Show simple item record

dc.contributor.authorHernández Rodríguez, Cecilio 
dc.contributor.authorLópez, Jesús
dc.contributor.authorGonzález Platas, Javier
dc.contributor.authorRodríguez Mendoza, Ulises Ruymán
dc.contributor.authorJosé Ignacio Martínez
dc.contributor.authorDelgado, Salomé
dc.contributor.authorLifante Pedrola, Ginés
dc.contributor.authorCantelar, Eugenio
dc.contributor.authorGuerrero Lemus, Ricardo 
dc.date.accessioned2023-12-12T21:06:08Z
dc.date.available2023-12-12T21:06:08Z
dc.date.issued2021
dc.identifier.issn0020-1669
dc.identifier.issn1520-510X
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/34687
dc.description.abstractTwo coordination polymers with formulas [CuI(dapym)]n and [Cu2I2(dapym)]n (dapym = 2,4-diaminopyrimidine) have been synthesized in water at room temperature. According to the stoichiometry used, mono (1D) and the two-dimensional (2D) structures can be obtained. Both are made up of Cu2I2 double chains. Their high insolubility in the reaction medium also makes it possible to obtain them on a nanometric scale. Their structural flexibility and short Cu−Cu distances provoke interesting optoelectronic properties and respond to physical stimuli such as pressure and temperature, making them interesting for sensor applications. The experimental and theoretical studies allow us to propose different emission mechanisms with different behaviors despite containing the same organic ligand. These behaviors are attributed to their structural differences. The emission spectra versus pressure and temperature suggest competencies between different transitions, founding critical Cu2I2 environments, i.e., symmetric in the 1D compound and asymmetric for the 2D one. The intensity in the 2D compound’s emission increases with decreasing temperature, and this behavior can be rationalized with a structural constriction that decreases the Cu−Cu and Cu−I distances. However, compound 1D exhibits a contrary behavior that may be related to a change of the organic ligand’s molecular configuration. These changes imply that a more significant Π−Π interaction counteracts the contraction in distances and angles when the temperature decreased. Also, the experimental conductivity measurements and theoretical calculations show a semiconductor behavior. The absorption of the 1D compound in UV, its intense emission at room temperature, and the reduction to nanometric size have allowed us to combine it homogeneously with ethyl vinyl acetate (EVA), creating a new composite material. The external quantum efficiency of this material in a Si photovoltaic mini-module has shown that this compound is an active species with application in solar cells since it can move the photons of the incident radiation (UV region) to longer wavelengths.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesInorg. Chem. 2021, 60, 2
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleCu(I)-I-2,4-diaminopyrimidine Coordination Polymers with Optoelectronic Properties as a Proof of Concept for Solar Cells
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1021/acs.inorgchem.0c03347
dc.subject.keywordCrystal structure, External quantum efficiency, Ligands, Materials, Quantum mechanics


Files in this item

This item appears in the following Collection(s)

  • DFSCA. Física
    Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Física

Show simple item record

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Except where otherwise noted, this item's license is described as Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)