Mostrar el registro sencillo del ítem
A unified formulation of splitting-based implicit time integration schemes
dc.contributor.author | Hernández Abreu, Domingo | |
dc.contributor.author | González Pinto, Severiano | |
dc.contributor.author | Pérez-Rodríguez, María S. | |
dc.contributor.author | Sarshar, Arash | |
dc.contributor.author | Roberts, Steven | |
dc.contributor.author | Sandu, Adrian | |
dc.contributor.other | Análisis Matemático | |
dc.contributor.other | Grupo de investigación ULL: "Métodos numéricos en ecuaciones diferenciales" | |
dc.date.accessioned | 2024-10-08T20:06:22Z | |
dc.date.available | 2024-10-08T20:06:22Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://riull.ull.es/xmlui/handle/915/39016 | |
dc.description.abstract | Splitting-based time integration approaches such as fractional step, alternating direction implicit, operator splitting, and locally one dimensional methods partition the system of interest into components, and solve individual components implicitly in a cost-effective way. This work proposes a unified formulation of splitting time integration schemes in the framework of general-structure additive Runge–Kutta (GARK) methods. Specifically, we develop implicit-implicit (IMIM) GARK schemes, provide the order conditions for this class, and explain their application to partitioned systems of ordinary differential equations. We show that classical splitting methods belong to the IMIM GARK family, and therefore can be studied in this unified framework. New IMIM-GARK splitting methods are developed and tested using parabolic systems. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.relation.ispartofseries | Journal of Computational Physics 448 (2022) 110766 | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.title | A unified formulation of splitting-based implicit time integration schemes | en |
dc.type | info:eu-repo/semantics/article | |
dc.identifier.doi | 10.1016/j.jcp.2021.110766 | |
dc.subject.keyword | General-structure additive | en |
dc.subject.keyword | Runge–Kutta methods | en |
dc.subject.keyword | Alternating direction implicit | en |
dc.subject.keyword | Implicit-explicit | en |
dc.subject.keyword | Implicit-implicit methods | en |