RT info:eu-repo/semantics/article T1 Power boundedness in the maximum norm of stability matrices for ADI methods A1 Hernández Abreu, Domingo A1 González Pinto, Severiano A1 Hairer, Ernst A2 Análisis Matemático A2 Grupo de investigación ULL: "Métodos numéricos en ecuaciones diferenciales" https://www.ull.es/grupoinvestigacion/met-numericos-ec-diferenciales/ K1 Parabolic PDEs K1 time integration K1 Alternating Direction Implicit schemes K1 stability K1 power boundedness K1 maximum norm AB The study of convergence of time integrators, applied to linear discretized PDEs, relies on the power boundedness of the stability matrix R. The present work investigates power boundedness in the maximum norm for ADI-type integrators in arbitrary space dimension m. Examples are the Douglas scheme, the Craig–Sneyd scheme, and W-methods with a low stage number. It is shown that for some important integrators ‖ Rn‖ ∞ is bounded in the maximum norm by a constant times min ((ln (1 + n)) m, (ln N) m) , where m is the space dimension of the PDE, and N≥ 2 is the space discretization parameter. For m≤ 2 sharper bounds are obtained that are independent of n and N. YR 2021 FD 2021 LK http://riull.ull.es/xmlui/handle/915/39004 UL http://riull.ull.es/xmlui/handle/915/39004 LA en DS Repositorio institucional de la Universidad de La Laguna RD 25-nov-2024