Mostrar el registro sencillo del ítem

dc.contributor.authorSouto, Ricardo Manuel 
dc.contributor.authorTrincă, Lucia Carmen
dc.contributor.authorBurtan, Liviu
dc.contributor.authorMareci, Daniel
dc.contributor.authorFernández Pérez, Bibiana María 
dc.contributor.authorStoleriu, Iulian
dc.contributor.authorStanciu, Teodor
dc.contributor.authorStanciu, Sergiu
dc.contributor.authorSolcan, Carmen
dc.contributor.authorIzquierdo Pérez, Javier 
dc.contributor.otherQuímica
dc.contributor.otherGrupo de Electroquímica y Corrosión Departamento de Química Instituto de Materiales y Nanotecnología
dc.date.accessioned2020-09-10T19:15:54Z
dc.date.available2020-09-10T19:15:54Z
dc.date.issued2020
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/20999
dc.description.abstractIn vitro electrochemical characterization and in vivo implantation in an animal model were employed to evaluate the degradation behavior and the biological activity of FeMnSi and FeMnSiCa alloys obtained using UltraCast (Ar atmosphere) melting. Electrochemical characterization was based on open circuit potential measurement, electrochemical impedance spectroscopy and potentiodynamic polarization techniques while the alloys were immersed in Ringer’s solution at 37 ºC for 7 days. Higher corrosion rates were measured for the Ca-containing material, resulting from inefficient passivation of the metal surface by oxy-hydroxide products. In vivo osseointegration was investigated on a tibia implant model in rabbits by referring to a standard control (AISI 316L) stainless steel using standard biochemical, histological and radiological methods of investigation. Changes in the biochemical parameters were related to the main stages of the bone fracture repair, whereas implantation of the alloys in rabbit’s tibia provided the necessary mechanical support to the injured bone area and facilitated the growth of the newly connective tissue, as well as osteoid formation and mineralization, as revealed by computed tomography reconstructed images and validated by the bone morphometric indices. The present study highlighted that the FeMnSiCa alloy promotes better osteoinduction and osseointegration processes when compared to the base FeMnSi alloy or with AISI 316L, and in vivo degradation rates correlate well with corrosion resistance measurements in Ringer’s solution.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesMaterials Science & Engineering C 118 (2021)
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleEvaluation of in vitro corrosion resistance and in vivo osseointegration properties of a FeMnSiCa alloy as potential degradable implant biomaterialen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.msec.2019.111436
dc.subject.keywordbiodegradable implant materialsen
dc.subject.keywordsurface characterizationen
dc.subject.keywordcorrosion resistanceen
dc.subject.keywordFeMnSiCa alloyen
dc.subject.keywordFeMnSi alloyen
dc.subject.keywordosseointegrationen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)