RT info:eu-repo/semantics/article T1 Ganglion cell layer analysis with deep learning in glaucoma diagnosis A1 Sigut Saavedra, José Francisco A1 Díaz Alemán, Valentín Tinguaro A1 Fumero Batista, Francisco José A1 Alayón Miranda, Silvia A1 Ángel Pereira, Denisse A1 Arteaga Hernández, Víctor Javier A2 Ingeniería Informática y de Sistemas A2 GAIM (Grupo de Análisis de Imágenes Médicas) K1 Glaucoma K1 Deep learning K1 Tomography K1 Ganglion cells AB Objective: To determine and compare the diagnostic precision in glaucoma oftwo deep learning models using infrared images of the optic nerve, eye fundus, and the ganglion cell layer(GCL).Methods: We have selected a sample of normal and glaucoma patients. Three infrared imageswere registered with a spectral-domain optical coherence tomography (SD-OCT). The firstcorresponds to the confocal scan image of the fundus, the second is a cut-out of the firstcentered on the optic nerve, and the third was the SD-OCT image of the GCL. Our deeplearning models are developed on the MatLab platform with the ResNet50 and VGG19 pretrained neural networks.Results: 498 eyes of 298 patients were collected. Ofthe 498 eyes, 312 are glaucoma and 186 arenormal. In the test, the precision of the models was 96% (ResNet50) and 96% (VGG19) for theGCL images, 90% (ResNet50) and 90% (VGG19) for the optic nerve images and 82% (ResNet50)and 84% (VGG19) for the fundus images. The ROC area in the test was 0.96 (ResNet50) and0.97 (VGG19) for the GCL images, 0.87 (ResNet50) and 0.88 (VGG19) for the optic nerve images,and 0.79 (ResNet50) and 0.81 (VGG19) for the fundus images.Conclusions: Both deep learning models, applied to the GCL images, achieve high diagnosticprecision, sensitivity and specificity in the diagnosis of glaucoma YR 2021 FD 2021 LK http://riull.ull.es/xmlui/handle/915/35141 UL http://riull.ull.es/xmlui/handle/915/35141 LA en NO https://doi.org/10.1016/j.oftale.2020.09.015 DS Repositorio institucional de la Universidad de La Laguna RD 13-nov-2025