Mostrar el registro sencillo del ítem

dc.contributor.authorBermúdez De León, Teresa De Jesús
dc.contributor.authorBonilla Ramírez, Antonio Lorenzo 
dc.contributor.authorMüller, V.
dc.contributor.authorPeris, A.
dc.date.accessioned2024-01-22T21:05:14Z
dc.date.available2024-01-22T21:05:14Z
dc.date.issued2020
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/35511
dc.description.abstractWestudyseveralnotionsofboundedness foroperators. It isknownthat anypowerboundedoperatorisabsolutelyCes`aroboundedandstronglyKreiss bounded(inparticular,uniformlyKreissbounded).Theconversesdonothold ingeneral. Inthisnote,wegiveexamplesoftopologicallymixing(hence,not powerbounded)absolutelyCes`aroboundedoperatorson p(N),1≤p<∞, andprovideexamplesofuniformlyKreissboundedoperatorswhicharenot absolutelyCes`arobounded.Theseresultscomplementafewknownexamples (see [27] and [2]). Wealsoobtainacharacterizationof powerboundedoperatorswhichgeneralizesaresultofVanCasteren [32]. In [2]Alemanand SuciuaskedifeveryuniformlyKreissboundedoperatorTonaBanachspace satisfiesthat limn→∞ Tn n =0.WesolvethisquestionforHilbertspaceoperatorsand,moreover,weprovethat, ifT isabsolutelyCes`aroboundedona Banach(Hilbert)space,then Tn =o(n)( Tn =o(n1 2),respectively).Asa consequence,everyabsolutelyCes`aroboundedoperatoronareflexiveBanach spaceismeanergodic.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleCesàro bounded operators in Banach spaces
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1007/S11854-020-0085-8
dc.subject.keywordBanach spaces


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)