Mostrar el registro sencillo del ítem

dc.contributor.authorNovoa Hernández, Pavel 
dc.contributor.authorKordestani, Javidan Kazemi
dc.contributor.authorRanginkaman, Amir Ehsan
dc.contributor.authorMeybodi, Mohammad Reza
dc.contributor.otherIngeniería Informática y de Sistemas
dc.date.accessioned2025-01-28T21:05:35Z
dc.date.available2025-01-28T21:05:35Z
dc.date.issued2019
dc.identifier.issn2210-6502
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/41293
dc.description.abstractThis paper presents a novel framework for improving the performance of multi-population algorithms in solving dynamic optimization problems (DOPs). The fundamental idea of the proposed framework is to incorporate the concept of scheduling into multi-population methods with the aim to allocate more function evaluations to the best performing sub-populations. Two methods are developed based on the proposed framework, each of which uses a different approach for scheduling the sub-populations. The first method combines the quality of subpopulations and the degree of diversity among them into a single feedback parameter for detecting the best performing sub-population. The second method uses the learning automata as the central unit for performing the scheduling operation. In order to validate the applicability of the proposed methods, they are incorporated into three well-known algorithms for DOPs. The experimental results show the efficiency of the scheduling approach for improving the multi-population methods on the moving peaks benchmark (MPB) and generalized dynamic benchmark generator.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesSwarm and Evolutionary Computation, 44, 2019
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleA novel framework for improving multi-population algorithms for dynamic optimization problems: a scheduling approach
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.swevo.2018.09.002
dc.subject.keywordDynamic optimization problemsen
dc.subject.keywordDifferential evolutionen
dc.subject.keywordMoving peaks benchmarken
dc.subject.keywordEvolutionary computationen
dc.subject.keywordSchedulingen
dc.subject.keywordLearning automataen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)