RT info:eu-repo/semantics/article T1 Convergence in l2 and l¿ norm of one-stage AMF-W-methods for parabolic problems. A1 Hernández Abreu, Domingo A1 González Pinto, Severiano A1 E. Hairer A2 Análisis Matemático A2 Grupo de investigación ULL: "Métodos numéricos en ecuaciones diferenciales" https://www.ull.es/grupoinvestigacion/met-numericos-ec-diferenciales/ K1 Parabolic PDEs K1 time integration K1 W-methods K1 Approximate Matrix Factorization K1 Alternating Direction Implicit schemes K1 convergence AB For the numerical solution of parabolic problems with linear diffusion term, linearly implicit time integrators are considered. To reduce the cost on the linear algebra level an alternating direction implicit (ADI) approach is applied (so-called AMF-W-methods). The present work proves optimal bounds of the global error for two classes of 1-stage methods in the Euclidean 2 norm as well as in the maximum norm ∞. The bounds are valid under a very weak step size restriction that covers PDE-convergence, where the time step size is of the same order as the spatial grid size. YR 2020 FD 2020 LK http://riull.ull.es/xmlui/handle/915/39033 UL http://riull.ull.es/xmlui/handle/915/39033 LA Inglés DS Repositorio institucional de la Universidad de La Laguna RD 27-dic-2024