RT info:eu-repo/semantics/article T1 Convergence in the maximum norm of ADI-type methods for parabolic problems A1 Hernández Abreu, Domingo A1 Gonz´alez-Pinto, S. A2 Análisis Matemático A2 Grupo de investigación ULL: "Métodos numéricos en ecuaciones diferenciales" https://www.ull.es/grupoinvestigacion/met-numericos-ec-diferenciales/ K1 Parabolic PDEs K1 Time integration K1 Stability K1 Power boundedness K1 Convergence K1 Maximum norm K1 Approximate Matrix Factorization K1 W-methods K1 Alternating Direction Implicit schemes AB Results on unconditional convergence in the maximum norm for ADI-type methods, such as the Douglas method, applied to the time integration of parabolic problems are quite difficult to get, mainly when the number of space dimensions m is greater than two. Such a result is obtained here under quite general conditions on a linear PDE problem in case that time-independent Dirichlet boundary conditions are imposed. To get these bounds, a theorem that guarantees, in some sense, power-boundeness of the stability function independently of both the space and time resolutions is proved. SN 0168-9274 YR 2022 FD 2022 LK http://riull.ull.es/xmlui/handle/915/39010 UL http://riull.ull.es/xmlui/handle/915/39010 LA en DS Repositorio institucional de la Universidad de La Laguna RD 18-dic-2024