• español
  • English
Universidad de La Laguna
  • Contact
    • Contact form
    • Phone numbers
    • riull@ull.es
  • Help and support
    • University Library
    • Information about the Respository
    • Document upload
    • Support to research
    • español
    • English
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
Universidad de La Laguna

Browse

All of RIULLCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

My Account

Login

Statistics

View Usage Statistics

Algoritmos inteligentes para el Shared Customer Collaboration Vehicle Routing Problem centrado en el cliente

Thumbnail
View/Open
Export Citations
MendeleyRefworks
Share
Collections
  • TFG. Matemáticas
Complete registry
Show full item record
Author
Rodríguez Martín, Gabriela
Date
2025
URI
http://riull.ull.es/xmlui/handle/915/43024
Abstract
Esta memoria propone un modelo colaborativo de optimizaci´on de rutas para log´ıstica urbana, combinando el Shared Customer Collaboration Vehicle Routing Problem (SCC−VRP) con el Cumulative Capacitated Vehicle Routing Problem (CCVRP). El SCC−VRP permite a transportistas independientes colaborar para atender clientes compartidos, reduciendo costes, mientras que el CCVRP prioriza minimizar los tiempos acumulados de llegada, mejorando la eficiencia del servicio. Se propone un nuevo modelo denominado Transporte Colaborativo con Objetivo de Latencia, integrando ambos enfoques, con dos formulaciones matem´aticas: basada en veh´ıculos (VF) y en la carga (LF). Ambas se resuelven con Programaci´on Lineal Entera Mixta implementadas en Python utilizando el solver Gurobi y se validan mediante pruebas computacionales.
 
This memory proposes a collaborative route optimization model for urban logistics, combining the Shared Customer Collaboration Vehicle Routing Problem (SCC-VRP) with the Cumulative Capacitated Vehicle Routing Problem (CCVRP). The SCC-VRP allows independent carriers to collaborate in serving shared customers, reducing costs, while the CCVRP prioritizes minimizing cumulative arrival times to improve service efficiency. A new model, called Collaborative Transportation with Latency Objective, is introduced by integrating both approaches, with two mathematical formulations: vehicle-based (VF) and load-based (LF). Both are solved using Mixed-Integer Linear Programming, implemented in Python with the Gurobi solver, and validated through computational experiments.
 
Web ULLTwitterFacebook
Universidad de La Laguna

Universidad de La Laguna

Pabellón de Gobierno, C/ Padre Herrera s/n. | 38200 | Apartado Postal: 456 | San Cristóbal de La Laguna, Santa Cruz de Tenerife - España | Teléfono: (+34) 922 31 90 00