Mostrar el registro sencillo del ítem

dc.contributor.authorPeña Méndez, Eladia María 
dc.contributor.authorDeulofeu, Meritxell
dc.contributor.authorM. Peña-Méndez, Eladia
dc.contributor.authorVaňhara, Petr
dc.contributor.authorHavel, Josef
dc.contributor.authorMoráň, Lukáš
dc.contributor.authorPečinka, Lukáš
dc.contributor.authorBagó-Mas, Anna
dc.contributor.authorVerdú, Enrique
dc.contributor.authorSalvadó, Victoria
dc.contributor.authorBoadas-Vaello, Pere
dc.contributor.otherUniversity of Girona (MPCUdG2016/087) La MARATÓ de TV3 Foundation (201705.30.31) Masaryk University (MUNI/11/ACC/3/2022, MUNI/A/1398/2021, MUNI/A/1412/2021), Brno, Czech Republic
dc.date.accessioned2024-01-04T21:05:24Z
dc.date.available2024-01-04T21:05:24Z
dc.date.issued2023
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/35190
dc.descriptionThis work was supported by the University of Girona (MPCUdG2016/087) and La MARATÓ de TV3 Foundation (201705.30.31) from Catalonia; and by Masaryk University (MUNI/11/ACC/3/2022, MUNI/A/1398/2021, MUNI/A/1412/2021), Brno, Czech Republic. The authors also thank the staff of the animal care facility of the University of Barcelona (Campus Bellvitge) for their skillful technical assistance. The Mass Spectrometry Core Facility of FNUSA-ICRC is acknowledged for their support and assistance in this wor
dc.description.abstractPathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-offlight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesACS Chemical Neuroscience 2023, 14, 300−311
dc.rightsNo autorizo la publicación del documento
dc.titleArtificial neural networks coupled with MALDI-TOF MS serum fingerprinting to classify and diagnose pathological pain subtypes in preclinical models.
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1021/acschemneuro.2c00665
dc.subject.keywordneuropathic pain
dc.subject.keywordfibromyalgia
dc.subject.keywordmass spectrometry
dc.subject.keywordartificial intelligence
dc.subject.keywordMALDI-TOF MS
dc.subject.keyworddiagnostics


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • DQUIM. Química
    Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Química

Mostrar el registro sencillo del ítem