Mostrar el registro sencillo del ítem

dc.contributor.advisorGonzález Pinto, Severiano 
dc.contributor.authorHernández Abreu, Domingo 
dc.contributor.otherUniversidad de La Laguna - Departamento de Análisis Matemáticoes_ES
dc.date.accessioned2020-09-11T10:04:40Z
dc.date.available2020-09-11T10:04:40Z
dc.date.issued2006
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/21039
dc.description.abstractEn esta tesis se lleva a cabo un tratamiento numérico y teórico de diversos tipos de ecuaciones diferenciales ordinarias. Tras un primer capítulo carácter introductorio en el que se dan a conocer al lector los aspectos fundamentales que serán tratados en los capítulos siguientes, estudiamos en primer lugar los sistemas diferenciales con equilibrios semiestables que poseen una variedad centro unidimensional. De esta manera se analiza en el capítulo segundo de la memoria la estabilidad incondicional de los métodos y se prueba que en la práctica el método de Euler implícito es el único que posee tal propiedad. Para recuperar estabilidad para muchos métodos de tipo Runge-Kutta implícito, así como para métodos de Rosenbrock, se consideran en los capítulos tercero y cuarto integraciones sobre redes temporales para las que las razones entre tamaños de pasos consecutivos están acostadas por alguna constante mayor que uno. Así, en tales capítulos se demuestra que la A-estabilidad fuente de los métodos es una condición suficiente para alcanzar integraciones estables en entornos de los equilibrios semiestables. En añadidura, la experimentación numérica llevada a cabo refleja que la A-estabilidad fuerte de los Métodos Lineales Generales aplicados a problemas estrictamente disipativos en intervalos temporales semi-infinitos. Concretamente se obtienen resultados de contractividad y convergencia que generalizan resultados clásicos conocidos para la familia de métodos de tipo Runge-Kutta. Esta tesis concluye en el capítulo sexto, en el que se estudia la conservación de invariantes por medio de métodos Runge-Kutta explícitoses_ES
dc.format.mimetypeapplication/pdf
dc.language.isoeses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleIntegración numérica de sistemas diferenciales con características especialeses_ES
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subject.keywordEcuaciones diferenciales - Soluciones numéricases_ES
dc.subject.keywordAnálisis numéricoes_ES
dc.identifier.pdfcp269.pdf


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • TD. Ciencias
    Tesis de Matemáticas, Física, Química, Biología, etc.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional