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ABSTRACT 

Hemos evaluado la validez del llamado balance de Sverdrup en el Atlántico este. 

Utilizando datos del modelo numérico Oceanic General Circulation Model of the 

Earth-Simulator (OFES), se calcula el transporte meridional de agua de dos 

formas distintas: integrando datos de velocidad del modelo numérico (transporte 

del modelo) y mediante el enfoque teórico del balance de Sverdrup (transporte de 

Sverdrup), con datos del forzamiento del viento del modelo. El balance de Sverdrup 

usa el intercambio de momento del viento con la superficie marina como único 

forzamiento y, por lo tanto, describe los fenómenos cuyo forzamiento principal es 

el viento. Comparando los transportes del modelo y de Sverdrup, hemos 

encontrado áreas donde el principal forzamiento no es el viento. Específicamente, 

nos hemos centrado en una de estas áreas no dominadas por el viento, una banda 

de aproximadamente 100 km de ancho cerca de la costa africana. Con el análisis 

del ciclo estacional de los transportes de Sverdrup y del modelo a 30ºN, al lado 

de la costa africana, hemos identificado la Canary Intermediate Poleward 

Undercurrent (CIPU), que se sitúa en esa banda, como no dominada por el viento, 

aunque estos resultados deben ser validados por datos observacionales. 

We have assessed the validity of the approach known as the Sverdrup balance in 

the eastern Atlantic. Using numeric model data from the Oceanic General 

Circulation Model of the Earth-Simulator (OFES), meridional transport of water 

is computed in two different ways: integrating velocity data from the numeric 

model (model transport) and by means of the Sverdrup balance theoretical 

approach (Sverdrup transport), with the wind-stress model data. The Sverdrup 

balance is only forced by the wind, and therefore it only describes wind-driven 

phenomena. By comparing the model and the Sverdrup transports, we have found 

areas where the main forcing is not the wind. Specifically, we have focused our 

analysis in one of these areas that are not driven by the wind, a strip of 

approximately 100 km wide close to the African coast. With the analysis of the 

model and the Sverdrup transports’ seasonal cycle at 30ºN, next to the African 

coast, we have identified the Canary Intermediate Poleward Undercurrent 

(CIPU), that is in this strip, as not driven by the winds, although these results 

should be validated with observational data.  
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1.  INTRODUCTION  

En la oceanografía física, la circulación general juega un papel determinante 

debido a su importancia en el transporte de calor, agua dulce, nutrientes y otros 

componentes del océano. Particularmente, el transporte meridional, tiene una 

influencia decisiva en el transporte de calor oceánico, y por ello en el clima global 

y los ecosistemas marinos. En el océano Atlántico, la Atlantic Meridional 

Overturning Circulation (AMOC) contribuye al clima del noroeste de Europa, 

favoreciendo inviernos más suaves que en el noroeste americano a las mismas 

latitudes. Cambios en la AMOC podrían ocasionar cambios en el clima, por lo 

que es necesario seguir profundizando en nuestros conocimientos sobre la AMOC, 

para entender su comportamiento y poder hacer predicciones de posibles 

variaciones en el futuro. La contribución de este trabajo al conocimiento de la 

AMOC se hace por medio de la relación teórica entre el intercambio de momento 

del viento con la superficie oceánica y el transporte meridional, el balance de 

Sverdrup. El balance de Sverdrup asume que los océanos intercambian momento 

únicamente con el viento, y esto nos permite utilizarlo como herramienta para 

identificar fenómenos cuyo principal forzamiento es el viento. 

In physical oceanography, general circulation plays a determining role due to its 

importance in the global transport of heat, fresh water, nutrients and other ocean 

components. Particularly, meridional transport, or north-south/south-north 

water transport, plays a determining role in oceanic heat transport, and therefore 

on the global climate and marine ecosystems. In the Atlantic Ocean, the Atlantic 

Meridional Overturning Circulation (AMOC) contributes to the north western 

Europe’s mild winters (Seager, et al., 2002). Changes in the AMOC could alter 

the climate, so it is necessary to study the AMOC in order to understand its 

behavior and monitor it to make predictions of its possible behavior in the future. 

The well-known Sverdrup balance (Sverdrup, 1947) is a theoretical relationship 

between the momentum transference of the wind to the surface of the ocean 

(wind-stress) and the meridional transport. From here onwards I will refer to the 

transport calculated from the Sverdrup balance as Sverdrup transport. The 

Sverdrup balance assumes that the wind is the only stress source, the wind-stress 

interchanges momentum with the ocean and thus drives the ocean dynamics. It 
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implies an advantage over other models, because instead of having to introduce 

velocity measures in full ocean volume, we only need wind measurements on the 

ocean surface, which we can afford using satellites. Even so, this is not the only 

utility of the theory: it is also possible to obtain information on which parameters 

of the ocean dynamics control the different oceanic regimes, comparing its 

predictions with experimental data. Discrepancies between Sverdrup transport 

and real transport allows us to find phenomena whose dynamics are not 

dominated by the wind.  

There is a wide variety of studies on the AMOC, although in general its behavior 

is better known on the western Atlantic than on the east due to historical reasons. 

Hence, the role of the eastern Atlantic on the meridional transport is still being 

discussed in the scientific community and it must continue being studied. Recent 

studies (Velez-Belchí, et al., 2017) have found that the CIPU determines changes 

in the AMOC: however, the mechanisms of this poleward flow are still unclear. 

Unfortunately, there is no enough data to carry out an observational study and 

as an alternative we can use numeric models. Oceanic numeric models are useful 

for qualitative analyses, so they could give us information about ocean dynamics. 

Current numeric models solve numerically the general equations that describe the 

dynamics of the oceans. Therefore, it is possible to use them to compute transports 

and consider them as an approximation to reality to understand ocean 

mechanisms. 

In this work, we use oceanic numeric model data together with to the Sverdrup 

balance theoretical approach to study the dynamics of the CIPU.  
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2.  OBJECTIVES 

El propósito de este trabajo es el de ampliar nuestro conocimiento de los 

mecanismos que dirigen la CIPU. Para lograrlo, estimamos la validez de la teoría 

de Sverdrup en un área del Atlántico este, lo que nos da información sobre la 

importancia que el forzamiento del viento tiene sobre la dinámica oceánica y, por 

lo tanto, sobre la CIPU. Utilizamos datos del modelo numérico OFES (Sasaki, et 

al., 2008) por un lado, para obtener el transporte meridional del modelo, y por 

otra parte para obtener el transporte de Sverdrup, y finalmente compararlos. 

Comparando ambos transportes encontramos las zonas en las que predomina la 

dinámica de Sverdrup y en las que hay otros mecanismos que la teoría de Sverdrup 

no considera. Finalmente, usamos esta comparación para determinar la 

importancia del forzamiento del viento en la dinámica del CIPU por medio del 

análisis estacional. 

The purpose of this work is to expand our knowledge of the mechanisms that 

drives the CIPU. To achieve that, we estimate the validity of the Sverdrup theory 

in an area of the eastern Atlantic, which gives us information about the 

importance that wind forcing has on the ocean dynamics, and therefore, on the 

CIPU. We use data of the OFES numeric model (Sasaki, et al., 2008) on one hand 

to obtain the model meridional transport, and on the other, to obtain the 

Sverdrup transport and finally compare them. Comparing both transports we find 

the areas where the Sverdrup dynamics predominate and the areas where there 

are other mechanisms that the Sverdrup theory does not consider. Finally, we use 

this comparison to determine the wind-stress importance on the CIPU’s dynamics 

by means of the seasonal analysis. 

These are the steps we will follow to achieve the above-mentioned objectives: 

- To find out the dependence of the Sverdrup transport with the depth. 

- To find out the time dependence of the averaged field variables in the 

Sverdrup transport’s accuracy. 

- To locate the areas in the eastern Atlantic in which the meridional 

transport is well described by the Sverdrup transport, as well as the areas 

which are not.  

