Mostrar el registro sencillo del ítem

dc.contributor.authorCepa Nogue, Jorge 
dc.contributor.authorDiego, José A. de
dc.contributor.authorNadolny, Jakub
dc.contributor.authorBongiovanni, Ángel
dc.contributor.authorPović, Mirjana
dc.contributor.authorPérez García, Ana María
dc.contributor.authorPadilla Torres, Carmen P.
dc.contributor.authorLara-López, Maritza A.
dc.contributor.authorCerviño, Miguel
dc.contributor.authorPérez Martínez, Ricardo
dc.contributor.authorAlfaro, Emilio J.
dc.contributor.authorCastañeda, Héctor O.
dc.contributor.authorFernández-Lorenzo, Miriam
dc.contributor.authorGallego, Jesús
dc.contributor.authorGonzález, J. Jesús
dc.contributor.authorGonzález-Serrano, J. Ignacio
dc.contributor.authorPintos-Castro, Irene
dc.contributor.authorSánchez-Portal, Miguel
dc.contributor.authorCedrés, Bernabé
dc.contributor.authorGonzález-Otero, Mauro
dc.contributor.authorJones, D. Heath
dc.contributor.authorBland-Hawthorn, Joss
dc.contributor.otherAstrofísica
dc.contributor.otherGrupo de investigación: Evolución de galaxias
dc.date.accessioned2024-01-16T21:05:13Z
dc.date.available2024-01-16T21:05:13Z
dc.date.issued2020
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/35382
dc.description.abstractContext. The accurate classification of hundreds of thousands of galaxies observed in modern deep surveys is imperative if we want to understand the universe and its evolution. Aims. Here, we report the use of machine learning techniques to classify early- and late-type galaxies in the OTELO and COSMOS databases using optical and infrared photometry and available shape parameters: either the Sérsic index or the concentration index. Methods. We used three classification methods for the OTELO database: (1) u − r color separation, (2) linear discriminant analysis using u − r and a shape parameter classification, and (3) a deep neural network using the r magnitude, several colors, and a shape parameter. We analyzed the performance of each method by sample bootstrapping and tested the performance of our neural network architecture using COSMOS data. Results. The accuracy achieved by the deep neural network is greater than that of the other classification methods, and it can also operate with missing data. Our neural network architecture is able to classify both OTELO and COSMOS datasets regardless of small differences in the photometric bands used in each catalog. Conclusions. In this study we show that the use of deep neural networks is a robust method to mine the cataloged data.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesAstronomy & Astrophysics, vol. 638, A134 (2020)
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleGalaxy classification: deep learning on the OTELO and COSMOS databasesen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1051/0004-6361/202037697
dc.subject.keywordgalaxies: generalen
dc.subject.keywordmethods: statisticalen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)