Mostrar el registro sencillo del ítem

dc.contributor.authorArbelo Pérez, Manuel Imeldo 
dc.contributor.authorMarchetti, Francesca 
dc.contributor.authorWaske, Björn
dc.contributor.authorMoreno-Ruíz, Jose A.
dc.contributor.authorAlonso Benito, Alfonso
dc.contributor.otherFísica
dc.date.accessioned2024-03-05T21:05:19Z
dc.date.available2024-03-05T21:05:19Z
dc.date.issued2019
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/36910
dc.descriptionhttps://doi.org/10.3390/rs11212560
dc.description.abstractThis study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover di erent phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHRWorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesRemote Sensing, 2019, 11
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleMapping Chestnut Stands Using Bi-Temporal VHR Dataen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/rs11212560
dc.subject.keywordWorldViewen
dc.subject.keywordbi-temporal imageen
dc.subject.keywordextended morphological profilesen
dc.subject.keywordrandom foresten
dc.subject.keywordCanary Islandsen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • DFSCA. Física
    Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Física

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)