- To study the seasonal variability of the model and the Sverdrup transport.   
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3.  M ETHODOLOGY 

El transporte meridional promediado a lo largo del tiempo, entre la superficie del 

mar y una profundidad “𝑑”, se puede aproximar mediante el transporte Sverdrup 

para: 

- Gran escala. 

- Latitudes medias. 

- Fluido incompresible. 

- Teoría de la viscosidad de Boussinesq para el tensor de rozamiento. 

- Rozamiento horizontal despreciable respecto al vertical. 

- Asumiendo equilibrio hidrostático en el eje z. 

- Fluido estacionario. 

- Aplicando varias restricciones en las condiciones de contorno. 

- Océano baroclínico. 

- Asumiendo que el rozamiento solo es introducido por el viento. 

Con la finalidad de identificar si la dinámica de Sverdrup predomina o no en la 

CIPU, compararemos el trasporte del modelo calculado por medio de la expresión 

( 3-37 ) y el transporte de Sverdrup por medio de la expresión ( 3-38 ) utilizando 

datos del modelo OFES con resoluciones espaciales de 0.1º en longitudes y 

latitudes, que son datos de promedios mensuales durante nueve años, desde agosto 

de 1999 hasta julio de 2009. 

3.1  Theoretical background 1 

3.1.1 Momentum equation 

Starting from the Eulerian equation of motion that gives the relationship between 

the field variables 𝜌 (scalar field of density) and 𝑽 (vector field of velocity) in a 

fluid. We have an equation equivalent to the principle of linear momentum 

                                      
1 The development of this subsection has been extracted from (Schwind, 1980) and (Sverdrup, 

1947). 
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conservation, for geophysical purpose, with reference to a coordinate system fixed 

to the earth at constant angular velocity 𝛀: 

𝜌
𝜕𝑽

𝜕𝑡
+ 𝜌(𝑽 · 𝛁)𝑽 + 𝜌𝛀𝑥(𝛀𝑥𝒓) + 2𝜌𝛀𝑥𝑽 = 𝑭𝒗 ( 3-1 ) 

where 𝒓 = (𝑥, 𝑦, 𝑧), 𝑭𝒗 is the net force per unit of volume and it can be expressed 

in terms of the absolute gravitational potential −𝜌𝛁𝝌𝒂 and the surface forces per 

unit volume 𝛁 · ℘. 

𝜌
𝜕𝑽

𝜕𝑡
+ 𝜌(𝑽 · 𝛁)𝑽 + 𝜌𝛀𝑥(𝛀𝑥𝒓) + 2𝜌𝛀𝑥𝑽 = 𝛁 · ℘ − 𝜌𝛁𝝌𝒂 ( 3-2 ) 

Grouping terms: 

𝒈 = −𝛁𝝌𝒂 − 𝛀𝑥(𝛀𝑥𝒓) ( 3-3 ) 

We will take the 𝑧 axis of our relative coordinate system in the direction of −𝒈, 

the local down, the direction of the plumb. 

The surface forces per unit volume can be written in terms of pressure 𝑝 and the 

viscous stress tensor 𝝉: 

𝜌
𝜕𝑽

𝜕𝑡
+ 𝜌(𝑽 · 𝛁)𝑽 + 2𝜌𝛀𝑥𝑽 = −𝛁𝑝 + 𝛁 · 𝝉 + 𝜌𝒈 ( 3-4 ) 

In order to understand the different terms, making use of the continuity equation 

𝐷𝜌

𝐷𝑡
+ 𝜌𝛁 · 𝑽 = 0 ( 3-5 ) 

multiplying ( 3-5 ) by 𝑽 and adding the result to ( 3-4 ) we obtain: 

𝜕𝜌𝑽

𝜕𝑡
= −𝛁 · 𝜌𝑽𝑽 − 2𝜌𝛀𝑥𝑽 − 𝛁𝑝 + 𝛁 · 𝝉 + 𝜌𝒈 ( 3-6 ) 

where: 

• 
𝜕𝜌𝑽

𝜕𝑡
 is the local time rate of increase of momentum, per unit volume of 

fluid. 
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• −𝛁 · 𝜌𝑽𝑽 is the time rate of momentum gain due to advection, per unit 

volume. 

• −2𝜌𝛀𝑥𝑽 is the time rate of momentum gain due to Coriolis force, per unit 

volume. 

• −𝛁𝑝 is the time rate of momentum gain due to the action of pressure force, 

per unit volume. 

• 𝛁 · 𝝉 is the time rate of momentum gain due to the action of viscous forces, 

per unit volume. 

• 𝜌𝒈 is the time rate of momentum gain due to the action of the gravity, 

per unit volume. 

The focus of the discussion now is the 𝛁 · 𝝉 factor since it is not easy to describe 

the viscous stress tensor (𝝉 ≡ 𝜏𝑖𝑗). 

3.1.2 Viscous stress tensor and Navier-Stokes equation 

A general form for the viscous stress tensor when there is relative motion between 

different parts of the fluid and thus internal friction occurs, must meet two 

conditions. First, it must be dependent on the space derivatives of the velocity, 

and 𝜏𝑖𝑗 cannot contain terms that do not depend on these derivatives since it 

must vanish for 𝑽 uniform. And second, 𝜏𝑖𝑗 must vanish for uniformly rotating 

fluids, as there will be no internal friction acting in this kind of motion. According 

to Eckart (1947), the general expression for 𝜏𝑖𝑗 is: 

𝜏𝑖𝑗 = 𝜇 (
𝜕𝑉𝑖

𝜕𝑥𝑗
+

𝜕𝑉𝑗

𝜕𝑥𝑖
) + 𝜇′𝛿𝑖𝑗

𝜕𝑉𝑘

𝜕𝑥𝑘
 ( 3-7 ) 

where 𝜇 and 𝜇′ are dynamic shear and bulk viscosity respectively, and they are 

not completely independent. Applying the second law of thermodynamic: 

𝜇

𝜌
≥ 0                    

𝜇′

𝜌
≥ −

2

3

𝜇

𝜌
 ( 3-8 ) 

The Navier-Stokes expression for 𝜏𝑖𝑗 is the limiting case when: 

𝜇′

𝜌
= −

2

3

𝜇

𝜌
 ( 3-9 ) 

This result yields to the Navier-Stokes stress tensor:  
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𝜏𝑖𝑗 = 𝜇 (
𝜕𝑉𝑖

𝜕𝑥𝑗
+

𝜕𝑉𝑗

𝜕𝑥𝑖
) −

2

3
𝜇𝛿𝑖𝑗

𝜕𝑉𝑘

𝜕𝑥𝑘
 ( 3-10 ) 

Differentiating it, equation ( 3-4 ) becomes the general Navier-Stokes equation: 

𝜌
𝜕𝑽

𝜕𝑡
+ 𝜌(𝑽 · 𝛁)𝑽 + 2𝜌𝛀𝑥𝑽 = −𝛁𝑝 + 𝜇𝛁𝟐𝑽 +

1

3
𝜇𝛁(𝛁 · 𝑽) + 𝜌𝒈 ( 3-11 ) 

In physical oceanography, it is often assumed that the fluid is incompressible 

since it is observed that oceans have almost this behavior. An incompressible fluid 

means that the field of velocities accomplish that 𝛁 · 𝑽 = 0, which leads to the 

result: 

𝜕𝑽

𝜕𝑡
+ (𝑽 · 𝛁)𝑽 + 2𝛀𝑥𝑽 = −

1

𝜌
𝛁𝑝 + 𝜈𝛁𝟐𝑽 + 𝒈 ( 3-12 ) 

where 𝜈 =
𝜇

𝜌
 is the kinematic viscosity. 

