• español
  • English
Universidad de La Laguna
  • Contact
    • Contact form
    • Phone numbers
    • riull@ull.es
  • Help and support
    • University Library
    • Information about the Respository
    • Document upload
    • Support to research
    • español
    • English
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
Universidad de La Laguna

Browse

All of RIULLCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

My Account

Login

Statistics

View Usage Statistics

Hydrazine-modified topology-dependent conductivity of cyclic NDI as a molecular circuit

Thumbnail
View/Open
Export Citations
MendeleyRefworks
Share
Collections
  • Instituto Universitario de Biorgánica Antonio González
Complete registry
Show full item record
Author
Díaz Díaz, David; Nandi, Sujay Kumar; Haldar, Debasish
Date
2022
URI
http://riull.ull.es/xmlui/handle/915/42204
Abstract
Significant conductance enhancement can be achieved by topology modification of n-type semiconducting naphthalenediimide (NDI) as a molecular circuit. Hydrazine not only reduces electron-deficient NDI to NDI•−radical anions but also modifies the topology by selectively replacing the amino acid methyl esters from NDI 1 and forms a cyclic NDI nanorim. On treatment with hydrazine, the NDI 1 emission band at 525 nm gradually disappears, and a new band appears at 607 nm, presumably due to NDI oligomer formation. Eventually, a shiny black, almost insoluble precipitate of the NDI nanorim appeared. The cyclic NDI nanorim was characterized by powder X-ray diffraction, high-resolution mass spectrometry, Fourier transform infrared, and 13C CP-MAS NMR spectroscopy. Cyclic voltammetry (CV) of NDI 1 possesses two sequential one-electron cathodic waves at −0.4661 and −0.9456 V versus Ag/Ag+ due to NDI•− and NDI2−formation. However, CV of the NDI nanorim reveals four distinct reversible oneelectron waves due to electronic communication between the four NDI redox centers within the nanorim. The I−V measurements show sevenfold conductance enhancements by topology modification from linear NDI to a nanorim.
Web ULLTwitterFacebook
Universidad de La Laguna

Universidad de La Laguna

Pabellón de Gobierno, C/ Padre Herrera s/n. | 38200 | Apartado Postal: 456 | San Cristóbal de La Laguna, Santa Cruz de Tenerife - España | Teléfono: (+34) 922 31 90 00