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Resumen

El trabajo realizado en este proyecto consiste en estudiar la formación y evolución de una
galaxia aislada, bajo el paradigma del modelo ΛCDM y utilizando el código EAGLE (una versión
modificada del código de simulación Gadget). Con el objetivo de analizar el problema que se
encuentra en este modelo con los perfiles de densidad de la materia oscura en las regiones cen-
trales (cusp-core discrepancy), hemos ejecutado una serie de simulaciones entre las que vaŕıan
diferentes parámetros encargados de describir la f́ısica detrás del comportamiento de los bariones.

Este es uno de los problemas que todav́ıa presenta el modelo ΛCDM, que para galaxias
enanas predice un perfil de densidad para la materia oscura que no se corresponde con lo que
indican las observaciones. Mientras que observaciones obtenidad mediante curvas de velocidad
obtienen un perfil central plano, el modelo predice un perfil de Navarro, Frenk & White, que da
una sobredensidad en la región central.

El procedimiento a seguir es el siguiente: utilizamos el modelo ΛCDM para generar una sobre-
densidad inicial que colapse al redshift que a nosotros nos interesa (z = 4). Esta sobredensidad
consistirá en una distribución esférica de part́ıculas tanto de materia oscura como de gas, que
siguen un perfil de densidad inicial ∝ 1/r, a las cuales se le añade una velocidad inicial con tres
componentes: Flujo de Hubble, necesario para simular la expansión del Universo, rotación en
forma de sólido ŕıgido, para imitar el efecto de los torques de marea que provienen de las estruc-
turas a gran escala, y una componente gaussiana, que añade aleatoriedad. La contribución en
masa de cada componente (gas o materia oscura) se establece según los parámetros cosmológicos
o el parámetro fgas, que permite fijar la fracción de masa que corresponde al gas, en el caso en
que se deje la fracción que corresponde con la cosmoloǵıa este parámetro toma el valor 0.16.

Estas condiciones iniciales se introducen al código GADGET, en su versión modificada para
el proyecto EAGLE, un código en paralelo de tipo TreeSPH, que nos permite estudiar a partir
de ese sistema cómo evoluciona la galaxia.

Los parámetros que modificamos entre las distintas simulaciones son:

• Fracción de masa constituida por el gas (fgas).

• Tiempo que tarda en liberarse la enerǵıa de las supernovas de tipo II (tSNII).

• Eficiencia de la formación estelar, este cambio se produce controlando el feedback generado
por la formación estelar, mediante la normalización (A) de la ley de formación estelar de
Kennicutt-Schmidt.

• Ecuación de estado. Hay tres parámetros en la simulación que contribuyen a la ecuación de
estado, pero sólo modificaremos el valor umbral de la densidad (nH,EOS), el cual establece
un ĺımite hasta el cual se aplica la ecuación de estado ideal.

• Ĺımite en la densidad para la formación estelar (nH,sf ), valor mı́nimo para el que se con-
sidera que se puede producir la fase fŕıa necesaria para que se produzca formación estelar.

• Temperatura asociada a las supernovas de tipo II (TSNII), establece cuánto se calientan
las part́ıculas afectadas por la SN y cuántas son las part́ıculas afectadas.

• Resolución, el parámetro que limita la resolución (softening) está fijado por las condiciones
iniciales, pero se puede aumentar la resolución aumentando el número de part́ıculas,

Mientras que muchos grupos consiguen formar núcleos de materia oscura introduciéndo
bariónes y los efectos de la retroalimentación (feedback) que se producen, las simulaciones de
EAGLE suelen hallar un perfil en forma de cúspide, incluso con la presencia de bariones, lo cual
podemos observar en los resultados para el cass estándar.

1



Master Thesis: Exploring cusp-core transformation. Maŕıa Garćıa Gumbao

En general, para las simulaciones ejecutadas con EAGLE se obtiene una historia de formación
estelar suave, si la comparamos con la observada en otras simulaciones. Sabemos que una his-
toria de formación estelar más irregular produce flujos de gas hacia el exterior, lo cual sabemos
es importante en la formación de núcleos. Intentando entender las diferencias de EAGLE en la
formación de núcleos hemos encontrado que varios parámetros modifican el perfil de densidad,
pero ningún parámetro es capaz de producir un cambio drástico.

Los parámetros que permiten un perfil más plano el de NFW son el tiempo de retardo de
las SNII, el ĺımite de densidad para la ecuación de estado y la resolución. Sin embargo, si uti-
lizamos parámetros similares a los utilizados en otras simulaciones no conseguimos que se forme
un núcleo, mientras que ellos śı lo forman, tampoco observamos signos de flujos de gas, lo cual
śı ocurre en su caso.

Los casos con una historia de formación estelar más irregular presentan más flujos de gas y
un perfil más plano en las regiones centrales. Aunque el efecto no es drástico, el mayor cambio se
observa al reducir el retardo en supernovas de tipo II, cuando hay un retraso entre la formación
estelar y la emisión de feedback la galaxia se hace estable frente a la formación de un núcleo.
Esto puede deberse a que las estrellas contribuyen al pozo de potencial antes de que el gas sea
emitido, haciendo que el cambio en el potencial sea menos brusco. Por otro lado, la temperatura
de las SNII también son importantes, en EAGLE está fijada a un valor alto, lo que hace que
se reparta mucha enerǵıa entre pocas part́ıculas, en lugar de extenderse a un gran número de
part́ıculas como ocurre en otros modelos. Entonces, menos gas es expulsado de las regiones de
formación estelar a otras cercanas, y por tanto, lo procesos necesarios para que se forma un
núcleo no ocurren.

También hay una relación entre la formación de bulbo y de núcleo de materia oscura. Al
formarse estrellas en la región más interna (cuando hay bulbo) el pozo de potencial se hace más
profundo, impidiendo que se forme el núcleo de materia oscura. Quizás, por esto, el retardo de
las supernovas es el parámetro más importante en este trabajo, esto puede interpretarse como
que se necesitan otras formas de retroalimentación estelar. En EAGLE está modelada con una
modificación de la ecuación de estado, pero nuestras simulaciones indican que esto no permite la
formación de núcleos. Por otro lado, los núcleos que se consiguen formar son considerablemente
más pequeños que los que se forman en otras simuaciones.

Podemos sacar la conclusión de que la principal diferencia entre EAGLE y otros códigos es el
feedback producido por las supernovas, y no la modelación de la formación estelar o la ecuación
de estado.
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Abstract

In this project we studied the effect that several parameters have in the simulation of a
galaxy forming within the Λ cold dark matter (ΛCDM) model. The aim is to study the cusp-
core discrepancy, one of the problems of the ΛCDM model, and to better understand whether
this discrepancy can be explained by baryonic processes. To do so we use a set of parameters to
modify the baryonic physics of the simulations and measure the dark matter profile, as we want
to see the effect of these changes on the central density profile of the dark matter. We vary the
initial gas fraction, the time delay and temperature of type II supernova (SNII) energy feedback,
the normalization of the star formation and the density threshold for the star formation and
for the equation of state; we also checked the standard case with a higher resolution. We find
that the employed model is quite robust to variations of these parameters in terms of the dark
matter density profile. We do, however, find that a high gas fraction results in a more flattened
profile, along with a small delay in SNII feedback. The physical interpretation of this can be
the requirement of gas inflows and outflows through the central regions, i.e. we need a relatively
large gas mass to fall to the center and be expelled rapidly instead of forming a significant pop-
ulation of stars, which would deepen the potential well. We also comment on other parameters
which are only able to get a modest flattening of the inner density profile at best, analyze other
important features such as star formation history, gas mass in the center regions or the stellar
density profile, and explore why this model is more robust at retaining cusps than other models
that include baryonic processes.

1 Objectives

One of the main problems of the ΛCDM cosmological model is the difference between the theo-
retical prediction for the density profiles and what the observations tell us. Observations inferred
from rotation curves show that many galaxies have flat or “cored” density profiles in their central
region, whilst theoretical prediction from dark matter simulations favors a ”cuspy” central region.
One possible way to reconcile the theory with observations is the effects that baryons have on dark
matter density profiles. The aim here is to explore what parameters of simulations that include
baryonic processes of galaxy formation may influence the shape of the dark matter density profile
and see if we are able to get a flat central profile. Other properties will be checked to try to under-
stand what is the difference with other simulations, these are the star formation history, the stellar
density profile and gas mass in the central regions.

These are the model’s parameters that will be varied, a deeper description of each of them is
done later on in the text:

• Contribution of gas to the initial mass.

• Delay time for supernova of type II, from now on tSNII , the time it takes to release the
feedback from SNII.

• Star formation efficiency.

• Equation of state, we will vary the limit imposed to the pressure in regions with higher density.

• Star formation density threshold, the density at which the conditions for star formation can
happen.

• SNII temperature, the energy release by SNII.
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• Resolution, by increasing the number of particles we are able to get a higher resolution.

