Mostrar el registro sencillo del ítem
Time windows: the key to improving the early detection of fuel leaks in petrol stations
dc.contributor.author | Sigut Saavedra, Marta | |
dc.contributor.author | Alayón Miranda, Silvia | |
dc.contributor.author | Arnay del Arco, Rafael | |
dc.contributor.author | Toledo Delgado, Pedro Antonio | |
dc.contributor.other | Ingeniería Informática y de Sistemas | |
dc.date.accessioned | 2023-12-14T21:05:13Z | |
dc.date.available | 2023-12-14T21:05:13Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0925-7535 | |
dc.identifier.uri | http://riull.ull.es/xmlui/handle/915/34798 | |
dc.description.abstract | In this paper, the authors propose the use of time windows to improve the detection of fuel leaks in petrol stations. They employ two-class supervised classifiers that work with feature sets containing representative variables taken from station inventory books that indicate the presence of leaks. Fuel leaks in petrol stations with underground tanks pose a serious problem from an environmental standpoint. Large leaks are very evident, and are therefore detected quickly without the need to use a specific procedure. Small leaks, however, tend to go unnoticed, and if no detection techniques are employed, they are only identified once environmental damage has been done. This makes detecting the leak in the shortest time possible as important as ascertaining when the leak started. The authors show how the use of time windows, which entails having the classifier work with information accumulated over several days, can be used to efficiently resolve the proposed problem, fully complying with the applicable regulation. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.relation.ispartofseries | Safety Science. Volume 130, October 2020, 10487 | |
dc.title | Time windows: the key to improving the early detection of fuel leaks in petrol stations | en |
dc.type | info:eu-repo/semantics/article | |
dc.identifier.doi | 10.1016/j.ssci.2020.104874 | |
dc.subject.keyword | Machine learning; Two-classclassifiers; Time windows; Fuel leaks; Inventory reconciliation |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
DIINF. Ingeniería Informática y de Sistemas
Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Ingeniería Informática y de Sistemas