Mostrar el registro sencillo del ítem

dc.contributor.authorLeón Hernández, Coromoto 
dc.contributor.authorMahrach, Mohammed
dc.contributor.authorMiranda Valladares, Gara 
dc.contributor.authorSegredo González, Eduardo Manuel 
dc.contributor.otherIngeniería Informática y de Sistemas
dc.contributor.otherAlgoritmos y lenguajes paralelos
dc.date.accessioned2024-12-20T21:05:13Z
dc.date.available2024-12-20T21:05:13Z
dc.date.issued2020
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/40616
dc.description.abstractOne of the main components of most modern Multi-Objective Evolutionary Algorithms (MOEAs) is to maintain a proper diversity within a population in order to avoid the premature convergence problem. Due to this implicit feature that most MOEAs share, their application for Single-Objective Optimization (SO) might be helpful, and provides a promising field of research. Some common approaches to this topic are based on adding extra—and generally artificial—objectives to the problem formulation. However, when applying MOEAs to implicit Multi-Objective Optimization Problems (MOPs), it is not common to analyze how effective said approaches are in relation to optimizing each objective separately. In this paper, we present a comparative study between MOEAs and Single-Objective Evolutionary Algorithms (SOEAs) when optimizing every objective in a MOP, considering here the bi-objective case. For the study, we focus on twowell-known and widely studied optimization problems: the Knapsack Problem (KNP) and the Travelling Salesman Problem (TSP). The experimental study considers three MOEAs and two SOEAs. Each SOEAisapplied independently for each optimization objective, such that the optimized values obtained for each objective can be compared to the multi-objective solutions achieved by the MOEAs. MOEAs,however, allow optimizing two objectives at once, since the resulting Pareto fronts can be used to analyze the endpoints, i.e., the point optimizing objective 1 and the point optimizing objective 2. The experimental results show that, although MOEAs have to deal with several objectives simultaneously, they can compete with SOEAs, especially when dealing with strongly correlated or large instances.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesMathematics 2020, 8, 2018
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleComparison between single and multi-objective evolutionary algorithms to solve the knapsack problem and the travelling salesman problemen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/math8112018
dc.subject.keywordmulti-objective optimizationen
dc.subject.keywordsingle-objective optimizationen
dc.subject.keywordevolutionary algorithmen
dc.subject.keywordknapsack problemen
dc.subject.keywordtravelling salesman problemen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)