potential work to do! So many features to implement! Maybe then people would
care? I only lasted two releases, a bug-fix and a minor release (1.0.3 and 1.1),
before I completely gave up in March 2016, which coincided with my return home
from Germany, and me not wanting much to do with tech anymore.

But, things turn around. Nine months later, the spark was beginning to burn within
me again - maybe I did it wrong? It didn’t have enough features. It had nothing to go
for it - you couldn’t choose which sports to follow, the background idea was good,
but ultimately hideous and extremely complicated to do with adaptable theme
colors. The main timeline showed clear signs of being completely rushed; the
margins were all wrong and not standardized across the app. The colors were
absolutely horrible, muted and lacking coherence and personality. And lastly,
nothing made the app feel special, other than the background feature; nothing
made a petrolhead feel like this was their app.

So I set out to change that with 2.0: gorgeous colors, text flowing around images in
the main timeline, Team Radio retweet signs, spinning tyres with official Pirelli-colors
as loading signs, support for multiple images within a tweet, motorsport-inspired
images in every dialog, multiple language support, support for multiple motorsports,
a complex filter to ensure only racing-related tweets show up, a tweet editor with an
ERS battery sign as a tweet length counter, semaphores to show notifications…
When I hit the point where I had to stir interest in it for a beta-test, I basically got the
same result, and I didn’t remember how hard I’d tried the first time. In my mind, I
just did it wrong the first time and thought, now is when I’m going to make it truly
special. But I was kind of wrong.

It’s not that I don’t believe it is worth releasing - I think it is, but with the right
expectations. Right now, I can’t find a way to make people interested in it, even
though millions of people hit both Twitter and motorsport sites to check daily about
Formula One, Rallying, the World Endurance Championsip and more. This means
Racing Tweets isn’t a viable business as the main income source for an indie
developer like me, but it could find a home if made ad-based with some people.
We’ll see.

89

5.Annex II: More On Racing Tweets' Tech

90

5.1 Shared State

Figure 39: Another promotional image for Racing Tweets 1.0.

Once we’d settled on a navigational structure, a different issue we need to consider
was how to share state accross all the UIViewController(s) that need it. Like the
Standard Engine, the main screen’s ViewController also needs to share a common
object with the Settings VC, so that from Settings we might alter the behavior of the
full application. However, the concept of shared state encompasses a lot more
quirks that what we haven’t covered so far.

Take, for instance, a marquee feature that heavily powered me through the
development of the first release of Racing Tweets. It was to be a feature intended
for Fiber, making it stand out accross all other social media apps, but given how
without it, 1.0 would’ve been just a twitter list aggregator, it became something that
the app couldn’t ship without, and that was custom backgrounds. At the point
where Racing Tweets became an actual project back in 2014, Dark Mode themes
were not yet commonplace in most social media apps, so in a way, the UI design of
Fiber/Racing Tweets was two steps forward in this regard, wanting to provide even
more flexibility to the user, while drawing most of the text in white over a darkened
background, like the dark themes of today. But this effect was not meant to be just
for the main timeline: it had to show up all over the app, providing users with the

91

sense that the app was truly theirs. As you know, it was also meant to showcase
Tweetshot(s), when we came around implementing them.

So how did we solve this? We built our own custom UIViewController, incorrectly
named DHSENavigationTableViewControlleri, to handle all features related to the
standardization of multiple screens sharing the same background wallpaper,
enabling the user to change said wallpaper at any moment. To explain how this
works, we’ll illustrate the process in a series of steps:

1. Whenever a DHSENavigationTableViewController is instantiated, it
embeds itself within a standard UINavigationController, so the API’s
caller does not need to perform this extra stepii.

2. DHSENavigationTableViewController adds a UIImageView instance, a
UIKit object for displaying images, as a background image for the
UINavigationController in which it has embed itself.

3. DHSENavigationTableViewController removes the background from
itself, as a UIViewController subclass of its owniii, allowing the user to see
the image set in the parent UINavigationController.

4. From now on, all UIViewController(s) pushed from the initial
DHSENavigationTableViewController instance do not need to set again a
background image; they only need to remove their default backgrounds.

5. DHSENavigationTableViewController can update its background to the
current one with an API call.

Even though a DHSENavigationTableViewController and its children classes can
update their background, they cannot change it. They can only read what their
background should be, and change it if the one they currently have isn’t a match.
Instead, backgrounds are a setting, so no DHSENavigationTableViewController
subclass has the functions, nor the code, to change said setting. This is where the
DHSEUserSettings class enters the picture.

i. I should rename it the DHFiberNavigationTableViewController.

ii. UINavigationController(s) are “true controllers”, in the sense that barely add any UI, and instead
provide a layer of control for the behavior of the underlying UIViewControllers. Therefore, we always
need a starting UIViewController.

iii. A UINavigationController exists as part of the view hierarchy, since it’s the owner of the
UINavigationBar. UIViewControllers control their own background, and by making these use the
NavController’s background instead, they all share the same one.

92

5.1.1 Settings Management

Though in its name you can read the letters “SE” for Standard Engine, there are no
dependencies whatsoever between a Standard Engine instance and a
D H S E U s e r S e t t i n g s i n s t a n c e . L i k e t h e a f o r e m e n t i o n e d
DHSENavigationTableViewController class, DHSEUserSettings should replace
the letters “SE” with “Fiber” in its name. In any case, DHSEUserSettings is a
Singleton class holding, as its name implies, a variety of settings. These include the
path for the user’s background, and Engine-related settings like whether the
(Settings) Debug section is enabled, if we want to show exact timestamps for all the
tweets, and more. In truth, DHSEUserSettings forms the backbone for a lot of user
data, since it internally holds a dictionary class, which is then flattened into a
Property List (XML) file. Once saved to disk, this file is then set as fully protected by
the Operating System in case the FBI tries to steal our user’s settings[46]. Whenever
a setting is changed, DHSEUserSettings writes itself to disk again, avoiding us
having to worry about whether any changes have been saved or not.

Swift, like Objective-C before it, has a very interesting property, called class
extensions. A class extension is simply an import of a file that adds behavior to
existing classes. In very simple terms, this allows anyone to extend any class,
without subclassing, including Apple framework classes. So you can basically
add a new method to the String class that returns the same text but made bold, in
the form of an NSMutableAttributedString, which is how you can add font
attributes to text in Cocoaiv. But there are limitations, or otherwise subclassing
would see its value significantly reduced: class extensions cannot override
functions, nor can they add stored variables. Both of which can be overcome
through mastery of the language, of course.

In fact, we wrote DHSEUserSettings with class extensions in mind:
DHSEUserSettings offers API functions for loading and storing both strings and
numbers, which enables us to write functions in our user settings’ extension to write
and read “new variables”. This is because most properties can be reduced to either
strings or numbers, and complex objects can be serialized and deserialized from
strings as necessary. And, through the use of syntactic sugar, we can even make
these look like proper variables, using Swift’s computed properties, which allow us

iv. Cocoa, without the “Touch” prefix, is the Cocoa Touch equivalent for the MacOS platform. UIKit
derives from its MacOS counterpart, AppKit. And AppKit itself, derives from NeXTSTEP.

93

to define the getter and setter of a property. And since we can use our API to read
said properties, it all becomes quite clean from the perspective of the API’s user:

Language: Swift 4

extension DHSEUserSettings {

@objc public var receiptValidated: Bool {
 get {
 return
DHSEUserSettings.shared().getBooleanSetting(WithKey:
Constants.receiptValidatedKey, andDefaultValue: false)
 }
 set(newValue) {

DHSEUserSettings.shared().setSettingWithKey(Constants.receiptV
alidatedKey, toValue: NSNumber(booleanLiteral: newValue))
 }
 }
}

Figure 40: Code example for extending DHSEUserSettings class, adding a new
property representing a Racing Tweets-specific setting.

This structure allows us to turn DHSEUserSettings into the foundation for most
user-related data storage in the app, excluding any kind of imagesv. To that effect,
Racing Tweets defines its own DHSEUserSettings extension, called
DHTdF1UserSettings, which adds an API to read and write many user-facing
settings specific to the app, such as which motorsport categories are enabled,
which language the user prefers their content to be in, whether the Racing Filter
feature should be enabled or not, etc. Even Racing Tweets’ own server’s web
addressvi, is stored here, since it can be changed for debugging reasons. Besides
DHTdF1UserSettings, another class, DHTdF1ServerCommunicator, leverages the
DHSEUserSettings API under wraps to store other kinds of logic. Even though
they’re tied at the storage level, using different singletons to access different
information allows for a clean separation of intents. So, if in the future we switch
DHTdF1ServerCommunicator to use a different storage system for its contents, the
rest of our code won’t change, just this class. This strategy would’ve served us well
in the past, when we decided to place the background-resizing logic into

v. Not by storing their binary data in XML, but by storing their relative path in the filesystem. This was
used to store the current background image set by the user.

vi. It has never made it past being a localhost. Still, we had some fun blurring out its address from
the UI.

94

DHSEUserSettings, since it alreaded pointed to the resized image on disk, and it
allowed for a clean interface. But, since backgrounds are no longer a feature of
Racing Tweets v2.0, we ripped out most of that code.

Figure 41: DHTdF1ServerCommunicator and DHSEUserSettings relationship
diagram.

It’s very important to note though, that when a user updates a setting, this does not
trigger any kind of User Interface update, as the graphic above might imply. The
reason for this is that they’re mostly not necessary: some settings, like changing
which motorsports tweets should be fetched for the user, trigger a full reload of all
the data. So from a logical point of view, all we have to do from the Settings screen
is trigger a data reload, and when the user returns to the timeline View Controller,
that screen’s code will handle the rest. This behavior also applies for a change in the
content’s language, and a change to the status of our Racing Filter. Another type of
settings don’t trigger dramatic changes when changed, but are instead read
constantly wherever they might take effect, which is technically slower, but it saves
developer time. A quick example would be the Show Timestamps setting, which is
checked against every time a tweet is shown to the user in the form of a
UITableViewCell, and depending on the setting, a tweet’s timestamp is either
shown exactly (eg. 09:41:00) or relatively (9h ago), where the latter represents the
standard, user-facing behavior. This means that if the user changes the timestamps
setting from the Setting screen, upon returning to see their list of tweets, they’d be
automatically be refreshed, and the setting would be read and the timestamp value

95

updated accordingly. No other changes required.