This Master thesis is organized as follows. First, I’ll make an introduction to the theory that
motivated this work and some theory about spherical collapse in ΛCDM models. Then I’ll explain
how the initial conditions are created, the parameters changed and make a description of the
simulation used. Finally, I’ll discuss the results obtained and the conclusions of the work.

4
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2 Introduction

2.1 ΛCDM Model

Currently, ΛCDM cosmology is widely considered to be the model that best describes our universe
because it successfully match observations of the cosmic microwave background,CMB, (Plank Col-
laboration 2013 [24]),the abundances of hydrogen, helium, and lithium, the accelerating expansion
of the universe observed in the light from distant galaxies and supernovae (Riess et al. 1999 [30])
and the large structures of the Universe (Percival, W.J. et al. 2001 [25]). Data from the past years
(Plank Collaboration 2013 [24]) indicates that we live in a flat universe (Ωk = 0, being Ωk the
density parameter related to the curvature), meaning the density parameters for matter, radiation
and dark energy behave as follows:

Ωm(t) + Ωr(t) + ΩΛ(t) = 1 (1)

where Ωm, Ωr and ΩΛ are the matter, radiation and dark energy density parameters and are defined
in terms of a ratio of the critical density (ρ(t)/ρcrit(t)), being ρcrit the critical density, the limit
value for which a matter dominated universe expands or ends up with a contraction, and given by
ρcrit = 3H(t)2/8πG (with H(t) being the Hubble constant and G the gravitational constant).

The constituents of the universe at present time are 26.41% matter (22% dark matter and 4.41%
baryonic matter), 75.59% dark energy (Λ) and a negligible contribution from radiation.

Observations also show that the universe is in a state of accelerated expansion, which means
that, currently, Λ dominates the dynamical behaviour of the universe. In the past, the universe had
an Einstein-de Sitter phase, where matter dominated (behaviour similar to the case where Ωm ≈ 1)
and the expansion was decelerating, this is clear because ρΛ is constant in time, where ρΛ is the
dark energy density, and ρm ∝ a−3, ρm being the mass density for baryonic and dark matter and

a being the scale factor of the universe, which is defined as a =
1

1 + z
.

Another important feature of the ΛCDM cosmology is the nature of dark matter, which is thought
to be cold, meaning that it consists of particles moving at non-relativistic speed. One consequence
of this is that structures form hierarchically, starting with the small objects that would then merge
to form the most massive ones.

This standard cosmological model is successful at explaining a range of observations such as
the large scale structure of the Universe, Baryonic Acoustic Oscillations and the Cosmic microwave
background radiation. However, problems at small scales, where gravity alone is not enough to
explain observations, persist such as:

• Cusp-core disprepancy: Simulations predict an overdensity of dark matter in the innermost
regions of galaxies, known as a “cuspy” density profile. While profiles obtained from rotation
curves show that, actually, the center parts have a flattened profiles (“cored”)

• Missing satellites problem: Simulations predict a larger number of small satellite galaxies
orbiting galaxies like the Milky Way compared to the actual observed ones.

• The disk of satellites problem: In simulations, satellite galaxies are not found in a thin plane,
whereas this has been observed both in the Milky Way and Andromeda.

5
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• The Too-Big-Too-Fail problem: The model predict more galaxies than observed in the local
universe with Mhalo ≈ 10 M�, which is above the mass where it is expected that re-ionization
can prevent star formation.

Most of the problems have plausible solutions within ΛCDM. The aim of this work is to study the
first one, the cusp-core discrepancy.

2.2 Navarro, Frenk & White profile

In the 80’s it was thought that objects formed by hierarchical clustering from power-law spectra
should show an isothermal structure (ρ ∝ r−2) in an Einstein-de Sitter universe e.g. Bertschinger
(1985) [2]. if the exponent of the initial density perturbation spectra increases or the density of the
universe decreases the profiles get steeper, Hoffman (1988) [12].

However, in 1988 some works started noting that cold dark matter halos showed a dependence
of the slope with the radius, increasing at larger radii. Different authors found that the density
profile was best described by a logarithmic slope changing slowly with radius e.g. Hernquist 1990
[11], Navarro et al. 1995 [21].

From the studies of a variety of CDM halos, using N-body simulations, Navarro, Frenk & White
1997 [20] found that the density profiles were all fit by an equation of the form:

ρ (r)

ρcrit
=

δc

(r/rs) (1 + r/rs)
2 (2)

Where rs is a scale radius and δc a characteristic density (dimensionless). Also, the critical density
depends on the cosmology, as we saw before. They showed that this profile is universal in that it
applies to dark matter halos of any mass. They also found that for low-mass halos, δc is larger
which indicates that they collapsed at a higher redshift.

