Show simple item record

dc.contributor.advisorPérez González, Carlos Javier 
dc.contributor.authorAranda Elvira, Ainhoa
dc.contributor.otherMáster Universitario en Ciberseguridad e Inteligencia de Datos Por la Ull
dc.date.accessioned2024-06-11T09:15:19Z
dc.date.available2024-06-11T09:15:19Z
dc.date.issued2024
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/37756
dc.description.abstractEl objetivo de este Trabajo de Fin de Máster (TFM) es desarrollar una herramienta que mejore la precisión y rapidez en el diagnóstico de condiciones médicas mediante el uso de imágenes biomédicas, específicamente rayos X de tórax. El enfoque principal es utilizar técnicas de aprendizaje profundo, concretamente redes neuronales convolucionales (CNN), aprovechando el método de transfer learning. Esta herramienta se centrará en la clasificación de imágenes de rayos X en tres categorías: COVID-19, neumonía y normal. Al implementar modelos de CNN preentrenados como VGG16 y LeNet-5, y utilizando la biblioteca PyTorch Lightning para facilitar el entrenamiento y la gestión de experimentos, se busca proporcionar una solución eficaz que pueda ser integrada en entornos clínicos para ayudar a los profesionales de la salud a tomar decisiones más informadas y rápidas.es_ES
dc.description.abstractThe objective of this Master’s Thesis (TFM) is to develop a tool that enhances the accuracy and speed of diagnosing medical conditions using biomedical images, specifically chest X-rays. The main focus is to use deep learning techniques, particularly convolutional neural networks (CNN), leveraging the method of transfer learning. This tool will focus on classifying X-ray images into three categories: COVID-19, pneumonia, and normal. By implementing pre-trained CNN models such as VGG16 and LeNet-5, and using the PyTorch Lightning library to facilitate training and experiment management, the goal is to provide an effective solution that can be integrated into clinical settings to help healthcare professionals make more informed and rapid decisionsen
dc.format.mimetypeapplication/pdf
dc.language.isoes
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleClasificación de imágenes pulmonares con redes neuronales convolucionales
dc.typeinfo:eu-repo/semantics/masterThesis
dc.subject.keywordClasificación de imágenes, redes neuronales convolucionales, Python, Pytorch Lightninges_ES
dc.subject.keywordImage classification, convolutional neural networks, Python, Pytorch Lightningen


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess