Mostrar el registro sencillo del ítem
Mapping Chestnut Stands Using Bi-Temporal VHR Data
dc.contributor.author | Arbelo Pérez, Manuel Imeldo | |
dc.contributor.author | Marchetti, Francesca | |
dc.contributor.author | Waske, Björn | |
dc.contributor.author | Moreno-Ruíz, Jose A. | |
dc.contributor.author | Alonso Benito, Alfonso | |
dc.contributor.other | Física | |
dc.date.accessioned | 2024-03-05T21:05:19Z | |
dc.date.available | 2024-03-05T21:05:19Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://riull.ull.es/xmlui/handle/915/36910 | |
dc.description | https://doi.org/10.3390/rs11212560 | |
dc.description.abstract | This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover di erent phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHRWorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.relation.ispartofseries | Remote Sensing, 2019, 11 | |
dc.rights | Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES | |
dc.title | Mapping Chestnut Stands Using Bi-Temporal VHR Data | en |
dc.type | info:eu-repo/semantics/article | |
dc.identifier.doi | 10.3390/rs11212560 | |
dc.subject.keyword | WorldView | en |
dc.subject.keyword | bi-temporal image | en |
dc.subject.keyword | extended morphological profiles | en |
dc.subject.keyword | random forest | en |
dc.subject.keyword | Canary Islands | en |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
DFSCA. Física
Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Física