5.1.2 Simplicity Caveats

In Engineering, there is no perfect solution. There are highly desirable traits, where
most of them counter-balance each other, meaning good engineering is an act of
balance. Our pursuit of pure simplicity when updating a DHSEUserSettings-backed
setting, and triggering an immediate XML flattening operation and subsequent write
to disk mean we’ll never have to worry about some of our settings not being saved,
nor about a potential difference between what’s on memory and what’s on disk.
This works well most of the time, since the user rarely changes any setting, and
becomes less critical as the user spends more and more time with the app, at which
point they’ve already tuned it to their liking. But there’s a very important case where
this strategy plays completely against us, and the user.

When the app starts right after being installed, it checks for the settings file written
on disk, and if it can’t find it, it triggers a new save with some defaults. This is useful
when making big changes to our settings structure between app updates, since we
can just trigger a default write to disk that adds the new missing settings after the
update. But, when the app starts and begins checking its behavior against all of the
default settings, it also triggers more default writes for settings that haven’t been set
with a default, but that are also missing, which greatly slows down the app startup
process, because contrary to popular belief, writing to flash storage isn’t always
fast[47]. Moreover, a settings change can happen from any thread, so different
threads can potentially schedule a write operation that removes a setting change for
another. This is a great risk that burdens the sole developer in the project with
remembering to always update settings from the User Interface thread.

Figure 42: DHTdF1ServerCommunicator Write Coalescing algorithm.

96

The solution we came up with is to perform Write Coalescing. This means that all
setting changes enqueue a write operation at some point in the future, on a different
thread. This write operation is enqueued further down if a new setting change
happens, so as to encourage multiple setting changes to only require a single write.
Once we hit a certain threshold, a write happens, independently of whether new
setting change happens while we’re writing to disk or not, and if it does happen, the
new changes are enqueued for a second write which, may or may not be delayed if
more changes happen again, like the first time.

This strategy was not implemented in DHSEUserSettings. It was, however,
implemented in the new DHTdF1ServerCommunicator class we spoke about earlier,
as a means of protecting the app against multiple calls for server data from different
threads. In particular, one of the app’s features was a one-line commentary on the
most important Twitter accounts, powered by the our Racing Tweets Servervii. This
information is required from multiple threads, so all of them will request an update of
said information whenever the user requests new tweets. And to prevent multiple
requests, we set up the above structure to coalesce server requests and disk writes
for the same information, with the hope of retro-fitting the new code back into
DHSEUserSettings, for the benefit of both the user and the application’s codebase.

5.2 Expanded Developer's Perspective

5.2.1 DHZESupplier API

Figure 43: Expanded DHZESupplier API.

vii. This allowed us to update one-line comments for specific Twitter accounts, which are visible to
the user, whenever we wanted, without having to release an app update to change them.

97

Because we realise, and admit, that writing a Supplier is the most complex part of
making use of the Standard Engine API, we will add a little more detail, so that you
may better understand how the Supplier callbacks can be used to fully implement
an application like Racing Tweets. To begin with, it’s very important to understand
that not all callbacks within the Supplier API are called the same way. The three
helper methods, -poolSetup;, -poolCleanup; and -clearCurrentData;, are
called, as implemented in the DHSEModularControlUnit class the Engine provides,
serially. This means a Supplier can block the caller’s thread and make sure it has
everything it needs before the next Supplier receives the same call, or, a call to
return new Tickets in the Supplier’s -fetchTicketsSince:withDateReference:
function is made. Specifically, the DHTdF1TwitterSupplier class uses -
poolSetup; to perform OAuth 2.0 Twitter authentication, including a pop-up dialog
asking the user permission to verify the app, either through the official Twitter client,
or via an embedded web browser. Once the OAuth 2.0 token is received, the
Supplier stores it, and unblocks the caller thread, allowing the remaining Suppliers
to go through the same process, and in the case of Racing Tweets, reuse the same
token. If, on the other hand, an OAuth 2.0 token isn’t stored, the Supplier can simply
elect to always return an empty set of Tickets in order to fail gracefully. But a much
better engineering solution would be to make the Control Unit not return the
unauthorized Supplier to the Standard Engine when asked.

There are two more things we’d like to note about what happens in -poolSetup;.
One is that if the authentication process takes far too long, the Standard Engine will
halt the update operation and the user won’t see any new content, because we will
hit our user protection time limit. A possible solution to this would be to place user
authentication outside the Standard Engine Track update loop, if there are multiple
authentications to be performed, or if we just want a cleaner solution. The second
thing is that, for the purposes of Racing Tweets, all Suppliers are essentially a
subclass of DHTdF1TwitterSupplier with different Twitter lists from which they
each pull content. This means our scheme works pretty well, given that we don’t
care which Twitter Supplier is the first one to be called, and that once the first one
gets authorized or rejected, the remaining ones will follow suit, without having to
worry about any kind of multi-threading induced woes.

scrivlnk://396408D4-E597-4044-A4F8-3F76B6A91AFC

98

The -poolCleanup; call happens after the Engine has
finished updating the Track, and is primarily intended for
cleaning up any cached information that won’t be
necessary until the next Track update cycle. In Racing
Tweets, -poolCleanup; is used to clear the cache of
filtered Tickets within the current Pool, because we’ve
already stored them in an array. And to finish with the
Supplier API, -clearCurrentData; is called when the user
leaves the app, to clear out any data that might be needed
when the user is actively looking at the app, but can be
discarded once we’re backgrounded or closed. Specifically,
this API was added with the intention of clearing out the
image cache for the presentation layer, allowing Suppliers
to handle this individually, if needed so. In practice, Racing
Tweets handles image caching in a different way, but the
API remains to allow for future use cases.

Lastly, we’d like to mention an implementation detail that does not affect any
Supplier, but that might make sense to add in this paper. Supplier callbacks (API
function calls) are performed by two separate kinds of objects: Control Units and
Standard Engine instances. Specifically, the serial execution callbacks are made
by the Control Unit, whereas all fetch ticket calls are performed by the
Standard Engine, which aims to extract maximum performance by parallelizing any
calls for new Tickets, which are assumed to be expensive by the API (and rightly
so). This is a minor technicality, since in reality, the Engine does not have direct
access to the Suppliers, but instead, asks the Control Unit for a list of Suppliers it
may query to obtain new Tickets. In our opinion, this was a better solution than
including the Supplier-query logic inside the Control Unit, which is meant to be an
element for the API user to control how the Engine works.

5.2.2 Ticket Presentation

99

Figure 44: Standard Engine prototype, showing both Twitter (top and bottom
Tickets) and Facebook (middle Ticket) content, circa 2014.

Here’s the deal: we were not expecting to talk about how presentation of Tickets is
handled within the Standard Engine. Then again, what’s the point of building such a
complex data engine if not for aiding us in showing information to the user? So
we’re going to go through it briefly, without giving it the copious amounts of details
we’ve given to other areas, like the Supplier API.

To begin with, we’ll start with the DHZETicketPresenter API, which defines the
following protocol:

Language: Objective-C

//
// Created by Dinesh Harjani on 2/7/15.
// Copyright (c) 2015 Dinesh Harjani. All rights reserved.
//

@protocol DHZETicketPresenter <NSObject>

- (UITableViewCell *)cellForTicket:(id<DHZETicket>)ticket
forTableView:(UITableView*)tableView atIndexPath:

100

(NSIndexPath*)indexPath;

- (NSAttributedString *)baseAttributedTextForText:(NSString
*)text;

- (void)refreshCell:(UITableViewCell *)cell forTicket:
(id<DHZETicket>)ticket;

- (void)willDisplayCell:(UITableViewCell *)cell;

- (void)clearData;

@end
Figure 45: DHZETicketPresenter API.

As you can see, the header dates this file back to 2015, a year after the Standard
Engine was deemed finished, and months before Racing Tweets was released.
Most of these methods existed before, but they were bundled within a base
Supplier superclass and hidden from my day-to-day view. Then, when our basic
presentation design began to heavily differ from what we wanted for the first Racing
Tweets release, we defined the Presentation API, integrated it within the Supplier
API, and wrapped our existing basic behavior inside the DHSETicketPresenter
class. The picture above actually shows the code that would eventually be
packaged into the DHSETicketPresenter class in action, with a minor alteration in
the Facebook and Twitter Supplier subclasses defining a different background color
for their UITableViewCell(s). What does this mean for you, if you were to license
the Standard Engine? That you can use the DHSETicketPresenter directly, as long
as you’re sticking with DHSETicket objects to represent your data, and get a great
amount of functionality for free.

To shed some light into the API, we’ll begin with the most important callback, -
cellForTicket:forTableView:atIndexPath:, which is called from the User
Interface layer, and mirrors a similar callback from the UITableViewDataSource
protocol. This callback does not set a UITableViewCell instance for a specific
Ticket, it merely returns one, because UITableViewCell(s) are recycled to reduce
memory fragmentation. Furthermore, this first callback not only looks to recycle a
UITableViewCell using the UITableView’s API, if needed it should also build a
new UITableViewCell and add it to the UITableView’s pool of recyclable cells.
Once we have a valid UITableViewCell for our Ticket, we can call -
refreshCell:forTicket: from the UI layer to actually set up the cell for a specific
Ticket. And lastly, if we need it, we can call -willDisplayCell: if we want
something to happen just before the user sees a UITableViewCell, like an
animation.

101

-clearData; simply mirrors the DHZESupplier API, and isn’t being used. But,
the last callback we haven’t gone through in the Presenter API, is a little bit more
complicated to explain. -baseAttributedTextForText: has its roots on what we
need to do, from the developer’s perspective, to alter how a String is shown. Simple
elements like changing a text’s font, font size and font color can be done for an
entire String. But if we want to do it in a much more granular way, like a social
media app requires, we need to use a different class called NSAttributedString,
a n d i t s m u t a b l e v a r i a n t , N S M u t a b l e A t t r i b u t e d S t r i n g .
NSMutableAttributedString basically works by assigning text properties to
ranges within the given String, so for example, to highlight @dinesharjani in a
t w e e t ’s c o n t e n t s , w e n e e d t o a d d a b o l d a t t r i b u t e t o o u r
NSMutableAttributedString instance in the range corresponding to my
username.

But there’s more: attributes are additive. Meaning that, to set a base font, font
size, font style and font color the entire String, we need to set all of these first, and
then modify the parts that change in respect to the base style. Because if we do it
the other way around, as I discovered the hard way, the last attribute you set
overrides the previous one, no matter what it was. Following our previous
example, if we add the bold attribute to @dinesharjani first and then apply the
common style to a NSMutableAttributedString, which would set the font’s style
to regular, our bold attribute for @dinesharjani would be lost. It makes sense once
you understand how these attributes work, but it doesn’t so much when you’re only
trying to reuse existing code by injecting the new parts and allowing the non-
modified parts to flow around your changes. Instead, this API forced us to turn
around the callback structure for styling UITableViewCell(s), and in order to do so,
given that we didn’t know how many times the base style would need to be applied,
we added that call to the basic API. In practice, that API is not used from the
Presenter’s subclasses; it’s called from other ancilliary classes that have access to
the Presenter, like the Ticket class, or in the case of Racing Tweets, the
DHSETweetEntity class, which represents usernames, hyperlinks and hashtags in a
tweet, and transforms a given NSMutableAttributedString to add its entity’s
attributes.

102

6.Bibliography

103

6.1 References

1. Amadeo, Ron. “The (Updated) History of Android.” Ars Technica, October 31,
2016. https://arstechnica.com/gadgets/2016/10/building-android-a-40000-
word-history-of-googles-mobile-os/.

2. “Intel Tick-Tock Model.” Intel. Accessed January 19, 2018. https://
www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-
general.html.

3. Wu, Qiang. “Making Facebook’s Software Infrastructure More Energy
Efficient with Autoscale | Engineering Blog | Facebook Code,” August 8,
2014. https://code.facebook.com/posts/816473015039157/making-
facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/.

4. Rossi, Chuck. “Rapid Release at Massive Scale.” Facebook Code, August
31, 2017. https://code.facebook.com/posts/270314900139291/rapid-
release-at-massive-scale/.

5. Zhao, Haiping. “HipHop for PHP: Move Fast,” February 2, 2010. https://
www.facebook.com/notes/facebook-engineering/hiphop-for-php-move-fast/
280583813919/.

6. Apache. “Apache Thrift - Home.” Accessed January 16, 2018. http://
thrift.apache.org/.

7. Figuière, Michaël. “What Is Facebook’s Architecture? - Quora,” December 26,
2014. https://www.quora.com/What-is-Facebooks-architecture-6.

8. Vajgel, Peter. “Needle in a Haystack: Efficient Storage of Billions of Photos.”
Facebook Code, April 30, 2009. https://code.facebook.com/posts/
685565858139515/needle-in-a-haystack-efficient-storage-of-billions-of-
photos/.

9. McCormick, Rich. “Facebook’s Prototype Cold Storage System Uses 10,000
Blu-Ray Discs to Hold a Petabyte of Data.” The Verge, January 29, 2014.
https://www.theverge.com/2014/1/29/5359628/facebook-blu-ray-storage-
system-uses-10000-discs-for-petabyte-data.

10. Luckerson, Victor. “How Twitter Slayed the Fail Whale.” Time, November 6,
2013. http://business.time.com/2013/11/06/how-twitter-slayed-the-fail-
whale/.

https://arstechnica.com/gadgets/2016/10/building-android-a-40000-word-history-of-googles-mobile-os/
https://arstechnica.com/gadgets/2016/10/building-android-a-40000-word-history-of-googles-mobile-os/
https://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
https://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
https://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
https://code.facebook.com/posts/816473015039157/making-facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/
https://code.facebook.com/posts/816473015039157/making-facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://www.facebook.com/notes/facebook-engineering/hiphop-for-php-move-fast/280583813919/
https://www.facebook.com/notes/facebook-engineering/hiphop-for-php-move-fast/280583813919/
https://www.facebook.com/notes/facebook-engineering/hiphop-for-php-move-fast/280583813919/
http://thrift.apache.org/
http://thrift.apache.org/
https://www.quora.com/What-is-Facebooks-architecture-6
https://code.facebook.com/posts/685565858139515/needle-in-a-haystack-efficient-storage-of-billions-of-photos/
https://code.facebook.com/posts/685565858139515/needle-in-a-haystack-efficient-storage-of-billions-of-photos/
https://code.facebook.com/posts/685565858139515/needle-in-a-haystack-efficient-storage-of-billions-of-photos/
https://www.theverge.com/2014/1/29/5359628/facebook-blu-ray-storage-system-uses-10000-discs-for-petabyte-data
https://www.theverge.com/2014/1/29/5359628/facebook-blu-ray-storage-system-uses-10000-discs-for-petabyte-data
http://business.time.com/2013/11/06/how-twitter-slayed-the-fail-whale/
http://business.time.com/2013/11/06/how-twitter-slayed-the-fail-whale/

104

11. “Google I/O.” Wikipedia, October 21, 2017. https://en.wikipedia.org/w/
index.php?title=Google_I/O&oldid=806320060.