2.3 The cusp-core discrepancy

Currently, ΛCDM is the preferred cosmological model for describing our universe; however, it still
faces some problems, like the prediction of high central density in DM halos, which appears to be
contradicted by observational evidence.

When dark matter halos form through collisionless collapse, they adopt “cusped” density profile
in the center, proportional to r−1, while in the outer parts they follow a steeper slope proportional
to r−3 (behaviour known as “NFW” after the aforementioned density profile). While simulations
considering gas and stars as passive components on the DM halo evolution result in even higher
density profiles due to the effects of adiabatic contraction (Blumenthal et al. 1984).

Several observations, however, indicate that galaxies have flat or “cored” density profiles in their
central regions. For example, the recent THINGS survey (Walter et al. 2008 [35], Oh et al. 2011
[23]) and LITTLE THINGS survey found inner density profiles (Hunter et al. 2012) shallower than
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NFW for a large fraction of dwarf galaxies, with an interior profile proportional to r−0.4 This dis-
crepancy between simulations and observations was first found by Moore (1996) [18]. These surveys
used rotation curves to be able to obtain total mass profiles, then subtracted the contribution of
gas and stars (obtained from the flux) to obtain a dark matter density profile. There are also some
massive galaxies with extended diffuse stellar and gaseous disk that show relatively flat central DM
density profiles (Kuzio de Naray and Spekkens 2011 [14]). For galaxy cluster, shallower-than-NFW
profiles are recover once the brightest cluster galaxy stars are subtracted. All these lead to a search
for a universal profile not only for DM, but for comprising stars and DM together (collisionless
matter), Newman et al. 2013 [22].

Such observations find a flat or “cored” central dark matter profile, which contradicts the pre-
diction for ΛCDM of a steep inner density profile (“cuspy”). However, it needs to be recalled that
this prediction comes from dark matter only simulations. Whilst baryons only make up a relatively
small fraction of the total mass of the universe, they are able to dissipate and collapse to the central
regions of dark matter halos, and thus may be dynamically important in those regions. In fact,
it has long been known that gas dissipation can result in adiabatic contraction of the inner dark
matter (Blumenthal et al. 1984), a process that would worsen the cusp-core discrepancy. However,
baryons may also act in various ways to decrease dark matter density. Some suggestions include
the effects in-spiraling gas clumps heating the dark matter via dynamical friction (Mashchenko et
al. 2006 [17]), or the effects of gas outflows (Navarro et al. 1996 [19], Read et al. 2006 [29], Pontzen
and Governato 2014 [26]).

As explained in Pontzen & Governato (2014) [26], gas outflows from stellar feedback may have
an effect on the DM distribution. Baryons and CDM can interact through gravitational forces and
transfer energy, which could give energy to the DM particles, moving them to larger radii. There
are two proposed mechanism for this transfer:

• The loss of kinetic energy of incoming material due to “dynamical friction”, although the
presence of dense in-falling clumps is necessary. The process works as follows: If gas arrives
smoothly, an adiabatic contraction takes place, where gas accumulates in the center, increasing
the gravitational potential and making dark matter contract. However, if the inflows are in the
shape of dense, discrete chunk, dynamical friction takes place, here, a density wake appears
behind these clumps, pulling them back and transferring kinetic energy into the dark matter
(Pontzen and Governato 2014 [26], El-Zant et al. 2001 [8]).

• Another way of breaking the adiabatic contraction is through feedback from stellar population.
A rapid starburst would suddenly eject most of the baryons, maybe over-compensating for the
previous adiabatic contraction, in a way that the central DM density could be reduced. As
discussed in Pontzen and Governato (2014) [26], the dark matter particles orbit around the
center of the halo, where the gas is denser; when the gas is quickly removed, the particles are
driven away, which means a gain of energy for the DM particles (which is not compensated if
the gas flows back in). It has been shown that repeated outflows have a cumulative effect on
dark matter (Read et al. 2006 [29]).
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2.4 Evolution of perturbations

To explore these issues we will use simulations with initial conditions created from cosmologically
motivated model of halo collapse. Here we provide the background of this model.

2.4.1 Linear theory of perturbations

We will study the linear approximation to the evolution of primeval fluctuations. If the perturba-
tions are small we shall treat the evolution as that of a perfect fluid, since the cosmological principle
states that the smooth background is a perfect fluid. Also, here we write the general equations, but
one should take into account that for dark matter there is no pressure term, since it is expected to
be collisionless.

The equations of motion for a perfect, collisional fluid are:

∂ρ

∂t
= −∇ · (ρ~v) Continuity equation (3)

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p − ∇φ Euler equation (4)

4φ = 4πGρ Poisson equation (5)

where ρ is the density of the fluid, ~v the speed, p the pressure and φ is the gravitational potential.

