Mostrar el registro sencillo del ítem

dc.contributor.authorGómez Cárdenes, Óscar 
dc.contributor.authorMarichal Hernández, José Gil
dc.contributor.authorSon, Jung Young
dc.contributor.authorPérez Jiménez, Rafael
dc.contributor.authorRodríguez Ramos, José Manuel
dc.contributor.otherIngeniería Industrial
dc.date.accessioned2025-01-22T21:05:13Z
dc.date.available2025-01-22T21:05:13Z
dc.date.issued2023
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/41146
dc.description.abstractIn this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR) applications. These methods take the partial discrete Radon transform as a building block. The first proposed method uses overlapping tiles for obtaining good angle precision while maintaining good spatial precision. The second one uses an encoder-decoder structure inspired by state-of-the-art convolutional neural networks for segmentation while maintaining a classical processing framework, thus not requiring training. It is shown that the second method's processing time is lower than the video acquisition time with a 1024 × 1024 input on a CPU, which had not been previously achieved. The accuracy it obtained on datasets widely used by the scientific community was almost on par with that obtained using the most-recent state-of-the-art methods using deep learning. Beyond the challenges of those datasets, the method proposed is particularly well suited to image sequences taken with short exposure and exhibiting motion blur and lens blur, which are expected in a real-world AR scenario. Two implementations of the proposed methods are made available to the scientific community: one for easy prototyping and one optimised for parallel implementation, which can be run on desktop and mobile phone CPUs.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesSensors 2023, 23, 13, 6109
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rightsinfo:eu-repo/semantics/openAccess.
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleAn Encoder-Decoder Architecture within a Classical Signal-Processing Framework for Real-Time Barcode Segmentation
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/s23136109
dc.subject.keywordRadon transform
dc.subject.keywordscale-space methods
dc.subject.keywordmultiscale DRT
dc.subject.keywordbarcodes
dc.subject.keywordencoder–decoder
dc.subject.keywordpixelwise segmentation
dc.subject.keywordclassical signal processing


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • DIIND. Ingeniería Industrial
    Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Ingeniería Industrial

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)