RT info:eu-repo/semantics/article T1 PDE-convergence in euclidean norm of AMF-W methods for multidimensional linear parabolic problems A1 Hernández Abreu, Domingo A1 González Pinto, Severiano A1 Hairer, Ernst A2 Análisis Matemático A2 Grupo de investigación ULL: "Métodos numéricos en ecuaciones diferenciales" K1 multidimensional parabolic problem K1 ADI-type AMF-W method K1 PDE-convergence K1 order conditions K1 fractional order AB This work considers space-discretised parabolic problems on a rectangular domain subject to Dirichlet boundary conditions. For the time integration s-stage AMF-W-methods, which are ADI (alternating direction implicit) type integrators, are considered. They are particularly efficient when the space dimension m of the problem is large. Optimal results on PDE-convergence have recently been obtained in [J. Comput. Appl. Math., 417:114642, 2023] for the case m = 2. The aim of the present work is to extend these results to arbitrary space dimension m ≥ 3. It is explained which order statements carry over from the case m = 2 to m ≥ 3, and which do not. YR 2024 FD 2024 LK http://riull.ull.es/xmlui/handle/915/40424 UL http://riull.ull.es/xmlui/handle/915/40424 LA en DS Repositorio institucional de la Universidad de La Laguna RD 18-dic-2024