RT info:eu-repo/semantics/article T1 Galaxy classification: deep learning on the OTELO and COSMOS databases A1 Cepa Nogue, Jorge A1 Diego, José A. de A1 Nadolny, Jakub A1 Bongiovanni, Ángel A1 Pović, Mirjana A1 Pérez García, Ana María A1 Padilla Torres, Carmen P. A1 Lara-López, Maritza A. A1 Cerviño, Miguel A1 Pérez Martínez, Ricardo A1 Alfaro, Emilio J. A1 Castañeda, Héctor O. A1 Fernández-Lorenzo, Miriam A1 Gallego, Jesús A1 González, J. Jesús A1 González-Serrano, J. Ignacio A1 Pintos-Castro, Irene A1 Sánchez-Portal, Miguel A1 Cedrés, Bernabé A1 González-Otero, Mauro A1 Jones, D. Heath A1 Bland-Hawthorn, Joss A2 Astrofísica A2 Grupo de investigación: Evolución de galaxias K1 galaxies: general K1 methods: statistical AB Context. The accurate classification of hundreds of thousands of galaxies observed in modern deep surveys is imperative if we want to understand the universe and its evolution.Aims. Here, we report the use of machine learning techniques to classify early- and late-type galaxies in the OTELO and COSMOS databases using optical and infrared photometry and available shape parameters: either the Sérsic index or the concentration index.Methods. We used three classification methods for the OTELO database: (1) u − r color separation, (2) linear discriminant analysis using u − r and a shape parameter classification, and (3) a deep neural network using the r magnitude, several colors, and a shape parameter. We analyzed the performance of each method by sample bootstrapping and tested the performance of our neural network architecture using COSMOS data.Results. The accuracy achieved by the deep neural network is greater than that of the other classification methods, and it can also operate with missing data. Our neural network architecture is able to classify both OTELO and COSMOS datasets regardless of small differences in the photometric bands used in each catalog.Conclusions. In this study we show that the use of deep neural networks is a robust method to mine the cataloged data. YR 2020 FD 2020 LK http://riull.ull.es/xmlui/handle/915/35382 UL http://riull.ull.es/xmlui/handle/915/35382 LA en DS Repositorio institucional de la Universidad de La Laguna RD 18-nov-2024