Mostrar el registro sencillo del ítem
New Ti-6Al-2Nb-2Ta-1Mo alloy as implant biomaterial: in vitro corrosion and in vivo osseointegration evaluations
dc.contributor.author | Souto, Ricardo Manuel | |
dc.contributor.author | Trincă, Lucia Carmen | |
dc.contributor.author | Mareci, Daniel | |
dc.contributor.author | Solcan, Carmen | |
dc.contributor.author | Fântânariu, Mircea | |
dc.contributor.author | Burtan, Liviu | |
dc.contributor.author | Hriţcu, Luminiţa | |
dc.contributor.author | Chiruţă, Ciprian | |
dc.contributor.author | Fernández-Mérida, Luis | |
dc.contributor.author | Rodríguez Raposo, Raquel | |
dc.contributor.author | Santana, Juan José | |
dc.date.accessioned | 2020-03-19T18:15:08Z | |
dc.date.available | 2020-03-19T18:15:08Z | |
dc.date.issued | 2020 | es_ES |
dc.identifier.uri | http://riull.ull.es/xmlui/handle/915/18955 | |
dc.description.abstract | Over the last decade, new titanium alloys are developed in different areas of implantology. The aim of this study was to characterize a new Ti-Al-Nb-Ta-Mo based alloy, with high potential for being used as a biomedical implant. The evaluation of Ti-6Al-2Nb-2Ta-1Mo was performed both in vitro (by monitoring its corrosion resistance in Hank’s Balanced Salt Solution, HBSS) and in vivo (by evaluating the osseointegration following rabbit tibia implantation), by comparison with titanium and Ti-6Al-7Nb alloy. Electrochemical impedance spectroscopy (EIS) data showed high impedance values for all titanium samples after 1 week immersion times in HBSS at 37 oC. According to EIS analysis, the corrosion resistance of the Ti- 6Al-2Nb-2Ta-1Mo alloy immersed in HBSS was higher compared to the standard cp-Ti or with the Ti-6Al-7Nb alloy. In addition, a higher degree of osseointegration was achieved by the Ti- 6Al-2Nb-2Ta-1Mo alloy, thus probing that a higher resistance to electrochemical corrosion provided enhanced protection to the implant surface against biodegradation, thus positively affecting the qualitative and quantitative evolution of bone tissue repair. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | es_ES |
dc.relation.ispartofseries | Materials Chemistry and Physics, 240, 122229 (2020), 10 pp. | es_ES |
dc.rights | Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES | |
dc.title | New Ti-6Al-2Nb-2Ta-1Mo alloy as implant biomaterial: in vitro corrosion and in vivo osseointegration evaluations | en |
dc.type | info:eu-repo/semantics/article | |
dc.identifier.doi | 10.1016/j.matchemphys.2019.122229 | |
dc.subject.keyword | Ti-Al-Nb-Nb-Ta-Mo biomaterial | en |
dc.subject.keyword | in vitro corrosion testing | en |
dc.subject.keyword | in vivo osseointegration evaluation | en |
dc.subject.keyword | electrochemical impedance spectroscopy | en |
dc.subject.keyword | computed tomography | en |
dc.subject.keyword | rabbit animal model | en |