3.1.3 Field variables 

According to ( 3-12 ) we have four independent variables (𝑥, 𝑦, 𝑧, 𝑡), five 

dependent variables or unknowns (𝑢, 𝑣, 𝑤, 𝜌 , 𝑝) and three equations. In order to 

have a deterministic set of equations, we need at least two more equations to have 

five equations and five unknowns, where 𝑢, 𝑣 and 𝑤 are the meridional, zonal2 

and radial components of the velocity respectively. 

Two equations also available are the continuity equation (conservation of mass), 

which for incompressible flow is: 

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑥
+ 𝑣

𝜕𝜌

𝜕𝑦
+ 𝑤

𝜕𝜌

𝜕𝑧
= 0 ( 3-13 ) 

And the conservation of volume: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 ( 3-14 ) 

If incompressibility is not assumed, then we have the three components of the 

Navier-Stokes equation ( 3-11 ) and the continuity equation ( 3-5 ). We have four 

                                      
2 Longitudinal (west-east) component of velocity. 
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equations and five independent variables, so it is needed to add another equation, 

the equation of state: 

𝜌 = 𝜌(𝑠, 𝑇, 𝑝) ( 3-15 ) 

where 𝑠 is salinity and 𝑇 is temperature. But the equation of state introduces 

two more unknowns, then two more equations are needed. By introducing the 

conservation of salt and the conservation of heat we reach the basic equations of 

dynamical oceanography. Theoretically, they can be solved if all initial and 

boundary conditions are given. 

3.1.4 Turbulence, statistical treatment and time-averaged equations 

In fluid dynamics, turbulence or turbulent flow is characterized by the stochastic 

behavior of instantaneous velocities. For this reason, a deterministic approach is 

impossible, so recognizing and analyzing its statistical properties becomes useful. 

Ocean dynamics show turbulence, that is, oceans manifest random fluctuations 

in the velocity field. In practice, we must make measurements of our field 

variables, but we cannot measure them with accuracy at each point and moment. 

Therefore, we are more able to study large size and time scale phenomena rather 

than fine details and small fluctuations on the ocean parameters, and those are 

the ideas behind the use of the statistical analysis. 

Now that the importance of this procedure is understood, we are interested in 

the mean values of the variables. It will be useful to calculate temporal averages 

of the fluid dynamics equations that have been previously presented. These 

averages must be taken over a longer time than turbulence fluctuations and 

shorter than the fluctuations of the phenomenon we are interested in. 

The Reynolds number represents the ratio between inertial forces to the viscous 

forces: 

𝑁𝑅 =
𝐿𝑉

𝜈
 ( 3-16 ) 

where 𝐿 is the characteristic length, 𝑉 the characteristic velocity and 𝜈 is the 

kinematic viscosity. Turbulent flow implies high Reynolds number. For regular 

conditions in large scale ocean dynamics, the characteristic variables are: 
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Length scale (𝐿) ~106𝑚 

Horizontal velocity (𝑈, 𝑉) ~1 𝑚/𝑠 

Vertical velocity (𝑊) ~10−3𝑚/𝑠 

Depth (𝐻) ~104𝑚 

Time scale (𝐿/𝑈) ~106𝑠 

Kinematic viscosity (𝜈) ~10−3𝑚2/𝑠 

Reynolds number (𝑁𝑅) ~109 
Table 1: Characteristic variables 

Averaging over time the momentum equation ( 3-6 ) corrected for incompressible 

fluid, we have the Reynolds equation for incompressible, turbulent motion: 

𝐷𝑉̅𝑖

𝐷𝑡
+ 𝜖𝑖𝑗𝑘f𝑗𝑉̅𝑘 = −

1

𝜌

∂p̅

∂x𝑖
+

𝜇

𝜌

∂2𝑉̅𝑖

∂x𝑗
2 + 𝑔𝛿𝑖3 −

1

𝜌

𝜕

𝜕𝑥𝑗
(𝜌𝑉𝑖

′𝑉𝑗
′̅̅ ̅̅ ̅̅ ) ( 3-17 ) 

where 𝑓 = 2Ωsin (𝜑) (𝜑 is the latitude taken positive to the north of the equator), 

𝑓𝑤 have been neglected due to scale analysis (Table 1), and: 

𝜖𝑖𝑗𝑘 = {

1 𝑓𝑜𝑟 (𝑖 = 2 , 𝑘 = 1)

−1 𝑓𝑜𝑟 (𝑖 = 1 , 𝑘 = 2)

0 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
 ( 3-18 ) 

It is remarkable that a new term −(1/𝜌)𝜕/𝜕𝑥𝑗(𝜌𝑉𝑖
′𝑉𝑗

′̅̅ ̅̅ ̅̅ ) appears due to the time 

average, called the eddy (or turbulent or Reynolds) momentum term and 

associated with the turbulent velocity fluctuations. 

3.1.5 Reynolds stress and the turbulent coefficients of viscosity 

Assuming that each variable is represented by the sum of its mean value plus its 

fluctuation: 

𝑉𝑖 = 𝑉̅𝑖 + 𝑉𝑖
′ ( 3-19 ) 

and that the mean value of the fluctuation in a long enough period of time is 

equal to cero (𝑉̅𝑖
′ = 0) because of its random behavior. 

For incompressible laminar flow we had that the stress tensor was 𝜏𝑖𝑗 =

𝜇 (
𝜕𝑉𝑖

𝜕𝑥𝑗
+

𝜕𝑉𝑗

𝜕𝑥𝑖
), and averaging we obtain the mean viscous stress tensor: 
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𝜏𝑖̅𝑗 = 𝜇 (
𝜕𝑉̅𝑖

𝜕𝑥𝑗
+

𝜕𝑉̅𝑗

𝜕𝑥𝑖
) ( 3-20 ) 

The term 𝜏𝑖𝑗
𝑟 = −𝜌𝑉𝑖

′𝑉𝑗
′̅̅ ̅̅ ̅̅  in the Reynolds equation is called the Reynolds stress 

tensor (it has units of stress, force per unit area), its diagonal components are 

normal stress and the off-diagonal ones are shear stress. The total mean stress 

tensor can be defined as the sum of the Reynolds stress tensor and the mean 

viscous stress tensor as the sum of its mean value and a term containing its 

fluctuations: 

𝑆𝑖𝑗 = 𝜏𝑖̅𝑗 + 𝜏𝑖𝑗
𝑟 = 𝜇 (

𝜕𝑉̅𝑖

𝜕𝑥𝑗
+

𝜕𝑉̅𝑗

𝜕𝑥𝑖
) − 𝜌𝑉𝑖

′𝑉𝑗
′̅̅ ̅̅ ̅̅  ( 3-21 ) 

Despite being a result of great relevance, there are still difficulties to operate 

mathematically with these expressions. Therefore, some semi-empirical relations 

have been developed that simplify the stress tensor. We are going to use the 

Boussinesq’s eddy viscosity theory (Boussinesq, 1877) that, in an analogous way 

of the Newton’s viscosity, assumes the Reynolds stress as: 

𝜏𝑖𝑗
𝑟 = 𝐴𝑥𝑗

𝜕𝑉̅𝑖

𝜕𝑥𝑗
 ( 3-22 ) 

Introducing this term in the Reynolds equation ( 3-17 ), assuming differences in 

𝐴𝑥𝑗
 only between horizontal and vertical planes, in three components form we 

have: 

𝜕𝑢̅

𝜕𝑡
+ 𝑢̅

𝜕𝑢̅

𝜕𝑥
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦
+ 𝑤̅

𝜕𝑢̅

𝜕𝑧
− 𝑓𝑣̅

= −
1

𝜌

𝜕𝑝̅

𝜕𝑥
+

1

𝜌
[

𝜕

𝜕𝑥
(𝐴𝐻

𝜕𝑢̅

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐴𝐻

𝜕𝑢̅

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐴𝑉

𝜕𝑢̅

𝜕𝑧
)] 

𝜕𝑣̅

𝜕𝑡
+ 𝑢̅

𝜕𝑣̅

𝜕𝑥
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦
+ 𝑤̅

𝜕𝑣̅

𝜕𝑧
+ 𝑓𝑢̅

= −
1

𝜌

𝜕𝑝̅

𝜕𝑦
+

1

𝜌
[

𝜕

𝜕𝑥
(𝐴𝐻

𝜕𝑣̅

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐴𝐻

𝜕𝑣̅

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐴𝑉

𝜕𝑣̅

𝜕𝑧
)] 

( 3-23 ) 
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𝜕𝑤̅

𝜕𝑡
+ 𝑢̅

𝜕𝑤̅

𝜕𝑥
+ 𝑣̅

𝜕𝑤̅

𝜕𝑦
+ 𝑤̅

𝜕𝑤̅

𝜕𝑧

= −
1

𝜌

𝜕𝑝̅

𝜕𝑧
− 𝑔

+
1

𝜌
[

𝜕

𝜕𝑥
(𝐴𝐻

𝜕𝑤̅

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐴𝐻

𝜕𝑤̅

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐴𝑉

𝜕𝑤̅

𝜕𝑧
)] 

where 𝐴𝐻 and 𝐴𝑉 are the horizontal and vertical turbulence components of the 

viscosity respectively. 

These equations still have drawbacks due to their complexity, mainly due to the 

non-linear terms that make them analytically irresolvable and the need to 

introduce all boundary conditions. However, for certain cases, it is possible to 

make simplifications that continue describing the system satisfactorily; and this, 

at the same time, allow us to obtain analytical solutions without requiring a large 

number of boundary conditions. The Sverdrup balance approximation for 

meridional transport is an interesting one since it is the fundamental zero-order 

theory of large-scale circulation (Sverdrup, 1947). 

3.1.6 Sverdrup balance 

From now on we will omit to denote the variables by their mean values for 

simplicity, but they should be interpreted as average values. 

Making use of scale analysis over the vertical component of the ( 3-23 ) equation, 

for oceanographic, midlatitude, and synoptic scales we can assume: first, that it 

is possible to neglect the frictional terms; and second, the pressure and 

gravitational terms are some orders of magnitude larger than the other terms. For 

Table 1 values, 𝜃 = 45º → 𝑓~10−4𝑠−1 and  ∇𝑃𝑧~102𝑑𝑦𝑛𝑒𝑠/𝑐𝑚3: 

𝐷𝑊

𝐷𝑡
 2𝑢Ωcos (𝜃) 

1

𝜌

𝜕𝑝

𝜕𝑧
 𝑔 

𝑈𝑊

𝐿
 𝑓𝑈 

∇𝑃𝑧

𝜌𝐻
 𝑔 

10−7 10−2 103 103 
Table 2: Scale analysis 

Thus, the behavior of the oceans is very close to hydrostatic equilibrium in the 

z-axis, so it is possible to compute the pressure, 𝑝, at any depth, 𝑧, integrating 

the hydrostatic equation: 

𝑑𝑝 = −𝜌𝑔𝑑𝑧 ( 3-24 ) 

taking into account that the density, 𝜌, is known from the observations. 
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The equations of horizontal motion, neglecting the lateral stresses against the 

vertical (which is known is negligible by scale analysis), are: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝑓𝑣 +

1

𝜌
[

𝜕

𝜕𝑧
(𝐴𝑉

𝜕𝑢

𝜕𝑧
)] 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑦
− 𝑓𝑢 +

1

𝜌
[

𝜕

𝜕𝑧
(𝐴𝑉

𝜕𝑣

𝜕𝑧
)] 

( 3-25 ) 

Considering stationary fluid, which is valid for time averaged values at general 

circulation scales: 

𝜕𝑢

𝜕𝑡
= 0                

𝜕𝑣

𝜕𝑡
= 0 ( 3-26 ) 

and neglecting non-linear terms, what means severe restrictions upon the possible 

lateral boundary conditions., the field accelerations are: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= 0 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= 0 

( 3-27 ) 

Thereby you get to the expressions: 

𝜕𝑝

𝜕𝑥
= 𝜌𝑓𝑣 +

𝜕

𝜕𝑧
(𝐴𝑉

𝜕𝑢

𝜕𝑧
) 

𝜕𝑝

𝜕𝑦
= −𝜌𝑓𝑢 +

𝜕

𝜕𝑧
(𝐴𝑉

𝜕𝑣

𝜕𝑧
) 

( 3-28 ) 

These equations resemble a synthesis of the geostrophic fluid (equilibrium 

between the pressure gradient and the Coriolis force) and the Ekman wind-driven 

currents (equilibrium between the wind-stress and the Coriolis force). What 

combined means that the horizontal pressure gradient is balanced by the Coriolis 

force and frictional stresses exerted on horizontal surfaces. 

In the next step of the original calculation of Sverdrup, the author argues that 

in homogeneous water the pressure gradient is independent from depth, but that 

in the case of baroclinic systems (the pressure gradient is due to the slope on the 

sea surface) depends on the depth. In the ocean, in general cases it can be assumed 
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that at a certain depth the gradient becomes negligible. This reasoning is 

important, since in certain low depth areas the argument is not applicable, and 

therefore the Sverdrup balance is not so useful for some bathymetries. 

Following the argument and calling 𝑧 = 𝑑 the depth at which the pressure 

gradient becomes zero, we define two new functions: 

𝜕𝑃

𝜕𝑥
≡ ∫

𝜕𝑝

𝜕𝑥
𝑑𝑧

0

𝑑

                
𝜕𝑃

𝜕𝑦
≡ ∫

𝜕𝑝

𝜕𝑦
𝑑𝑧

0

𝑑

 ( 3-29 ) 

Since the horizontal velocity is negligible from 𝑧 = 𝑑, the integrals: 

𝑆𝑥 ≡ ∫ 𝜌𝑢 𝑑𝑧
0

𝑑

                𝑆𝑦 ≡ ∫ 𝜌𝑣 𝑑𝑧
0

𝑑

 ( 3-30 ) 

represent the components of net mass transport by currents. As boundary 

conditions it is assumed that the stress is introduces on the surface layer by the 

wind-stress: 

𝐴𝑉

𝜕𝑢

𝜕𝑧
|

𝑧=0
= 𝜏𝑥                𝐴𝑉

𝜕𝑢

𝜕𝑧
|

𝑧=𝑑
= 0 

𝐴𝑉

𝜕𝑣

𝜕𝑧
|

𝑧=0
= 𝜏𝑦                𝐴𝑉

𝜕𝑣

𝜕𝑧
|

𝑧=𝑑
= 0 

( 3-31 ) 

where 𝜏𝑥 y 𝜏𝑦 are the 𝑥 and 𝑦 wind-stress components. Integrating equations ( 

3-28 ) between 𝑧 = 𝑑 and  𝑧 = 0 you get to the equations: 

𝜕𝑃

𝜕𝑥
= 𝑓𝑆𝑦 + 𝜏𝑥 

𝜕𝑃

𝜕𝑦
= −𝑓𝑆𝑥 + 𝜏𝑦 

( 3-32 ) 

Making a cross differentiation and subtracting both equations you get: 

𝜕𝑓

𝜕𝑦
𝑆𝑦 + 𝑓 (

𝜕𝑆𝑥

𝜕𝑥
+

𝜕𝑆𝑦

𝜕𝑦
) + (

𝜕𝜏𝑥

𝜕𝑦
−

𝜕𝜏𝑦

𝜕𝑥
) = 0 ( 3-33 ) 

Furthermore, by integrating the continuity equation knowing that the vertical 

velocity is zero on the surface and at 𝑧 = −𝑑, we obtain that: 
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𝜕𝑆𝑥

𝜕𝑥
+

𝜕𝑆𝑦

𝜕𝑦
= 0 ( 3-34 ) 

What finally comes to the expression of the Sverdrup balance: 

𝜕𝑓

𝜕𝑦
𝑆𝑦 + (

𝜕𝜏𝑥

𝜕𝑦
−

𝜕𝜏𝑦

𝜕𝑥
) = 0 ( 3-35 ) 

Dividing by 𝜌 and rewriting we obtain the Sverdrup curl equation: 

𝑆𝑦 =
1

𝜌𝛽
𝒌̂(𝛁𝑥𝝉) ( 3-36 ) 

Where 𝛽 =
𝜕𝑓

𝜕𝑦
 , 𝒌̂(𝛁𝑥𝝉) is the 𝑧 component of the curl of 𝝉 ,and 𝑆𝑦, the Sverdrup 

transport, is the meridional transport of water volume per unit of time and 

longitude in the Sverdrup theory. 

