Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Plata, Israel 
dc.contributor.authorExpósito Izquierdo, Cristofer Juan 
dc.contributor.authorLalla Ruiz, Eduardo
dc.contributor.authorMelián Batista, María Belén 
dc.contributor.authorMoreno Vega, José Marcos 
dc.contributor.otherIngeniería Informática y de Sistemas
dc.date.accessioned2024-11-28T21:05:42Z
dc.date.available2024-11-28T21:05:42Z
dc.date.issued2022
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/40318
dc.description.abstractIn this paper, we address the Uncapacitated Plant Cycle Location Problem. It is a location-routing problem aimed at determining a subset of locations to set up plants dedicated to serving customers. We propose a mathematical formulation to model the problem. The high computational burden required by the formulation when tackling large scenarios encourages us to develop a Greedy Randomized Adaptive Search Procedure with Probabilistic Learning Model. Its rationale is to divide the problem into two interconnected sub-problems. The computational results indicate the high performance of our proposal in terms of the quality of reported solutions and computational time. Specifically, we have overcome the best approach from the literature on a wide range of scenarios.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesInternational Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº2
dc.rightsNo autorizo la publicación del documento
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleA greedy randomized adaptive search with probabilistic learning for solving the uncapacitated plant cycle location problemen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.9781/ijimai.2022.04.003
dc.subject.keywordGreedy Randomized Adaptive Search Procedureen
dc.subject.keywordProbabilistic Learning Modelen
dc.subject.keywordUncapacitated Plant Cycle Location Problemen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem