Mostrar el registro sencillo del ítem

dc.contributor.authorArbelo Pérez, Manuel Imeldo 
dc.contributor.authorVeiras-Yanes, Jorge
dc.contributor.authorMartín-García, Laura
dc.contributor.authorCasas Más, Enrique José 
dc.contributor.otherFísica
dc.date.accessioned2024-03-05T21:05:24Z
dc.date.available2024-03-05T21:05:24Z
dc.date.issued2023
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/36911
dc.descriptionhttps://doi.org/10.3390/ECRS2023-15856
dc.description.abstractThis research evaluates the capability of Sentinel-2 satellite imagery for mapping Cymodocea nodosa meadows in El Médano (Tenerife, Canary Islands, Spain). A Level-1C image from 27 October 2022 was used. Atmospheric correction was addressed using the Sen2Cor tool, while Lyzenga’s method was employed to account for the water column effect. Three supervised classifications were performed using Random Forest, K-Nearest Neighbors (KNN) and KDTree-KNN algorithms. These classifications were complemented by an unsupervised classification and in situ data. Additionally, the amount of blue carbon sequestered by the C. nodosa in the study area was also estimated. Among the classifiers, the Random Forest algorithm produced the highest F1 scores, ranging from 0.96 to 0.99. The results revealed an average area of 237 ± 5 ha occupied by C. nodosa in the study region, translating to an average sequestration of 111,000 ± 2000 Mg CO2 . Notably, the seagrass meadows in this study area have the potential to offset the CO2 emissions produced by the industrial combustion plant sector throughout the Canary Islands. This research represents a significant step forward in the protection and understanding of these invaluable ecosystems. It effectively underlines the potential of Sentinel-2 satellite data to map seagrass meadows and highlights their crucial role in achieving net zero carbon emissions on our planet.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesEnvironmental Sciences Proceedings, 2023, 29, 10
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleMapping Seagrass Meadows and Assessing Blue Carbon Stocks Using Sentinel-2 Satellite Imagery: A Case Study in the Canary Islands, Spainen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/ECRS2023-15856
dc.subject.keywordCymodocea nodosaen
dc.subject.keywordmachine learning algorithmsen
dc.subject.keywordclassificationen
dc.subject.keywordecosystem servicesen
dc.subject.keywordInVESTen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • DFSCA. Física
    Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Física

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)