In summary, the time averaged oceanic meridional transport between the sea 

surface and a depth 𝑑, can be approximated by the Sverdrup transport for: 

- Midlatitude and synoptic scales. 

- Incompressible flow. 

- Boussinesq’s eddy viscosity theory for the stress tensor. 

- Negligible lateral stress against the vertical one. 

- Assuming hydrostatic equilibrium in the z-axis. 

- Stationary fluid. 

- Applying several restrictions to the boundary conditions. 

- Baroclinic ocean. 

- Assuming that stress is only introduced by the wind. 

Under these assumptions, we can conclude that the wind is the main parameter 

that controls oceanic motion at large scale meridional mass transports. It is a 

useful insight to sea modeling in a simple way in which the only boundary 

conditions needed are relatively easy to measure by satellites, so we can ask 

ourselves whether these results are fulfilled in practice, and whether the Sverdrup 

balance, in fact, describes the ocean dynamics. If there are other forcings rather 

than wind, the Sverdrup balance will not be fulfilled. In this case, we will verify 
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where the Sverdrup balance, the geostrophic balance in the presence of the wind, 

is fulfilled in the Eastern Atlantic to determine if CIPU is a wind-driven current. 

3.2 Data 

We use numeric model data because the velocity is not usually measured. Hence, 

when using measurement data, we are forced to introduce some approximations 

to obtain transports. Geostrophic approximation is often used. In addition to that, 

there are no measurements with such spatial resolution and for as long periods of 

time as the model data. Model data can be approximated to reality, and 

specifically, in the study area Romero García et al. (2016) have proven that OFES 

numeric model reproduces the ocean dynamics. 

We use velocity data from the OFES numerical model, and the wind-stress that 

forces OFES model. All the data is stored in the GDS OPeNDAP Server of the 

Asia-Pacific Data Research Center (APDRC) (APDRC, n.d.). OFES has 

simulations forced by the wind with NCEP and QuickSCAT data. QuickSCAT 

has better spatial resolution with small scale structures and this is the reason why 

it has been used instead of NCEP wind forced data. 

OFES model has monthly mean and three-days mean data. Monthly mean data 

is used because results were equal to monthly mean and it would have taken a 

greater cost in computing time. Moreover, Sverdrup theory describes long time 

averaged data and not short time fluctuations, as it was stated in the theoretical 

approach and as it is going to be shown later. 

The magnitudes of the spatial and temporal resolutions of the model are below 

the magnitudes of the characteristic variables shown in Table 1. Therefore, the 

model fulfills the resolution requirements to describe the phenomena we are 

interested in. 

The studied area ranges from 0-30º W, 20-40º N, and from August 1999 to July 

2009. First months of the available data were omitted because the QuickSCAT 

satellite was not in orbit, and last month was omitted in order to take exact years 

and avoid seasonal phenomena impact on time averages. 
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3.2.1 Velocity data 

Monthly mean meridional velocity data is generated by OFES making use of 

their numeric model. It is stored in a 4-D matrix (longitudes, latitudes, depths 

and times) with the following grid dimensions: 

- Longitudes: from 0.1º to 360.0º E given with 0.1º resolution. 

- Latitudes: from -74.9º N to 75.0º N given with 0.1º resolution. 

- Depths: from 2.50000 mb to 5900.00000 mb given by levels with 111.27358 

mb resolution. 

- Times: from January 1999 to September 2009 with monthly resolution. 

3.2.2 Wind-stress data 

We use the wind-stress data that forces the model for the computations of the 

Sverdrup transport. Monthly mean wind-stress data is provided by OFES and 

stored in a 3-D matrix (longitudes, latitudes and times) with the following grid 

dimensions: 

- Longitudes: from 0.1º to 360.0º E given with 0.1º resolution. 

- Latitudes: from -74.9º N to 75.0º N given with 0.1º resolution. 

- Times: from January 1999 to September 2009 with monthly resolution. 

The wind stress used by OFES is not exactly that of the QuickSCAT satellite 

(Figure 1), it has been resampled to its grid (with 0.1º spatial resolution) and 

constructed by weighted mean method (Kutsuwada, 1998), as Sasaki et al. (2006) 

stated. As it can be observed in Figure 1,there are some small scales features of 

the actual wind-stress curl that are filtered out in the model forcing. According 

to Risien & Chelton (2008), as a result of antenna sidelobe contamination, 

Figure 1: Eigth-year average of the wind-stress curl in 𝑁/𝑚2 per meter. Image (a) represents 

QuickSCAT data from the Scatterometer Climatology of Ocean Winds (SCOW) (Risien & Chelton, 

2008) and image (b) represents QuickSCAT data of the OFES model. 

(a) (b

) 
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standard QuikSCAT measurements cannot be obtained closer than about 30 km 

to land. The OFES model generates those values to compute its simulations.  

3.3  Physical magnitudes and computations 

3.3.1 Meridional transport 

Using meridional velocity data, the meridional transport of water volume, per 

unit of time, at a given latitude, between longitudes 𝑙1 and 𝑙2 is: 

𝑇 = ∫ ∫ 𝑣̅ 𝑑𝑥𝑑𝑧
𝑙2

𝑙1

0

𝑑

 ( 3-37 ) 

The depth limit 𝑧 = 𝑑, at which the momentum exchange between the wind and 

the ocean can be considered negligible. The choice of the depth 𝑑 is not clear since 

it is not a constant in the oceans, but we will discuss this topic in 4.2. 

Using wind-stress data in the Sverdrup curl equation ( 3-36 ), the meridional 

transport of water volume, per unit of time, at a given latitude, between 

longitudes 𝑙1 and 𝑙2 is: 

𝑆 = ∫
1

𝜌𝛽
(

𝜕𝜏𝑥̅

𝜕𝑦
−

𝜕𝜏𝑦̅

𝜕𝑥
)  𝑑𝑥

𝑙2

𝑙1

 ( 3-38 ) 

Where 𝑣̅, 𝜏𝑥̅ and 𝜏𝑦̅ are time averaged values over a certain time that we are 

going to discuss in 4.3. In our case, these integrals are numerical integrals, then 

it is necessary to choose an integration method; we use the composite trapezoidal 

rule. Meridional transport is going to be expressed in Sverdrup units (1 Sv =

106 m3/s). 
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4.  RESULTS AND DISCUSSION  

Haciendo un análisis de la validez del balance de Sverdrup en el Atlántico este, 

mediante una comparación del transporte de Sverdrup con el transporte del 

modelo, obtenemos como resultado que existe una franja de alrededor de 100 km 

junto a la costa africana en la que los resultados del transporte de Sverdrup no 

reproducen los del modelo. Por esta zona pasan dos corrientes: la CUC y la CIPU. 

Mediante el análisis del ciclo estacional en la zona cercana a la costa, conociendo 

el ciclo estacional de la CIPU con un máximo en otoño, observamos su influencia, 

con ese máximo en otoño, en el ciclo estacional del transporte del modelo. Por 

otra parte, no se encuentra esa influencia en el del transporte de Sverdrup. Este 

hecho nos lleva a pensar que, dado que el balance de Sverdrup no predice la 

dinámica de la CIPU, la CIPU no está forzada por el viento. 