If we consider small perturbations, ignore the terms of second order and higher and substract
the zero order equations (since this is for a smooth background, which we are not interested in) we
obtain the first order perturbation:

d

dt

(
δρ

ρ0

)
=

dδ

dt
= −∇ · δ~v (6)

∂δ~v

∂t
+ (δ~v · ∇) ~v0 = −∇δp

ρ0
− ∇δφ (7)

4δφ = 4πGδρ (8)

where δ is defined as the overdensity (δ = δρ/ρ0). There is a link between pressure and density if
we assume the variation of the first is due to the second and not to a change in entropy:

c2
s =

δp

δρ
(9)

These are written in Eulerian coordinates for a static universe, which are the proper coordinates
(~x); but to take the expansion of the background into consideration we need these equations in
comoving coordinates (~r), which we can get with the following transformation:

~x = a (t)~r (10)

This, with ~g = −∇pδφ and ~v0 = H~x, yields the equations of motion for baryonic matter in
comoving coordinates:

δ̇ = −∇c~u (11)

8
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~̇u + 2H~u =
~g

a
− ∇cδp

a2ρ0
(12)

42
cδφ = 4πGρ0δa

2 (13)

where ~u is the perturbation in velocity in comoving coordinates:

δ~v = a (t) ~u (14)

Finally, if we take a time derivative of the continuity equation and insert the Euler equation,
while using the Poisson equation to write the gravity we get a linear wave equation in comoving
coordinates:

δ̈ + 2Hδ̇ = 4πGρ0δ +
c2
s

a2
∇2
cδ (15)

Since this is a wave equation we can make the Fourier transform of it, with the wave vector being
~k = a (t) ~kc. Thus getting the fundamental equation for the evolution of each amplitud δk(t):

δ̈k + 2Hδ̇k = ∇k
(

4πGρ0 + ~kc
2
c2
s

)
baryonic matter (16)

δ̈k + 2Hδ̇k = 4πGρ∇k dark matter (17)

where the only difference in the last equation is that we have removed the pressure term, since dark
matter is collisionless.

2.4.2 Growth factor

Being D the amplitude of the growing mode and a the scale factor, a solution for equation (15) for
a Friedman-Robertson-Walker (FRW) metrics is given in Hamilton’s paper [10].

g (a) =
D (a)

a
=

5Ωm

2

H2
0 H (a)

a

∫ a

0

da′

a′3 H (a′)3 (18)

Or, written as a function of the density parameter:

g (Ωm,ΩΛ) =
5Ωm

2

∫ 1

0

da

a3 H (a)3 (19)

It is interesting to compare the particular cases of an EdS Universe model and the ΛCDM model.

g (a) =
5

2

H3
0a
−3/2

a

∫ a

0

da′

a3
(
H0a−3/2

)3 = 1 EdS (20)

g (a) =
5Ωm

2

√
Ωma−3 + ΩΛ

a

∫ a

0

da′

a′3 (Ωma−3 + ΩΛ)3/2
ΛCDM (21)

Resulting in a linear relation between a and D for the EdS model, and an equation that cannot be
solved analytically for ΛCDM model. One may thus expect the two cosmologies to have different
behaviours, however, this two solutions behave similarly at high redshift.
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2.5 Spherical collapse model

On the basis of this model we create initial conditions which approximate the cosmological collapse
of halos, allowing us to efficiently run a suite of simulations and explore a range of parameters. We
use a uniform distribution of particles following a density profile ∝ r−1 of 5× 1010M�. The aim is
to have this initial distribution at z = 15, which will collapse around redshift 4. To do so, we need
to understand the cosmology involved.

Linear theory itself is not enough to understand the formation of a galaxy (or any large scale
structure we see today). To do so we need a more complex nonlinear theory. In this work we adopt
a “spherical collapse” model.

One of the cornerstones of this theory is the Birkhoff theorem: If we evaluate one region of the
universe with spherical symmetry we can consider the cosmology in that region to be independent
of what is happening outside of it; meaning it would be described with the same set of equations,
but characterized for that region of space.

This is crucial for the spherical collapse model, since it basically takes into account a region
where there is an overdensity (δ > 0) and studies its evolution.

Conceptually, what is going to happen is that this region, with a higher density than its sur-
roundings, will expand in a different way (slower), until some point (turn around) in which the
gravitational potential will cause the structure to start to collapse.

Keeping in mind that we have spherical symetry, then we will be working only with the radial
component (R). This is in proper coordinates, not comoving. The density of the sphere at any
point would be given by the following equation.

ρ (R, t) = ρb (R, t) + δρ (R, t) = ρb (R, t) [1 + δ (R, t)] (22)

We will consider a distribution much smaller than the observable universe. Also, at first, the
gravity is not expected to be particularly high. This allows us to study the dynamics using a
Newtonian approach, dominated by the gravitational potential (φ).

φ (R, t) = φb (R, t) + δφ (R, t) = −1

2

(
ä

a

)
R2 + δφ (R, t) (23)

Here, the EdS and ΛCDM models will diverge, since the first term on the right depends on Fried-
mann’s equations. From now on we will consider the EdS Universe; in this case Friedmann’s second
equation gives the following relation.

− 1

2

(
ä

a

)
R2 =

2π

3
Gρb (24)

Taking this into account we can study the dynamics of a specific shell of radius R as follows (always
keeping in mind the spherical symmetry).

d2R

dt2
= −dφ

dt
= −4π

3
Gρb (t)R − dδφ

dt
= −GMb (R, t)

R2
− GδM (R, t)

R2
(25)
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being Mb the mass that would correspond to a certain radius if the density were that of the back-
ground.

Now, if we consider the mass inside the sphere as Mb plus a certain term, in which we use δ as
the mean density,

Ms = Mb(R, t) + δMb(R, t) =
(
1 + δ

)
Mb(R, t) (26)

Substituting this in the equation of motion an integrating we get

1

2
Ṙ2 − G Ms

R
= E (27)

where the integration constant E is the total energy. We are only interested in the case where
E < 0, since it is the condition that allows a collapse to happen.

The solutions to this are found in a parametric form as a function of the variable θ. The
parameter increases with time, reaching the turn-around point when its value is π,

R = A (1 − cosθ)
t + T = B (θ − sinθ)

A3 = G Ms B
2

(28)

where A and B can be obtained imposing initial conditions to the first and third equation, and T
is just a constant that makes it possible to set the radius as R = Ri at t = ti,

A =
Ri
2

1 + δi

δi −
(

1

Ωi
− 1

) (29)

B =
1 + δi

2HiΩ
1/2
i

[
δi −

(
1

Ωi
− 1

)]3/2
(30)

Now, we shall see what this means for each of the cases.

2.5.1 Spherical collapse in the EdS Universe

This is shown with more detail in [16]. When we consider an EdS Universe (Ωi = 1) we have that
the Hubble parameter evolves as H = 2/3t. Using this we see that T, the constant to set the
initial radius, is negligible. Hence, we have the following solution.

R = A (1 − cosθ)
t = B (θ − sinθ)
A3 = G Ms B

2
(31)

A =
Ri
2

(
1 + δi
δi

)
(32)

B =
3ti
4

(
1 + δi

δi
3/2

)
(33)
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From this and the definition of δ we can write:

δ =
9

2

(θ − sinθ)2

(1− cosθ)3 − 1 (34)

And from the relation between the purely growing mode (related to δlin) and the scale factor we
can get the evolution of δlin.

δlin =
5

2
δi

(
t

ti

)2/3

=
3

5

(
3

4

)2/3

(θ − sinθ)2/3 (35)

Now, we will analyse the values of δ and δlineal, solving the previous equations, for the turn-around
point (θ = π) and the virialization point (θ = 2π).

• Turn-around: δ ≈ 4.55, but δlin ≈ 1.06.

• Virialization: δ ≈ 176.65, but δlin ≈ 1.686.

This shows we have to be careful when using the linear approximation. Although this is not the
aim of this part, but to compare this results with the values in the case of a ΛCDM Universe.

2.5.2 Spherical collapse in the ΛCDM model

It is not as easy to get an analytical result for a ΛCDM Universe. However, we can compare the
simulations run in [16]. As we can see in Figure 2, the overdensity needed to reach the turn-around
point in the ΛCDM Universe and the EdS Universe becomes quite different for lower redshifts but
tends to the same value (4.55) for higher redshifts.

Figure 2: Overdensity versus radius for both models, obtained from the Master thesis on Spherical
Collapse in Dark Energy Models of Robert Mardoff Nielsen (University of Oslo) [?] comparing the
turn-around overdensity in a ΛCDM Universe and an EdS model.
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Since we will be working with initial conditions in which the collapse is expected to happen at
z ≈ 4 it should not be a problem if we use the analitical results obtained for the EdS Universe
even if we are studying the case of a ΛCDM Universe, the only difference it could make is that our
initial distribution will collapse slightly earlier (since the turn-around overdensity used is slightly
higher). The similarites of the two models is due to the fact that in a ΛCDM Universe the matter
is known to dominate over the dark energy at high redshift.
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3 Methodology

3.1 Initial conditions

Using the spherical collapse model we will generate an initial distribution with dark matter and gas,
with a total mass of 5×1010 M�, that will collapse at redshift 4. To do so we will consider a ΛCDM
cosmology, the overdensity will be calculated using the analytical solution for an EdS simulation
though, since we have explained in the introduction that the difference is not significant.

