Mostrar el registro sencillo del ítem

dc.contributor.authorPeña Méndez, Eladia María 
dc.contributor.authorDeulofeu, Meritxell
dc.contributor.authorGarcía Cuesta, Esteban
dc.contributor.authorConde, José Elías
dc.contributor.authorJiménez Romero, Orlando
dc.contributor.authorVerdú, Enrique
dc.contributor.authorSerrando, María Teresa
dc.contributor.authorSalvadó, Victoria
dc.contributor.authorBoadas Vaello, Pere
dc.date.accessioned2024-01-04T21:05:13Z
dc.date.available2024-01-04T21:05:13Z
dc.date.issued2021
dc.identifier.issn2296-858X
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/35188
dc.description.abstractThe high infectivity of SARS-CoV-2 makes it essential to develop a rapid and accurate diagnostic test so that carriers can be isolated at an early stage. Viral RNA in nasopharyngeal samples by RT-PCR is currently considered the reference method although it is not recognized as a strong gold standard due to certain drawbacks. Here we develop a methodology combining the analysis of from human nasopharyngeal (NP) samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the use of machine learning (ML). A total of 236 NP samples collected in two different viral transport media were analyzed with minimal sample preparation and the subsequent mass spectra data was used to build different ML models with two different techniques. The bestmodel showed high performance in terms of accuracy, sensitivity and specificity, in all cases reaching values higher than 90%. Our results suggest that the analysis of NP samples by MALDI-TOF MS and ML is a simple, safe, fast and economic diagnostic test for COVID-19.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesFrontiers in Medicine, vol. 8, 2021.
dc.rightsNo autorizo la publicación del documento
dc.titleDetection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence (doi: 10.3389/fmed.2021.661358)
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3389/fmed.2021.661358
dc.subject.keywordMALDI-TOF MS analysis
dc.subject.keywordMachine learning
dc.subject.keywordSARS-CoV-2
dc.subject.keywordNP samples
dc.subject.keywordViral transport media


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • DQUIM. Química
    Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Química

Mostrar el registro sencillo del ítem