12. Asana. “Use Asana to Track Your Team’s Work & Manage Projects · Asana.”
Asana. Accessed January 16, 2018. https://asana.com/.

13. Atlassian. “Jira | Issue & Project Tracking Software.” Atlassian. Accessed
January 16, 2018. https://www.atlassian.com/software/jira.

14. Ari, Grant, and Zhang Kang. “Airlock - Facebook’s Mobile A/B Testing
Framework.” Facebook Code, June 9, 2014. https://code.facebook.com/
posts/520580318041111/airlock-facebook-s-mobile-a-b-testing-framework/.

15. “[OT] Hi All, Could You Help Me Beta-Test My F1-Related IOS App? • r/
Formula1.” reddit. Accessed January 19, 2018. https://www.reddit.com/r/
f o r m u l a 1 / c o m m e n t s / 7 f w a 2 h /
ot_hi_all_could_you_help_me_betatest_my_f1related/.

16. “Obama: Not Every Problem Has Military Solution.” USA TODAY, May 28,
2014. https://www.usatoday.com/story/news/2014/05/28/obama-foreign-
policy-west-point-commencement-address/9661593/.

17. “Obama at West Point: ‘Becase We Have the Best Hammer Does Not Mean
That Every Probleim Is a Nail’ - YouTube,” May 28, 2014. https://
www.youtube.com/watch?v=f7d1BBDHa7s.

18. “Tweetbot: Fix These Things and I Will Love You More.,” April 27, 2012.
https://www.adendavies.com/tweetbot-fix-these-things-and-i-will-love-you-
more/.

19. “Rate Limiting — Twitter Developers.” Accessed January 16, 2018. https://
developer.twitter.com/en/docs/basics/rate-limiting.

20. “3D Touch - IOS - Apple Developer.” Accessed January 20, 2018. https://
developer.apple.com/ios/3d-touch/.

21. “Mastodon.” Mastodon hosted on mastodon.social. Accessed January 18,
2018. https://mastodon.social/about.

22. “Micro.Blog.” Accessed January 18, 2018. https://micro.blog/.

23. S Jackson. Apple Steve Jobs The Crazy Ones - NEVER BEFORE AIRED
1997 - (Original Post) . Accessed January 16, 2018. https://
www.youtube.com/watch?v=8rwsuXHA7RA&feature=youtu.be.

https://en.wikipedia.org/w/index.php?title=Google_I/O&oldid=806320060
https://en.wikipedia.org/w/index.php?title=Google_I/O&oldid=806320060
https://asana.com/
https://www.atlassian.com/software/jira
https://code.facebook.com/posts/520580318041111/airlock-facebook-s-mobile-a-b-testing-framework/
https://code.facebook.com/posts/520580318041111/airlock-facebook-s-mobile-a-b-testing-framework/
https://www.reddit.com/r/formula1/comments/7fwa2h/ot_hi_all_could_you_help_me_betatest_my_f1related/
https://www.reddit.com/r/formula1/comments/7fwa2h/ot_hi_all_could_you_help_me_betatest_my_f1related/
https://www.reddit.com/r/formula1/comments/7fwa2h/ot_hi_all_could_you_help_me_betatest_my_f1related/
https://www.usatoday.com/story/news/2014/05/28/obama-foreign-policy-west-point-commencement-address/9661593/
https://www.usatoday.com/story/news/2014/05/28/obama-foreign-policy-west-point-commencement-address/9661593/
https://www.youtube.com/watch?v=f7d1BBDHa7s
https://www.youtube.com/watch?v=f7d1BBDHa7s
https://www.adendavies.com/tweetbot-fix-these-things-and-i-will-love-you-more/
https://www.adendavies.com/tweetbot-fix-these-things-and-i-will-love-you-more/
https://developer.twitter.com/en/docs/basics/rate-limiting
https://developer.twitter.com/en/docs/basics/rate-limiting
https://developer.apple.com/ios/3d-touch/
https://developer.apple.com/ios/3d-touch/
https://mastodon.social/about
https://micro.blog/
https://www.youtube.com/watch?v=8rwsuXHA7RA&feature=youtu.be
https://www.youtube.com/watch?v=8rwsuXHA7RA&feature=youtu.be

105

24. Siracusa, John. “Hypercritical: Archive: All Articles.” Accessed January 16,
2018. http://hypercritical.co/archive/all/.

25. “Exponential Backoff.” Wikipedia, November 28, 2017. https://
en.wikipedia.org/w/index.php?title=Exponential_backoff&oldid=812544442.

26. Bohn, Dieter. “Twitter Dictates Third-Party App Form and Function in New
API, Gives Six Months to Comply.” The Verge, August 16, 2012. https://
www.theverge.com/2012/8/16/3248079/twitter-limits-app-developers-
control.

27. Viticci, Federico. “Tweetbot for IPhone Review,” April 4, 2011. https://
www.macstories.net/news/tweetbot-for-iphone-review/.

