Mostrar el registro sencillo del ítem

dc.contributor.authorArbelo Pérez, Manuel Imeldo 
dc.contributor.authorCasas Más, Enrique José 
dc.contributor.authorMoreno-Ruiz, José A.
dc.contributor.authorHernández-Leal, Pedro A.
dc.contributor.authorReyes-Carlos, José A.
dc.contributor.otherFísica
dc.date.accessioned2024-03-05T21:05:51Z
dc.date.available2024-03-05T21:05:51Z
dc.date.issued2023
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/36916
dc.descriptionhttps://doi.org/10.3390/rs15143584
dc.description.abstractClimate change and the appearance of pests and pathogens are leading to the disappearance of palm groves of Phoenix canariensis in the Canary Islands. Traditional pathology diagnostic techniques are resource-demanding and poorly reproducible, and it is necessary to develop new monitoring methodologies. This study presents a tool to identify individuals infected by Serenomyces phoenicis and Phoenicococcus marlatti using UAV-derived multispectral images and machine learning. In the first step, image segmentation and classification techniques allowed us to calculate a relative prevalence of affected leaves at an individual scale for each palm tree, so that we could finally use this information with labelled in situ data to build a probabilistic classification model to detect infected specimens. Both the pixel classification performance and the model’s fitness were evaluated using different metrics such as omission and commission errors, accuracy, precision, recall, and F1-score. It is worth noting the accuracy of more than 0.96 obtained for the pixel classification of the affected and healthy leaves, and the good detection ability of the probabilistic classification model, which reached an accuracy of 0.87 for infected palm trees. The proposed methodology is presented as an efficient tool for identifying infected palm specimens, using spectral information, reducing the need for fieldwork and facilitating phytosanitary treatmenten
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesRemote Sensing, 2023, 15, 3584
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleUAV-Based Disease Detection in Palm Groves of Phoenix canariensis Using Machine Learning and Multispectral Imageryen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/rs15143584
dc.subject.keywordprobabilistic classification modellingen
dc.subject.keywordsupport vector machineen
dc.subject.keywordrandom foresten
dc.subject.keywordspectral separability analysisen
dc.subject.keywordstructure insensitive pigment indexen
dc.subject.keywordNDVIen
dc.subject.keywordCanary Islandsen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • DFSCA. Física
    Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Física

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)