Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Abreu, Domingo 
dc.contributor.authorGonz´alez Pinto
dc.contributor.authorP´erez Rodr´ıguez, S.
dc.contributor.otherAnálisis Matemático
dc.contributor.otherGrupo de investigación ULL: "Métodos numéricos en ecuaciones diferenciales" https://www.ull.es/grupoinvestigacion/met-numericos-ec-diferenciales/
dc.date.accessioned2024-10-08T20:09:44Z
dc.date.available2024-10-08T20:09:44Z
dc.date.issued2019
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/39053
dc.description.abstractThe combination of Approximate Matrix Factorization (AMF), W-methods and iterative refinement in the solution of linear systems leads to the definition of AMFR-W-methods. This method class provides stable and accurate time integrators for parabolic PDEs with mixed derivatives discretized in space by means of Finite Differences (or Finite Volumes) in an arbitrary number of spatial dimensions. When the coefficients of the PDE actually depend on the spatial variables, the approximation of the pure diffusion coefficients by its respective maximum value produces simplified AMFR-W-methods requiring only a reduced number of LU decompositions of banded matrices with small bandwidth. The new class of methods is shown to be unconditionally stable regardless of the spatial dimension on a linear test problem relevant for homogeneous or periodic boundary conditions. Furthermore, high orders of convergence in PDE sense are observed when homogeneous boundary conditions are assumed. For general Robin boundary conditions, a simple algorithm is provided to convert a PDE problem into one where such conditions are homogeneous. Numerical experiments with the new simplified AMFR-W-methods on a linear parabolic problem with variable coefficients and the Heston problem from financial option pricing are presented.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesJournal of Computational and Applied Mathematics, Volume 387, 2021
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleAMFR-W-methods for parabolic problems with mixed derivates. Applications to the Heston model
dc.typeinfo:eu-repo/semantics/article
dc.subject.keywordParabolic Partial Differential equations with mixed derivatives
dc.subject.keywordW-methods
dc.subject.keywordAMF-W methods
dc.subject.keywordHeston model
dc.subject.keywordunconditional stability
dc.subject.keywordhomogeneous boundary conditions


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)