28. Harjani, Dinesh. “Week 3 - Gap Technology (Part 1).” Dinesh Harjani’s
thoughts. Accessed January 16, 2018. http://dinesharjani.com/post/
48561548010/week-3-gap-technology-part-1.

29. “RSS.” Wikipedia, December 15, 2017. https://en.wikipedia.org/w/
index.php?title=RSS&oldid=815481176.

30. EverySteveJobsVideo. Steve Jobs Previews OS X Leopard & Mac Pro -
WWDC (2006). Accessed January 16, 2018. https://www.youtube.com/
watch?v=fnWcmtCJtOc&feature=youtu.be&t=28m43s.

31. “Shia Labeouf Snl GIF - Find & Share on GIPHY.” Accessed January 20,
2018. https://giphy.com/gifs/reactiongifs-ujUdrdpX7Ok5W.

32. “Using Text Kit to Draw and Manage Text.” Accessed January 18, 2018.
https://developer.apple.com/library/content/documentation/StringsTextFonts/
C o n c e p t u a l / Te x t A n d We b i P h o n e O S / C u s t o m Te x t P r o c e s s i n g /
CustomTextProcessing.html.

33. Harjani, Dinesh. “iOS - How to Properly Resize Textview with ExclusionPaths
inside of Table Header View - Stack Overflow,” July 24, 2017. https://
stackoverflow.com/questions/41845443/how-to-properly-resize-textview-
with-exclusionpaths-inside-of-table-header-view/45280820.

34. Harjani, Dinesh. “iOS - UITextView: Disable Selection, Allow Links - Stack
Overflow,” August 3, 2017. https://stackoverflow.com/questions/36198299/
uitextview-disable-selection-allow-links/45480781.

35. “PaintCode - Turn Your Drawings into Objective-C or Swift Drawing Code.”
Accessed January 16, 2018. https://www.paintcodeapp.com/.

http://hypercritical.co/archive/all/
https://en.wikipedia.org/w/index.php?title=Exponential_backoff&oldid=812544442
https://en.wikipedia.org/w/index.php?title=Exponential_backoff&oldid=812544442
https://www.theverge.com/2012/8/16/3248079/twitter-limits-app-developers-control
https://www.theverge.com/2012/8/16/3248079/twitter-limits-app-developers-control
https://www.theverge.com/2012/8/16/3248079/twitter-limits-app-developers-control
https://www.macstories.net/news/tweetbot-for-iphone-review/
https://www.macstories.net/news/tweetbot-for-iphone-review/
http://dinesharjani.com/post/48561548010/week-3-gap-technology-part-1
http://dinesharjani.com/post/48561548010/week-3-gap-technology-part-1
https://en.wikipedia.org/w/index.php?title=RSS&oldid=815481176
https://en.wikipedia.org/w/index.php?title=RSS&oldid=815481176
https://www.youtube.com/watch?v=fnWcmtCJtOc&feature=youtu.be&t=28m43s
https://www.youtube.com/watch?v=fnWcmtCJtOc&feature=youtu.be&t=28m43s
https://giphy.com/gifs/reactiongifs-ujUdrdpX7Ok5W
https://developer.apple.com/library/content/documentation/StringsTextFonts/Conceptual/TextAndWebiPhoneOS/CustomTextProcessing/CustomTextProcessing.html
https://developer.apple.com/library/content/documentation/StringsTextFonts/Conceptual/TextAndWebiPhoneOS/CustomTextProcessing/CustomTextProcessing.html
https://developer.apple.com/library/content/documentation/StringsTextFonts/Conceptual/TextAndWebiPhoneOS/CustomTextProcessing/CustomTextProcessing.html
https://stackoverflow.com/questions/41845443/how-to-properly-resize-textview-with-exclusionpaths-inside-of-table-header-view/45280820
https://stackoverflow.com/questions/41845443/how-to-properly-resize-textview-with-exclusionpaths-inside-of-table-header-view/45280820
https://stackoverflow.com/questions/41845443/how-to-properly-resize-textview-with-exclusionpaths-inside-of-table-header-view/45280820
https://stackoverflow.com/questions/36198299/uitextview-disable-selection-allow-links/45480781
https://stackoverflow.com/questions/36198299/uitextview-disable-selection-allow-links/45480781
https://www.paintcodeapp.com/

106

36. Harjani, Dinesh. “Update #17: What’s in Version 1.0.4?” Dinesh Harjani’s
thoughts. Accessed January 16, 2018. http://dinesharjani.com/post/
134996262175/update-17-whats-in-version-1-0-4.

37. “ Tw e e t s h o t . ” P ro d u c t H u n t , D e c e m b e r 2 9 , 2 0 1 4 . h t t p s : / /
www.producthunt.com/posts/tweetshot.

38. “Air France Flight 447.” Wikipedia, January 16, 2018. https://
en.wikipedia.org/wiki/Air_France_Flight_447#Final_report.

39. “Social Media Marketing & Management Dashboard - Hootsuite.” Accessed
January 20, 2018. https://hootsuite.com/.

40. Warren, Tom. “Windows’ Best Twitter Client Is about to Die.” The Verge,
March 5, 2014. https://www.theverge.com/2014/3/5/5473110/metrotwit-for-
windows-end-of-support.

