• español
  • English
Universidad de La Laguna
  • Contact
    • Contact form
    • Phone numbers
    • riull@ull.es
  • Help and support
    • University Library
    • Information about the Respository
    • Document upload
    • Support to research
    • español
    • English
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
Universidad de La Laguna

Browse

All of RIULLCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

My Account

Login

Statistics

View Usage Statistics

A novel formulation design based on heterotemplated solid lipid microparticles to improve the solubility of anti-inflammatory piroxicam for oral administration

Thumbnail
View/Open
Export Citations
MendeleyRefworks
Share
Collections
  • Instituto Universitario de Biorgánica Antonio González
Complete registry
Show full item record
Author
Díaz Díaz, David; Mumuni, Momoh A.; Amarachi, Chime S.; Victor, Anih C.; Romanus, Omeh C.; Ogbonna, Josephat; Aminu, Nafiu; James, Oyeniyi Y.; Muhammed, Achor; Franklin, Kenechukwu C.
Date
2022
URI
http://riull.ull.es/xmlui/handle/915/42207
Abstract
The aim of the work was to formulate piroxicam-loaded solid lipid microparticles (SLMs) using natural biodegradable lipids and to evaluate the in vitro and in vivo properties of the formulations. The lipid matrix composition consisted of 1 : 2 ratios of dika wax from Irvingia gabonensis and goat fat or beeswax. Varying amounts of the drug (0.5, 0.25 and 0.1%) were loaded into the SLMs. The SLMs were formulated using a melt homogenization method and analysed using animal model standard methods. In vivo anti-inflammatory studies were performed using Wistar rats and showed stable formulations with spherical particles within the range of 35 0.577 to 50 1.527 mm. The encapsulation efficiency (EE) ranged from 43.20% to 89.03% and was significantly affected by the amount of drug loaded (p o 0.05). The formulations also exhibited a stable pH from 24 h to 2 months, meaning that there was no degradation of the active pharmaceutical ingredient (API) and the excipients. The in vitro drug release increased with the amount of drug loaded with an approximately 86% release at 600 min for formulations containing 0.5% drug, and 24% for formulations with 0.1% drug. Absorption of the SLMs was enhanced compared with a market formulation and the SLMs had better anti-inflammatory properties, which attests to the effects of the lipids at improving the oral absorption of piroxicam. Hence, piroxicam-loaded SLMs are a possible alternative to the current market formulations.
Web ULLTwitterFacebook
Universidad de La Laguna

Universidad de La Laguna

Pabellón de Gobierno, C/ Padre Herrera s/n. | 38200 | Apartado Postal: 456 | San Cristóbal de La Laguna, Santa Cruz de Tenerife - España | Teléfono: (+34) 922 31 90 00