| dc.contributor.author | Bermúdez De León, Teresa De Jesús | |
| dc.contributor.author | Bonilla Ramírez, Antonio Lorenzo | |
| dc.contributor.author | Müller, V. | |
| dc.contributor.author | Peris, A. | |
| dc.date.accessioned | 2024-01-22T21:05:14Z | |
| dc.date.available | 2024-01-22T21:05:14Z | |
| dc.date.issued | 2020 | |
| dc.identifier.uri | http://riull.ull.es/xmlui/handle/915/35511 | |
| dc.description.abstract | Westudyseveralnotionsofboundedness foroperators. It isknownthat anypowerboundedoperatorisabsolutelyCes`aroboundedandstronglyKreiss bounded(inparticular,uniformlyKreissbounded).Theconversesdonothold ingeneral. Inthisnote,wegiveexamplesoftopologicallymixing(hence,not powerbounded)absolutelyCes`aroboundedoperatorson p(N),1≤p<∞, andprovideexamplesofuniformlyKreissboundedoperatorswhicharenot absolutelyCes`arobounded.Theseresultscomplementafewknownexamples (see [27] and [2]). Wealsoobtainacharacterizationof powerboundedoperatorswhichgeneralizesaresultofVanCasteren [32]. In [2]Alemanand SuciuaskedifeveryuniformlyKreissboundedoperatorTonaBanachspace satisfiesthat limn→∞ Tn n =0.WesolvethisquestionforHilbertspaceoperatorsand,moreover,weprovethat, ifT isabsolutelyCes`aroboundedona Banach(Hilbert)space,then Tn =o(n)( Tn =o(n1 2),respectively).Asa consequence,everyabsolutelyCes`aroboundedoperatoronareflexiveBanach spaceismeanergodic. | en |
| dc.format.mimetype | application/pdf | |
| dc.language.iso | en | |
| dc.rights | Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES | |
| dc.title | Cesàro bounded operators in Banach spaces | |
| dc.type | info:eu-repo/semantics/article | |
| dc.identifier.doi | 10.1007/S11854-020-0085-8 | |
| dc.subject.keyword | Banach spaces | |