41. Muzaffar, Ali. “Using Concurrency to Improve Speed and Performance in
Android.” Medium (blog), January 2, 2016. https://medium.com/
@ali.muzaffar/using-concurrency-and-speed-and-performance-on-android-
d00ab4c5c8e3.

42. dotnet-bot. “Threading Model.” Accessed January 20, 2018. https://
docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-
model.

43. “Ray Wenderlich | Tutorials for iPhone / iOS Developers and Gamers.”
Accessed January 16, 2018. https://www.raywenderlich.com/.

44. Timmer, John. “Finding the Higgs? Good News. Finding Its Mass? Not so
Good.” Ars Technica, February 19, 2013. https://arstechnica.com/science/
2013/02/finding-the-higgs-good-news-finding-its-mass-not-so-good/.

45. raulalicante. “TdV6, tweets de F1 y del deporte del motor en tu iPhone.”
TodoiPhone.net (blog), November 10, 2015. https://www.todoiphone.net/
tdv6-f1-motor-iphone-ipad/.

46. Brodkin, Jon. “FBI Security Expert: Apple Are ‘Jerks’ about Unlocking
Encrypted Phones.” Ars Technica, January 11, 2018. https://
arstechnica.com/tech-policy/2018/01/fbi-security-expert-apple-are-jerks-
about-unlocking-encrypted-phones/.

47. Google Developers. Google I/O 2010 - Writing Zippy Android Apps, 2010.
https://www.youtube.com/watch?v=c4znvD-7VDA&feature=youtu.be.

http://dinesharjani.com/post/134996262175/update-17-whats-in-version-1-0-4
http://dinesharjani.com/post/134996262175/update-17-whats-in-version-1-0-4
https://www.producthunt.com/posts/tweetshot
https://www.producthunt.com/posts/tweetshot
https://en.wikipedia.org/w/index.php?title=Air_France_Flight_447&oldid=820787380
https://en.wikipedia.org/w/index.php?title=Air_France_Flight_447&oldid=820787380
https://hootsuite.com/
https://www.theverge.com/2014/3/5/5473110/metrotwit-for-windows-end-of-support
https://www.theverge.com/2014/3/5/5473110/metrotwit-for-windows-end-of-support
https://medium.com/@ali.muzaffar/using-concurrency-and-speed-and-performance-on-android-d00ab4c5c8e3
https://medium.com/@ali.muzaffar/using-concurrency-and-speed-and-performance-on-android-d00ab4c5c8e3
https://medium.com/@ali.muzaffar/using-concurrency-and-speed-and-performance-on-android-d00ab4c5c8e3
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model
https://www.raywenderlich.com/
https://arstechnica.com/science/2013/02/finding-the-higgs-good-news-finding-its-mass-not-so-good/
https://arstechnica.com/science/2013/02/finding-the-higgs-good-news-finding-its-mass-not-so-good/
https://www.todoiphone.net/tdv6-f1-motor-iphone-ipad/
https://www.todoiphone.net/tdv6-f1-motor-iphone-ipad/
https://arstechnica.com/tech-policy/2018/01/fbi-security-expert-apple-are-jerks-about-unlocking-encrypted-phones/
https://arstechnica.com/tech-policy/2018/01/fbi-security-expert-apple-are-jerks-about-unlocking-encrypted-phones/
https://arstechnica.com/tech-policy/2018/01/fbi-security-expert-apple-are-jerks-about-unlocking-encrypted-phones/
https://www.youtube.com/watch?v=c4znvD-7VDA&feature=youtu.be

107

	Introduction
	Preface
	How Is Complexity Solved?
	How Is Architecture Reflected In Our Industry?
	The Effects Of Poor Software Architecture
	What Is Software Architecture, Then?

	Case Study: Racing Tweets's Architecture
	What Is Racing Tweets?
	Layers
	Timeline
	Navigation
	Settings Screen
	Gluing It All Together

	Standard Engine
	Component Overview
	Requirements / Features
	Logical Coalescing
	Time-awareness
	Multi-threading & Responsiveness
	Multi-queued
	Gap Support
	Bulletproof
	User Protection
	Highly Extensible
	User Interface Customization
	Developer-focused
	Adaptable
	Track-based Supplier Filtering

	The Developer's Perspective
	Data Items
	Data Source
	Engine Control
	View Controller API

	Looking Down (Pool Cycle)

	Grab Bag
	Self-Sizing UITableViewCell(s)
	Aspect-ratio consistent UIImageView(s)
	Text flowing around UIImageView(s)
	Hacking UITextView to not accept user input
	Custom-Drawn UIView(s)
	Asynchronous background loading of UIImageView(s)
	UIImageView Cache(s)
	Tweetshot(s)

	The Closing
	What Does Software Architecture's Future Look Like?
	Racing Tweets' Future
	By the way

	Annex I: Racing Tweets' Story
	WPF Origins
	What Happened?
	The Revival
	But, What Was Racing Tweets all About?
	Phoenix Rising

	Annex II: More On Racing Tweets' Tech
	Shared State
	Settings Management
	Simplicity Caveats

	Expanded Developer's Perspective
	DHZESupplier API
	Ticket Presentation

	Bibliography
	References

