Mostrar el registro sencillo del ítem

dc.contributor.authorGómez González, José Francisco 
dc.contributor.author
dc.contributor.author
dc.contributor.otherIngeniería Industrial
dc.date.accessioned2024-10-08T20:08:22Z
dc.date.available2024-10-08T20:08:22Z
dc.date.issued2023
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/39038
dc.description.abstractBiometric identification uses person recognition techniques based on the extraction of some of their physical or biological properties, which make it possible to characterize and differentiate one person from another and provide irreplaceable and critical information that is suitable for application in security systems. The extraction of information from the electrical biosignal of the human brain has received a great deal of attention in recent years. Analysis of EEG signals has been widely used over the last century in medicine and as a basis for brain–machine interfaces (BMIs). In addition, the application of EEG signals for biometric recognition has recently been demonstrated. In this context, EEG-based biometric systems are often considered in two different applications: identification (oneto-many classification) and authentication (one-to-one or true/false classification). In this article, we establish a methodology for selecting and reducing the minimum number of EEG sensors necessary to carry out effective biometric identification of individuals. Two methodologies were applied, one based on principal component analysis and the other on the Wilcoxon signed-rank test in order to reduce the number of electrodes. This allowed us to identify, according to the methodology used, the areas of the cerebral cortex that would allow selection of the minimum number of electrodes necessary for the identification of individuals. The methodologies were applied to two databases, one with 13 people with self-collected recordings using low-cost EEG equipment, EMOTIV EPOC+, and another publicly available database with recordings from 109 people provided by the PhysioNet BCI.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesSensors 2023, 23, 4239
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleSelection of the minimum number of EEG sensors to guarantee biometric identification of individuals
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/s23094239
dc.subject.keywordEEG
dc.subject.keywordbiometrics
dc.subject.keywordbrain–computer interface (BCI)
dc.subject.keywordsupport vector machine (SVM)
dc.subject.keywordphase locking value (PLV)
dc.subject.keywordasymmetry index (AI)


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • DIIND. Ingeniería Industrial
    Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Ingeniería Industrial

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)