Mostrar el registro sencillo del ítem

dc.contributor.authorBetancort Montesinos, Moisés 
dc.contributor.authorCarrillo, Alexis
dc.contributor.otherPsicología Clínica, Psicobiología y Metodología
dc.date.accessioned2024-11-06T21:05:33Z
dc.date.available2024-11-06T21:05:33Z
dc.date.issued2023
dc.identifier.issn2414-4088
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/39866
dc.description.abstractStimulus Equivalence (SE) is a behavioural phenomenon in which organisms respond functionally to stimuli without explicit training. SE provides a framework in the experimental analysis of behaviour to study language, symbolic behaviour, and cognition. It is also a frequently discussed matter in interdisciplinary research, linking behaviour analysis with linguistics and neuroscience. Previous research has attempted to replicate SE with computational agents, mostly based on Artificial Neural Network (ANN) models. The aim of this paper was to analyse the effect of three Training Structures (TSs) on stimulus class formation in a simulation with ANNs as computational agents performing a classification task, in a matching-to-sample procedure. Twelve simulations were carried out as a product of the implementation of four ANN architectures on the three TSs. SE was not achieved, but two agents showed an emergent response on half of the transitivity test pairs on linear sequence TSs and reflexivity on one member of the class. The results suggested that an ANN with a large enough number of units in a hidden layer can perform a limited number of emergent relations within specific experimental conditions: reflexivity on B and transitivity on AC, when pairs AB and BC are trained on a three-member stimulus class and tested in a classification task. Reinforcement learning is proposed as the framework for further simulations.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesMultimodal Technologies and Interaction, v.7 n.4. 2023
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleDifferences of Training Structures on Stimulus Class Formation in Computational Agents
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/MTI7040039
dc.subject.keywordStimulus equivalence
dc.subject.keywordMachine learning
dc.subject.keywordMatching to sample
dc.subject.keywordArtificial neural network


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)