Show simple item record

dc.contributor.advisorTorres Jorge, Jesús Miguel 
dc.contributor.advisorPiñeiro Vera, José Demetrio 
dc.contributor.authorAbreu Díaz, Imar
dc.contributor.otherGrado En Ingeniería Informática
dc.date.accessioned2019-10-17T09:55:20Z
dc.date.available2019-10-17T09:55:20Z
dc.date.issued2019
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/16588
dc.description.abstractNowadays, a large part of the world's population consumes video games, whether via streaming or playing. The most consumed kind of game is those of a competitive type, due to the great impact that eSports have had worldwide. This has caused players to become increasingly concerned about having a better computer, console or smartphone; to be able to perform better and improve as a player. On the other hand, there are players who are looking to visually enjoy video games, playing at high resolutions and with a high level of graphic detail. In order to meet these requirements, companies have started looking at Artificial Intelligence, specifically deep learning techniques, an ally to improve the performance and quality of video games. This report will address one of the features that has recently begun to be implemented in video games, Super-Resolution. This deep learning image processing technique allows you to increase the resolution of an image without loss of information.en
dc.description.abstractEn la actualidad, una gran parte de la población mundial consume videojuegos, ya sea mediante contenido en streaming o jugando directamente. El tipo de juego más consumido son los de tipo competitivo, debido al gran impacto que han tenido los eSports a nivel mundial. Esto ha producido que los jugadores se preocupen cada vez más por tener un mejor ordenador, consola o smartphone; para poder tener un mejor rendimiento y mejorar como jugadores. Por otra parte, hay jugadores que lo que buscan es disfrutar visualmente de los videojuegos, jugando a altas resoluciones y con un alto nivel de detalle gráfico. Para poder satisfacer estos requisitos las empresas han empezado a buscar en la Inteligencia Artificial, en concreto en las técnicas de deep learning, un aliado para mejorar el rendimiento y la calidad de los videojuegos. En este informe se abordará uno de los métodos que recientemente se ha empezado a implementar en los videojuegos, la Superresolución. Esta técnica de procesamiento de imágenes mediante deep learning permite aumentar la resolución de una imagen sin pérdida de información.es
dc.format.mimetypeapplication/pdf
dc.language.isoes
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.subjectVideojuegos
dc.subjectSuperresolución
dc.subjectInteligencia Artificial (AI)
dc.subjectRedes Neuronales
dc.subjectRedes Neuronales Convolucionales (CNN)
dc.subjectDeep Learning
dc.subjectPython
dc.subjectTensorFlow
dc.subjectKeras
dc.subjectNvidia
dc.subjectDLSS
dc.titleDeep Learning en videojuegos: superresolución
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.subject.keywordVideojuegos
dc.subject.keywordSuperresolución
dc.subject.keywordInteligencia Artificial (AI)
dc.subject.keywordRedes Neuronales
dc.subject.keywordRedes Neuronales Convolucionales (CNN)
dc.subject.keywordDeep Learning
dc.subject.keywordPython
dc.subject.keywordTensorFlow
dc.subject.keywordKeras
dc.subject.keywordNvidia
dc.subject.keywordDLSS


Files in this item

This item appears in the following Collection(s)

Show simple item record

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Except where otherwise noted, this item's license is described as Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)