4.1  Velocity and wind-stress fields 

 The western Atlantic velocity field in the analysis area is mainly characterized 

by the Canary Current and the Azores Current as it can be seen in Figure 2-a. 

According to most studies, the Azores Current branches from the Gulf towards 

the east. In Figure 2-a it can be seen entering from the east at latitude 35ºN and 

passing through the archipelago of the Azores. The Canary Current is a wide 

branch of the North Atlantic Current that flows southward parallel to the 

European and the African western coasts, it is a wind-driven surface current. It 

can be seen in Figure 2-a from the west coast of the Iberian Peninsula, parallel to 

the African coast and passing through the Canary Islands. Although not shown 

in Figure 2-a, the current joins the Atlantic North Equatorial Current. In addition 

to the Canary Current, along the African coast there are two other currents, the 

Canary Upwelling Current (CUC) (Figure 2-a) and Canary Intermediate 

Poleward Undercurrent (CIPU) (Figure 2-b). The CUC flows southward, and it 

is a costal upwelling current. The CIPU has a maximum of transport around 800 

m depth and goes from south to north, in the opposite direction to the other 

currents.  

The wind is characterized by the Azores high with low wind-stress near Azores 

and higher stress as the distance to the center of the high increases (Figure 2-c). 
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Next to the Iberian Peninsula and the African coast, the wind-stress decreases 

again, thus changing the curl sign, as Figure 1-b shows. 

Differences between velocity and wind-stress fields give us an insight of the 

differences between Sverdrup and model transports. 

4.2 Vertical dependence of the Sverdrup Balance 

with the integration depth 

It was seen in the theoretical section 3.1.6 that the Sverdrup transport is the 

transport between the sea surface and a depth d in which the wind-stress effect 

on the ocean dynamics becomes negligible. The problem now is to find that depth. 

According to Wunsch (2011), a possible method is looking for the depth in which 

the vertical velocity 𝑤(𝑑) satisfy |𝑤(𝑑)| < 10−8 𝑚/𝑠, what turns out to be an 

arbitrary choice. In order to find the dependence of the Sverdrup balance with 

the integration depth, our approach is to define a new parameter, η(d), as: 

Azores Current 

Canary Current 

Canary Upwelling Current (CUC) 

Canary Intermediate Poleward 

Undercurrent (CIPU) 

Figure 2: Nine-years averages fields of: (a) 

mean velocity from the surface to 812 m , (b) 

velocity at 812 m depth, and (c) wind-stress 

on the sea surface. The averages  were 

computed from August 1999 to July  2008. 

(a) (b

) 

(c) 
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η(d) = ∑(𝑇𝑖𝑗(𝑑) − 𝑆𝑖𝑗)
2

𝑖𝑗

 
( 4-1 ) 

where the summation is over every longitudes and latitudes (i, j) of the model 

grid. 𝑇𝑖𝑗(𝑑) corresponds to equation ( 3-37 ) integrating 𝑇 to a depth 𝑑 in 0.1º 

longitude sections at each grid point (i, j), and 𝑆𝑖𝑗 to equation ( 3-38 ) integrating 

in 0.1º longitude sections for each grid point (i, j).  𝑇 and 𝑆 are computed with 

𝑣̅, 𝜏𝑥̅ and 𝜏𝑦̅ averaged over nine years (from August 1999 to July 2008). The 

parameter η(d) gives us an idea of the accuracy of the Sverdrup transport with 

the integration depth over the whole area. In Figure 3, we can see that it is almost 

constant in the first meters, decreasing from 50.7 𝑆𝑣2 on the surface to a minimum 

of 32.8 𝑆𝑣2 at d = 293 m and increasing to 65.5 𝑆𝑣2 at 812 m. 

However, in this case, we are interested in a current, the CIPU, that has its 

maximum transport around 800 𝑚 depth (Romero García, et al., 2016), so we 

will use 𝑑 = 812 𝑚 (the nearest depth to 800 𝑚 that is available in the model 

grid) for the integrations of the model transport 𝑇 ( 3-37 ). For this depth, the 

ocean dynamics are not as accurately defined by the Sverdrup balance as for d =

293 m. We are aware that we are introducing some errors due to this integration 

depth, since our main objective is not to verify the Sverdrup balance, but to use 

it as a tool to identify the mechanisms of oceanic phenomena. Moreover, 

calculations of the model transport with d = 293 m are not too different from 

Figure 3: Vertical dependence of the Sverdrup balance with the integration depth. Horizontal axis 

represents depths in meters and vertical axis 𝜂(𝑑), equation ( 4-1 ), in square Sverdrup units [𝑆𝑣2]. 
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those with d = 812 m, being a softened version with lower transports and thus 

being more like the Sverdrup transport. 

4.3  Dependence on the accuracy of the Sverdrup 

balance with temporal averages 

In order to study the statistical properties of the ocean dynamics, time averages 

of the field variables where introduced in 3.1.4. It was stated that it was necessary 

to carry out time averages during enough time to remove the stochastic behavior 

of the turbulence, but it was not specified how much was “enough time”.  

In the same way we did in 4.2, we will define other two parameters, 𝜎(𝑡) and 

𝜎(∆𝑡), for the estimation of the time dependence of the Sverdrup balance: 

𝜎(𝑡) = ∑(𝑇𝑖𝑗(𝑡) − 𝑆𝑖𝑗(𝑡))
2

𝑖𝑗

 
( 4-2 ) 

𝜎(∆𝑡) = ∑(𝑇𝑖𝑗(∆𝑡) − 𝑆𝑖𝑗(∆𝑡))
2

𝑖𝑗

 
( 4-3 ) 

where the summations are over every longitudes and latitudes (i, j) of the model 

grid. 𝑇𝑖𝑗 corresponds to equation ( 3-37 ) integrating 𝑇 in 0.1º longitude sections 

at each grid point (i, j), and 𝑆𝑖𝑗 to equation ( 3-38 ) integrating in 0.1º longitude 

sections for each grid point (i, j).  𝑇𝑖𝑗(𝑡) and 𝑆𝑖𝑗(𝑡) are computed with 𝑣̅, 𝜏𝑥̅ and 

Figure 4: Dependence on the accuracy of the Sverdrup transport with the time average of the field variables. 

Image (a) represents the monthly mean error (𝜎(𝑡) = σ (𝑇𝑖𝑗(𝑡) − 𝑆𝑖𝑗(𝑡))
2

𝑖𝑗 ), and image (b) the error as a 

function of the average time (∆𝑡 ) for the field variables (𝜎(∆𝑡) = σ (𝑇𝑖𝑗(∆𝑡) − 𝑆𝑖𝑗(∆𝑡))
2

𝑖𝑗 ). 

(a) 

(b) 
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𝜏𝑦̅ monthly means, and 𝑇𝑖𝑗(∆𝑡) and 𝑆𝑖𝑗(∆𝑡) are computed with 𝑣̅, 𝜏𝑥̅ and 𝜏𝑦̅ 

averaged from August 1999 to a date ∆𝑡 later. The parameter 𝜎(𝑡) gives us an 

idea of the error of the Sverdrup transport at each month, while 𝜎(∆𝑡) represents 

the error of the Sverdrup transport for the field variables averaged over a time 

∆𝑡. Figure 4 shows how for apparent “random” errors 𝜎(𝑡) taking different 

monthly averages (Figure 4-a), the error 𝜎(∆𝑡) decreases for longer time averages 

(Figure 4-b). 

A year average can be considered enough time (∆𝑡), as it is seen in Figure 4-b, 

for a reduction of the error 𝜎(∆𝑡) in one order of magnitude, since it decays from 

7950 𝑆𝑣2 to 950 𝑆𝑣2 in a year. For seasonal averages (three months averages), 

𝜎(∆𝑡) decreases from 7950 𝑆𝑣2 to 4340 𝑆𝑣2, so Sverdrup transport is less accurate 

for seasonal averages of the field variables than for annual or interannual averages. 

After a nine-year average, the error 𝜎(∆𝑡) decays to 550 𝑆𝑣2 

Another remarkable thing from this analysis is that the errors 𝜎(𝑡) are not 

entirely random, since it is seen that the error is usually higher autumn and winter 

and lower in spring and summer (Figure 4-a) due to some seasonally variable 

phenomena that introduces error. This topic will be developed in more in the 

seasonal analysis. 

It has been stated how accurate the results of the Sverdrup transport are in 

function of the time-averages of the field variables, and it has turned out that it 

is not as accurate for monthly or seasonal analysis as for interannual ones. 

4.4 Differences between the Sverdrup transport and 

the model transport 

Following the main objectives of this work, we look for differences between the 

model and the Sverdrup transport. In Figure 5 it is shown the model transport 𝑇 

( 3-37 ) (Figure 5-a) and the Sverdrup transport 𝑆 ( 3-38 ) (Figure 5-b). The 

model transport is characterized by southward transport in most of the area, with 

some local northward maxima next to Azores and southward transport maxima 

around Azores, Madeira and Canary archipelagos. It shows small scale phenomena 

that Sverdrup transport does not. Sverdrup transport is characterized by 

southward transport in most of the area like model transport, and northward in 
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the eastern part of the area, next to the African coast. It has some local 

northward, and southward maxima near the Canary Islands. The Sverdrup 

northward transport next to the African coast does not match with the southward 

flow of the CUC, which means that the Sverdrup balance is not capable of 

reproducing it. The CUC current is due to the effect of the wind near the coast, 

what causes an upwelling of depth cold water producing a pressure gradient as 

result. This kind of wind-driven phenomena are not reproduced by the Sverdrup 

balance because of its time variability of the order of days. 

In general, the Sverdrup transport (Figure 5-b) is a smoothed version of the 

model transport (Figure 5-a) with some differentiated areas next to the 

continental coasts and near the Azores and Madeira Islands (most remarkable in 

Azores, which are not treated in this work).  

In order to quantify differences between model and Sverdrup transport, let’s 

define ∆ as the difference between T and S: 

∆= 𝑇 − 𝑆 ( 4-4 ) 

where T is the model transport ( 3-37 ) and S the Sverdrup transport ( 3-38 ). 

In most of the area, the parameter ∆ is between −0.1 𝑆𝑣 and 0.1 𝑆𝑣 (Figure 3 

discontinue lines mark −0.1 𝑆𝑣 and 0.1 𝑆𝑣), so Sverdrup and model transport 

coincide with differences of an order of magnitude less than 10−1 𝑆𝑣, in 0.1º 

longitude width sections. There are small differences characterized by positive and 

negative values of ∆ in contiguous areas that becomes more important in shorter 

(a) (b) 

Figure 5: Meridional transport maps. The image (a) correspond to the model transport T  ( 3-37 ) and 

the image (b) correspond to the Sverdrup transport S  ( 3-38 ) with velocities and wind-stresses averaged 

over nine years. The colours represent meridional transport per unit of time, at each latitude, in a 0.1º 

longitude width in Sverdrup units [Sv] (1 𝑆𝑣 = 106 𝑚3/𝑠). Solid lines are 0 𝑆𝑣 lines, and discontinue lines 

are at −0.1 𝑆𝑣 and 0.1 𝑆𝑣. 
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time-averages (Figure 8). Figure 6 shows that the biggest differences between T 

and S are in a strip of 100 km width next to the African coast line as it is also 

seen in Figure 5, and next to Azores, but we are interested in the African coast 

area, in which the CIPU is located. The areas of higher ∆ values next to the 

African continent match with the areas where de CUC and the CIPU are located, 

since Sverdrup transport is to the north while model transport is to the south, 

being the Sverdrup balance unable to reproduce the behavior of the CUC, which 

predominates in the area. 

Our results in Figure 5 and Figure 6 are coherent with those of Gray & Riser 

(2014), but with a higher spatial resolution, showing that the differences between 

the Sverdrup balance transport and the modelled transport are in a strip of 

100km width close to the African coast. 

The statistic distribution of the ∆ values in the analysis area gives us more precise 

information on the accuracy of the Sverdrup transport, since 96% of the values 

are between −0.1 Sv and 0.1 Sv, 33% between −0.01 Sv and 0.01 Sv and 3% 

between −0.001 Sv and 0.001 Sv. The parameter ∆ is then characterized by the 

Figure 6-c in a quantitative way. The maximum and minimum values in Figure 

7-a, b and c are (0.24 𝑆𝑣 , −0.30 𝑆𝑣), ( 0.15 𝑆𝑣 , −0.13 𝑆𝑣) and ( 0.28 𝑆𝑣 , 

−0.27 𝑆𝑣) respectively. And the mean values in Figure 7-a, b and c are −0.032 𝑆𝑣, 

−0.026 𝑆𝑣 and −0.007 𝑆𝑣 respectively. 

Figure 6: Transport differences map of  ∆= 𝑇 − 𝑆. Where the model transport T is computed by the 

integral ( 3-37 ) and the Sverdrup transport S by ( 3-38 ) with velocities and wind-stresses averaged over 

nine years. The colours represent meridional transport per unit of time, at each latitude, in a 0.1º 

longitude width in Sverdrup units [Sv] (1 𝑆𝑣 = 106 𝑚3/𝑠). The solid line is located at  0 𝑆𝑣, and 

discontinue lines are at −0.1 𝑆𝑣 and 0.1 𝑆𝑣. 
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The statistical distribution of the model transport (Figure 7-a) is wider than the 

Sverdrup transport (Figure 7-b) in concordance with Figure 5, in which Sverdrup 

transport is a smoothed version of the model transport. Sverdrup transport’s 

distribution is not symmetric, since it has more weight in the positive part (red 

areas of northward transport in Figure 5-b, next to the African coast), and it can 

be seen in Figure 7-c (statistical distribution of ∆) that contribution of the 

Sverdrup transport in the negative part (since ∆= T − S). 

4.5 Seasonal variability 

We have focused on the interannual average of the difference between Sverdrup 

transport and model transport. Now we will analyze the seasonal variation of this 

difference. We will centre on the African coasts, where we can study the 

mechanisms of the CIPU, and the differences between model and Sverdrup 

transport are bigger. For simplicity, seasons have been taken as: winter (January, 

February, March), spring (April, May, June), summer (July, August, September) 

and autumn (October, November, December). 

For seasonal averages (Figure 8), turbulent behaviour of the ocean becomes more 

visible than for interannual ones (Figure 6), then there are more differences 

between the model transport and the Sverdrup transport, as seen in Figure 4-b. 

Making a seasonal analysis of the meridional transport, it is observed that the 

Sverdrup transport in the African coasts is closer to the transport of the model in 

autumn, i.e. the difference between T and S,  ∆ , is lower in this season. In Figure 

8, the mean seasonal ∆ maps are shown for winter (Figure 8-a), spring (Figure 8-

Figure 7: Histograms of the values in Figure 5-a (a), Figure 5-b (b) and Figure 6 (c) taking 5000 bins 

between −0.25 and 0.25 𝑆𝑣.  

(a) 

(b) 

(c) 
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b), summer (Figure 8-c) and autumn (Figure 8-d). It can be appreciated that the 

differences next to the African coast are smaller in autumn (light-blue areas next 

to the African coasts in Figure 8-d) than in the other seasons (dark-blue areas 

next to the African coasts in Figure 8-a, b and c). However, this result is not 

coherent with the fact that the CIPU has a maximum of northward transport in 

the autumn season. Therefore, we will do a more quantitative analysis, studying 

the seasonal variability at 30ºN in 5º longitudinal regions from the African coast 

to 30ºW. We have chosen 30ºN section because it is a region close to the Canary 

Islands which is usually monitored, and it is not influenced by the effect of the 

islands and the interruption of the southward flow of the Canary current. 

In the three sections farthest from the African coast (Figure 9-a, Figure 9-b and 

Figure 9-c), the transports T ( 3-37 ) and S ( 3-38 ) are similar, with differences 

between 0 𝑆𝑣 and 2 𝑆𝑣 (0.2 𝑆𝑣, 0.6 𝑆𝑣 and 0.3 𝑆𝑣 mean differences in Figure 9-a, 

b and c respectively). However, in the section closer to the African coast (Figure 

9-d), the differences between transports T and S are higher throughout the year 

than in the sections farther from the coast line, ranging between 2 𝑆𝑣  and  6 𝑆𝑣, 

with 3.9  𝑆𝑣 as the mean difference, which is one order of magnitude higher than 

Figure 8: Seasonal maps of  ∆= 𝑇 − 𝑆, where the model transport T is computed by the integral ( 3-37 ) 

and the Sverdrup transport S by ( 3-38 ) with velocities and wind-stresses seasonally averaged over nine 

years. The colours represent meridional transport per unit of time, at each latitude, in a 0.1º longitude width 

in Sverdrup unit [Sv] (1 𝑆𝑣 = 106 𝑚3/𝑠). Solid lines are 0 𝑆𝑣 lines, and discontinue lines are at −0.05 𝑆𝑣 

and 0.05 𝑆𝑣. Images (a), (b), (c) and (d) are winter, spring, summer and autumn respectively.  

(a) (b) 

(c) (d) 
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the mean differences in the other sections. In this 10ºW-15ºW section, Sverdrup 

transport is towards the north, whereas model transport is towards the south, 

this being in line with Figure 6. T and S are closer to each other in autumn season, 

with differences around 2 𝑆𝑣 (Figure 9-c). This lower ∆ values in autumn are 

caused by the CIPU, since the Canary current and the CUC have southward flow, 

and CIPU has northward flow with its maximum of transport in autumn season. 

In autumn, the transport of the model approaches zero when adding the 

southward flow of the Canary Current and the CUC with the maximum 

northward flow of the CIPU, and thus it is closer to the Sverdrup transport 

(Figure 9-d). As this increase of the northward transport in the autumn season is 

appreciable in the seasonal cycle of the model transport but not in that of the 

Sverdrup transport, the Sverdrup balance is unable to explain CIPU’s 

contribution to the meridional transport. Therefore, CIPU’s mechanisms must be 

forced by other forcing instead of wind. Figure 9-d agrees with Romero García et 

al. (2010) results of the seasonal cycle of the velocities next to the African coast 

with model and observational data at 800 m depth, where the CIPU predominates 

in the contribution to meridional transport. 

Integrating the transport over the whole 30ºN section, from the African coast to 

30ºW, we obtain Figure 10, where the mean difference between model and 

Sverdrup transport is 2.9 𝑆𝑣. This offset between T and S transports is caused 

(a) 

(b) 

Figure 9: Seasonal cycle of the meridional transport at 30ºN between 30ºW and 25ºW in image (a),  

between 25ºW and 20ºW in image (b), between 20ºW and 15ºW in image (c) and between 15ºW and 

10ºW in image (d); all in Sverdrup units [Sv] (1 𝑆𝑣 = 106 𝑚3/𝑠). Solid lines represents model transport 

T ( 3-37 ) and discontinued lines the Sverdrup transport S ( 3-38 ) with velocities and wind-stresses 

seasonally averaged over nine years. 

(d) 

(c) 
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mainly by the differences between T and S close to the African coast. Neglecting 

the offset, the differences in the seasonal cycles are higher in August, September 

and January, especially in September before the characteristic peak in October-

November. 

It is interesting to point out that this estimation of the Sverdrup transport (Figure 

10) agrees with the estimations of Kanzow (2010) for the seasonal cycle of the 

eastern boundary contribution to the midocean section of the overturning strength 

of the AMOC. This seasonal cycle is characterized by a sharp peak of transport 

in October-November, with a considerable increase of transport between 

September and October, in the same way as Sverdrup transport in Figure 10. 

Kanzow’s calculations were made from moorings data, applying the geostrophic 

approximation, and the Sverdrup balance corresponds to the geostrophic balance 

in the presence of the wind. It is possible that mooring data in the eastern 

boundary of the Atlantic are not showing ocean real behavior due to the use of 

the geostrophic approximation. Because of that, their seasonal cycle is more like 

the Sverdrup transport than the model transport, which takes into account more 

dynamics and forcing than the geostrophic approximation. 

  

Figure 10: Seasonal cycle of the meridional transport at 30ºN between 30ºW and 10ºW in Sverdrup 

units [Sv] (1 𝑆𝑣 = 106 𝑚3/𝑠). Solid lines represents model transport T ( 3-37 ) and discontinued lines 

the Sverdrup transport S ( 3-38 ) with velocities and wind-stresses seasonally averaged over nine years. 
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5.  CONCLUSIONS 

En este trabajo, hemos utilizado el balance de Sverdrup como una herramienta 

para estudiar los mecanismos oceánicos en el Atlántico este, utilizando datos del 

modelo oceánico OFES. Específicamente, hemos utilizado este enfoque para 

estudiar la Canary Intermediate Poleward Undercurrent (CIPU), ya que 

suponíamos que no estaba forzada por el viento. Como los efectos de la CIPU en 

el ciclo estacional del transporte meridional están presentes en el ciclo estacional 

del transporte del modelo, pero no en el del transporte de Sverdrup, los resultados 

muestran que la dinámica de la CIPU no está forzada por el viento. Quedan por 

estudiar los mecanismos oceánicos que fuerzan la CIPU, y por qué el ciclo 

estacional observado por Kanzow (2010) se parece más al ciclo estacional del 

transporte de Sverdrup que a las simulaciones del modelo. 

In this work, we have assessed the Sverdrup balance in the eastern Atlantic, using 

oceanic model data as a tool to study ocean mechanisms. Specifically, we have 

used this approach to study the Canary Intermediate Poleward Undercurrent 

(CIPU), since we hypothesize that it is not driven by the wind forcing. We have 

used OFES model data due to the fact that it has been demonstrated that it 

describes properly the ocean circulation in the eastern Atlantic. This study is 

limited to the use of model data because there are not enough data from moorings 

and buoys to carry out an observational study. 

The horizontal distribution of the Sverdrup transport and the differences between 

model meridional transport and the Sverdrup meridional transport are in 

concordance with those of Gray & Riser (2014), although our higher resolution 

results show that the differences between the Sverdrup balance transport and the 

modelled transport are in a strip of 100km width close to the African coast. 

Although the Sverdrup balance is closer to the modelled transport over longer 

times and using d = 293 m as the integration depth. Calculations were made with 

an integration depth of d = 812 m, the depth at which the CIPU’s transport has 

a maximum, since our focus was on the CIPU. As the effects of the CIPU in the 

meridional transport’s seasonal cycle are present in the seasonal cycle of the model 

transport, but not in that of the Sverdrup transport, the results show that CIPU’s 

dynamics are not forced by the wind. It remains to study the oceanic mechanisms 

that force the CIPU, and why the seasonal cycle observed by Kanzow (2010) is 
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similar to the seasonal cycle from the Sverdrup transport rather than from the 

model simulations. It is also on the agenda to make an observational validation 

of our results. 

The methodology used here could be used to study non-forced by the wind 

phenomena around the Azores. Although the Sverdrup balance is a very useful 

tool, it is a fairly simplified ocean theoretical model, it would be possible to use 

more complex models to carry out this type of analysis. Understanding the 

mechanisms that drive meridional water transport in the eastern Atlantic allows 

us to adequately carry on observational studies in the future, in order to continue 

expanding our knowledge about the transport of heat, nutrients, oxygen, etc. in 

a more detailed way in the area.  
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