Mostrar el registro sencillo del ítem
An Encoder-Decoder Architecture within a Classical Signal-Processing Framework for Real-Time Barcode Segmentation
dc.contributor.author | Gómez Cárdenes, Óscar | |
dc.contributor.author | Marichal Hernández, José Gil | |
dc.contributor.author | Son, Jung Young | |
dc.contributor.author | Pérez Jiménez, Rafael | |
dc.contributor.author | Rodríguez Ramos, José Manuel | |
dc.contributor.other | Ingeniería Industrial | |
dc.date.accessioned | 2025-01-22T21:05:13Z | |
dc.date.available | 2025-01-22T21:05:13Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://riull.ull.es/xmlui/handle/915/41146 | |
dc.description.abstract | In this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR) applications. These methods take the partial discrete Radon transform as a building block. The first proposed method uses overlapping tiles for obtaining good angle precision while maintaining good spatial precision. The second one uses an encoder-decoder structure inspired by state-of-the-art convolutional neural networks for segmentation while maintaining a classical processing framework, thus not requiring training. It is shown that the second method's processing time is lower than the video acquisition time with a 1024 × 1024 input on a CPU, which had not been previously achieved. The accuracy it obtained on datasets widely used by the scientific community was almost on par with that obtained using the most-recent state-of-the-art methods using deep learning. Beyond the challenges of those datasets, the method proposed is particularly well suited to image sequences taken with short exposure and exhibiting motion blur and lens blur, which are expected in a real-world AR scenario. Two implementations of the proposed methods are made available to the scientific community: one for easy prototyping and one optimised for parallel implementation, which can be run on desktop and mobile phone CPUs. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.relation.ispartofseries | Sensors 2023, 23, 13, 6109 | |
dc.rights | Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional) | |
dc.rights | info:eu-repo/semantics/openAccess. | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES | |
dc.title | An Encoder-Decoder Architecture within a Classical Signal-Processing Framework for Real-Time Barcode Segmentation | |
dc.type | info:eu-repo/semantics/article | |
dc.identifier.doi | 10.3390/s23136109 | |
dc.subject.keyword | Radon transform | |
dc.subject.keyword | scale-space methods | |
dc.subject.keyword | multiscale DRT | |
dc.subject.keyword | barcodes | |
dc.subject.keyword | encoder–decoder | |
dc.subject.keyword | pixelwise segmentation | |
dc.subject.keyword | classical signal processing |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
DIIND. Ingeniería Industrial
Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Ingeniería Industrial