Mostrar el registro sencillo del ítem

dc.contributor.authorArévalo-Mercado, Carlos Argelio
dc.contributor.authorMuñoz-Andrade, Estela Lizbeth
dc.contributor.authorCardona-Reyes, Héctor
dc.contributor.authorRomero-Juárez, Gabriel
dc.date.accessioned2023-09-04T11:49:58Z
dc.date.available2023-09-04T11:49:58Z
dc.date.issued2023
dc.identifier.citationC. A. Arévalo-Mercado, E. L. Muñoz-Andrade, H. Cardona-Reyes and M. G. Romero-Juárez, "Applying Cognitive Load Theory and the Split Attention Effect to Learning Data Structures," in IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 18, no. 1, pp. 107-113, Feb. 2023, doi: 10.1109/RITA.2023.3250580es_ES
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/32840
dc.description.abstractLearning data structures is a hard task for computer science students, given the mental effort required to simultaneously understand abstract diagrams and the dynamic manipulation of nodes and pointers using programming languages. In literature, proposed solutions to the problem focus on visualization-based artifacts, pedagogical methods, or a combination of both. The present study is framed within the cognitive learning paradigm and describes the design and testing of a linked list visualization software tool, based on the Split Attention effect of Cognitive Load Theory. The study was carried out at the Autonomous University of Aguascalientes (UAA), Mexico. In the learning effectiveness test, significant results (p=0.000) are reported for the participants of the experimental group (n=35), using the nonparametric Wilcoxon test, with a quasi-experimental pre-posttest design. It is discussed that the spatial and temporal integration of linked list node diagrams and the corresponding worked example code for the implementation of its basic operations can benefit students with learning gaps in previous introductory programming courses. It is also reported that the control group (n=36) had gains through traditional learning (p=0.022), although this group started from a higher prior academic performance. We propose to extend the Split Attention Tool to include a wider range of data structures and to replicate the study with randomized experimental designs.es_ES
dc.language.isoeses_ES
dc.publisherIEEEes_ES
dc.relation.ispartofseriesIEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 18, no. 1;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleAplicación de la Teoría de Carga Cognitiva y el Efecto de Atención Dividida En La Enseñanza de Estructuras De Datoses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doi10.1109/RITA.2023.3250580
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.subject.keywordCognitive Load Theory, Split Attention Effect, Data Structures, Instructional Design, Programming Education, Digital Competence, Software Engineering, Latin America.es_ES
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional