Mostrar el registro sencillo del ítem
A novel framework for improving multi-population algorithms for dynamic optimization problems: a scheduling approach
dc.contributor.author | Novoa Hernández, Pavel | |
dc.contributor.author | Kordestani, Javidan Kazemi | |
dc.contributor.author | Ranginkaman, Amir Ehsan | |
dc.contributor.author | Meybodi, Mohammad Reza | |
dc.contributor.other | Ingeniería Informática y de Sistemas | |
dc.date.accessioned | 2025-01-28T21:05:35Z | |
dc.date.available | 2025-01-28T21:05:35Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 2210-6502 | |
dc.identifier.uri | http://riull.ull.es/xmlui/handle/915/41293 | |
dc.description.abstract | This paper presents a novel framework for improving the performance of multi-population algorithms in solving dynamic optimization problems (DOPs). The fundamental idea of the proposed framework is to incorporate the concept of scheduling into multi-population methods with the aim to allocate more function evaluations to the best performing sub-populations. Two methods are developed based on the proposed framework, each of which uses a different approach for scheduling the sub-populations. The first method combines the quality of subpopulations and the degree of diversity among them into a single feedback parameter for detecting the best performing sub-population. The second method uses the learning automata as the central unit for performing the scheduling operation. In order to validate the applicability of the proposed methods, they are incorporated into three well-known algorithms for DOPs. The experimental results show the efficiency of the scheduling approach for improving the multi-population methods on the moving peaks benchmark (MPB) and generalized dynamic benchmark generator. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.relation.ispartofseries | Swarm and Evolutionary Computation, 44, 2019 | |
dc.rights | Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES | |
dc.title | A novel framework for improving multi-population algorithms for dynamic optimization problems: a scheduling approach | |
dc.type | info:eu-repo/semantics/article | |
dc.identifier.doi | 10.1016/j.swevo.2018.09.002 | |
dc.subject.keyword | Dynamic optimization problems | en |
dc.subject.keyword | Differential evolution | en |
dc.subject.keyword | Moving peaks benchmark | en |
dc.subject.keyword | Evolutionary computation | en |
dc.subject.keyword | Scheduling | en |
dc.subject.keyword | Learning automata | en |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
DIINF. Ingeniería Informática y de Sistemas
Documentos de investigación (artículos, libros, capítulos de libros, ponencias...) publicados por investigadores del Departamento de Ingeniería Informática y de Sistemas