RT info:eu-repo/semantics/article T1 Classification of belts status based on an automatic generator of fuzzy rules base system A1 Hernández López, Ángela A1 Marichal Plasencia, Graciliano Nicolás A1 Ávila Prats, Deivis A1 García-Prada, Juan Carlos A2 Ingeniería CivilNáutica y Marítima A2 INGEMAR K1 Classification K1 Vibration K1 Genetic neuro-fuzzy K1 Belts AB The automation of maintenance is agrowingfieldandconsequently, predictive maintenance is achieving more importance. The main objective is to predict a breakage before it happens. In order to reach this, it is necessary to have an intelligent classification technique that analyzes the state of the key breakage elements and evaluates whether a replacement is necessary or not. This work presents a study to classify belts according to their state of use. For training, vibration data have been collected on a test bench using new belts, belts with half use and belts near the breaking point. The processing of these vibrations allows for extracting the characteristic parameters that can be related to its state of use, and then, after the initial analysis, these values are used as inputs for training the intelligent system. In particular, the Genetic Neuro-Fuzzy (GNF) technique has been chosen and, with the proposed algorithm, more detailed Fuzzy rules are obtained. Once the algorithm has been trained, it is possible to establish a relationship between the vibration shown by the belt and its state of use. The achieved results show that a good classifier has been built. YR 2024 FD 2024 LK http://riull.ull.es/xmlui/handle/915/39564 UL http://riull.ull.es/xmlui/handle/915/39564 LA en DS Repositorio institucional de la Universidad de La Laguna RD 24-nov-2024