Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Abreu, Domingo 
dc.contributor.authorGonzález Pinto, Severiano
dc.contributor.authorHairer, Ernst
dc.contributor.otherAnálisis Matemático
dc.contributor.otherGrupo de investigación ULL: "Métodos numéricos en ecuaciones diferenciales" https://www.ull.es/grupoinvestigacion/met-numericos-ec-diferenciales/
dc.date.accessioned2024-10-08T20:05:15Z
dc.date.available2024-10-08T20:05:15Z
dc.date.issued2021
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/39004
dc.description.abstractThe study of convergence of time integrators, applied to linear discretized PDEs, relies on the power boundedness of the stability matrix R. The present work investigates power boundedness in the maximum norm for ADI-type integrators in arbitrary space dimension m. Examples are the Douglas scheme, the Craig–Sneyd scheme, and W-methods with a low stage number. It is shown that for some important integrators ‖ Rn‖ ∞ is bounded in the maximum norm by a constant times min ((ln (1 + n)) m, (ln N) m) , where m is the space dimension of the PDE, and N≥ 2 is the space discretization parameter. For m≤ 2 sharper bounds are obtained that are independent of n and N.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesBIT Numerical Mathematics, 2021. Vol. 61 Nº 3
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titlePower boundedness in the maximum norm of stability matrices for ADI methods
dc.typeinfo:eu-repo/semantics/article
dc.subject.keywordParabolic PDEs
dc.subject.keywordtime integration
dc.subject.keywordAlternating Direction Implicit schemes
dc.subject.keywordstability
dc.subject.keywordpower boundedness
dc.subject.keywordmaximum norm


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)