• español
  • English
Universidad de La Laguna
  • Contact
    • Contact form
    • Phone numbers
    • riull@ull.es
  • Help and support
    • University Library
    • Information about the Respository
    • Document upload
    • Support to research
    • español
    • English
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
Universidad de La Laguna

Browse

All of RIULLCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

My Account

Login

Statistics

View Usage Statistics

A magmatic source for fumaroles and diffuse degassing from the summit crater of Teide Volcano (Tenerife, Canary Islands): A geochemical evidence for the 2004-2005 seismic-volcanic crisis

Thumbnail
View/Open
Export Citations
MendeleyRefworks
Share
Collections
  • DFSCA. Física
Complete registry
Show full item record
Author
Barrancos Martínez, JoséULL authority; Melián, G.; Tassi, F.; Pérez, N.; Hernández, P.; Sortino, F.; Vaselli, O.; Padrón, E.; Nolasco, D.; Padilla, G.; Rodríguez, F.; Dionis, S.; Calvo, D.; Notsu, K.; Sumino, H.
Date
2012
URI
http://riull.ull.es/xmlui/handle/915/40615
Abstract
The present work reports the results of 15 studies of diffuse CO2 degassing performed at Teide Volcano crater (Canary Island, Spain) and the chemical and isotopic compositions of fluids discharged from a fumarolic field located at the top of the volcano as measured between 1991 and 2010. A higher contribution of magmatic gases accompanied by enhanced total diffuse CO2 emissions were observed in relation with a seismic crisis that occurred in Tenerife Island between 2001 and 2005, with the main peak of seismic activity between April and June 2004. A significant pulse in total diffuse CO2 emission was observed at the crater of Teide (up to 26.3 t day−1) in 2001. In December 2003, the chemical composition of the Teide fumarole changed significantly, including the appearance of SO2,an increase in the HCl and CO concentrations and in the C2H6/ C2H4 and C3H8/C3H6 ratios, and a decrease in the H2S, CH4, and C6H6 concentrations and in the gas/steam ratio. Afewmonths after a drastic decrease in seismic activity, the SO2, HCl, and CO concentrations and the C2H6/C2H4 and C3H8/C3H6 ratios strongly decreased, whereas the CH4 and C6H6 concentrations and the gas/steam ratios increased. According to the trends shown by both the geochemical parameters and the seismic signals late in the observation period, the risk of a rejuvenation of volcanic activity at Teide is considered to be low. The associated temporal changes in seismic activity and magmatic degassing indicate that geophysical and fluid geochemistry signals in this system are related. Future monitoring programs aimed at mitigating volcanic hazard on Tenerife Island should involve coupled geophysical and geochemical studies.
Web ULLTwitterFacebook
Universidad de La Laguna

Universidad de La Laguna

Pabellón de Gobierno, C/ Padre Herrera s/n. | 38200 | Apartado Postal: 456 | San Cristóbal de La Laguna, Santa Cruz de Tenerife - España | Teléfono: (+34) 922 31 90 00