For simplicity we will use an internal system of units, which allow us to work with more man-
ageable numbers and avoid truncation errors. For the magnitudes we are working with the system
of units is defined as follows:

mass unit 104 M�

length unit 1 kpc

velocity unit 1 km/s

Then, The time unit is:

time unit =
1 kpc

1 km/s
= 3.0857× 1016 s (36)

The ΛCDM cosmology is established setting the cosmological parameters:

• Ωm = 0.2641

• Ωb = 0.0441

• ΩΛ = 1 - Ωm. This means the radiation parameter is ignored and the curvature is assumed
to be that of a plane.

• h = 0.7

Next, all cosmological parameters are calculated for the initial redshift (z = 15). Here, the
EdS approximation is used when finding the initial value for the overdensity, which means, a linear
dependancy is assumed.

δi = 1.686
ai
acol

(37)

Being 1.686 the overdensity at the moment of the collapse.

Given the mass of the collapsed halo, M200, the radius of the collapsing initial region is given by
the following equation,

rcol =

 M200

4π

3
ρi (δi + 1)


1/3

(38)
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Particle distribution

Then the initial particle distribution is created following this algorithm:

1. Create a uniform 3D grid with as many points as particles are in the simulation.

2. Scale the distribution in a way that the density profile follows a 1/r distribution. This is done
by multiplying each coordinate by

√
r.

3. Truncate the distribution at particles with a radius up to 1.1× rcol.

This is first done with 1000 particles as a test, to calculate how many particles actually fall inside
the collapse radius. Then, we can recalculate the initial number of particles in order to get that
desired number of particles inside the collapse radius. After that, we can create the real particle
distribution of dark matter and gas with this corrected number of particles,

n =
ninput

success fraction
(39)

where the success fraction is the fraction of the total number of particles that fall inside the
collapse radius.

Masses

Up until now the mass of the particles is unknown, we can defined the total mass from the cosmo-
logical parameters as follows:

Mg =
Ωb

Ωm
M200 (40)

Mdm = M200 −Mb (41)

but we also want the possibility to change the contribution of the gas, making it different to the one
establish by the cosmology, to explore the case where less than the cosmological baryon fraction are
accreted into low mass halos, due to effects of UV background radiation. In that case, the mass is
calculated using the parameter fgas, which we will modify in the future. Then, we have that the
gas mass is:

Mg = fgas M200 (42)

which is equal to eq. 40 when fgas = 0.16. To know the mass of each particle we need to divide
by the number of particles of that element.

Velocity distribution

Once the distribution and the masses are set, we need to add the initial velocity for the particles.
This velocity is formed by three different components:

• Hubble flow: Since the simulation does not take into account the expansion we need to
simulate it using the Hubble flow. This is calculated as follows:

~vhf = Hi ~r

(
1 − δi

3

)
(43)
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• Rotation: To mimic the effects of tidal torques from large scale structure, we add solid body
rotation to our collapsing sphere. This means that the angular velocity (ω) is constant.
Using Mo, Mao and White’s paper [15], we can calculate the angular momentum expected for
a halo of given mass using the equation

J200 = λ M200 v200 r200 (44)

where v200 = (10 G H0 M200)1/3 and r200 =
GM200

v200 ∗ ∗2
.

Therefore, the angular velocity is:

ω =
J200∑
imi r2

i

(45)

We add this angular velocity to the particles in our initial conditions.

• Random velocity: We may want to add a small random component to the velocity. This
can be done creating a gaussian distribution with a dispersion of σv, after running some test
we have chosen a value of σv = 3 km/s.

We set this as the initial velocity of the particles in our initial conditions.

Internal energy

The last bit of information needed for the simulation is the internal energy of the gas elements. This
is calculated considering an uniform temperature of 100 K, and that all atoms are in the neutral
state.

u =
1

γ − 1

kB T

µ mH
(46)

where γ is the adiabatic index, kB the Boltzmann constant (1.381 × 10−23 J/K), µ the mean
molecular weight, mH the mass of the Hydrogen atom and T the temperature of the gas.

Softening

The gravitational softening length is chosen to mimic those used in fully cosmological simulations.
We calculate what would be the mean interparticle distance if we had box of volume 1Mpc3, filled
with particles with the same mass as ours and the critical density as the mean density of the box.

The typical value for the softening is 1/20 − 1/50 (Power et al. 2005 [27])of this mean free path.
In our case we will use 1/50, since simulations like ours fall usually in this side of the spectrum.
This will take to different values, for the standard and the high resolution cases:

• Standard: ε = 0.332

• High resolution: ε = 0.132

Output

Finally this information pertaining to the particles initial positions, velocities, mass and energy are
written into a hdf5 file, where different groups correspond to different particles:

• Group 0: Gas.

• Group 1: Dark Matter.

• Group 4: Stars, empty in the initial conditions.
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3.2 EAGLE

The code we are using to run the simulations is a modified version of GADGET3 (this version is
used in the EAGLE simulation [33]), this is a parallel Tree-SPH code. This means that it treats
differently gas particles and collisionless fluids (i.e. dark matter), and also that it runs on multiple
processors.

For the dark matter it works following the N-body method, while for the gas particles it uses
smoothed particles hydrodynamics (SPH). It also works different with short-range and long-range
forces, computing the first ones with a Tree method, and using Fourier techniques for the calculation
of the later, this is usually referred to as the TreePM algorithm.

EAGLE includes physics of gravity, hydrodynamics, gas cooling, UV background radiation, star
formation and supernova feedback. In detail:

• Radiative cooling: Implemented element-by-element for the following 11 elements: H, He, C,
N, O, Ne, Mg, Si, S, Ca and Fe; this accounts for variations both in the metallicity and the
relative abundances of the elements. The gas is assumed to be in ionization equilibrium and
exposed to the cosmic microwave background (CDM), which may cause the overestimate of
the cooling rate. Also, self-shielding is ignored (although it can cause an underestimation of
the cooling effects).

• Reionization: The background ionization is turned on at redshift z = 11.5. To heat the gas at
reionization, 2 eV are injected into the particles, instantly for H, and with a gaussian centered
at z = 3.5 and σ = 0.5 for He.

• Star formation: Star formation follows the Kennicutt-Schmidt star formation law, but here it
is taken to depend on pressure rather than density. A dependence on the metallicity is added
to the critical volume density to model that the transition to a cold, molecular phase happens
at a lower density when the metallicity is higher.
A temperature floor is imposed because the simulations do not model the cold gas phase, this
has the result the gas temperature at star formation reflects the effective pressure imposed on
the interstellar medium (ISM).

• Stellar mass loss and metal enrichment: Star particles are considered to be simple stellar pop-
ulations, where the number of stars reaching the end of the main sequence can be calculated.
This, together with the initial elements abundances, gives the information of the emitted mass,
which is distributed along the neighboring SPH particles.
The stars inherit the smoothed-kernel abundances from the gas particles and this is used to
calculate the lifetimes and yields.

• Energy feedback from star formation: Here, the energy feedback from star formation is
stochastic thermal feedback, instead of kinetic feedback.

• The accretion into black holes accounts for angular momentum (this is not important in our
case since we are assuming there is no black hole).

3.3 Parameters

The parameters to change between the different simulations will be the following ones:
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• Fraction of gas (fgas): This parameter is actually one of the initial conditions, not of the
parameter file. Its meaning is the fraction from the total mass that comes in the way of gas
particle. We assume for the standard model that not all baryons are accreted into such a low
mass halo, choosing a value that is motivated by cosmological simulations e.g. Christensen et
al. 2016 [6].
Standard value: fgas = 0.1

• Delay time of supernova of type II: The time it takes for the feedback energy to by released.
Standard value: delay = 30 Myr

• Star formation efficiency: This is controlled by changing the feedback produced by star for-
mation, as establish in Schaye and Dalla Vechia (2008) [32], by changing the parameter A
from the Kennicutt-Schmidt star formation law.
Standard value: A = 1.191× 10−4 M� yr

−1 kpc−2

• Equation of state: It gives the relation between pressure and density, PEOS ∝ ργ . There are
three parameters that can change the equation of state:

– The threshold density: This controls where the ideal equation of state is used, it is the
upper limit in density.

– Gas temperature at the threshold density, .

– γ: This is the slope of the EoS (the polytropic index). This value should not be changed
since it could cause spurious fragmentation, right now is avoided because the value 4/3
makes the Jeans mass independent of the density.

Here we will change the threshold density, increasing its value will give a smaller pressure in
the center. Standard value: nH,min = 0.1 cm−3

• Star formation density threshold: If the previous controlled the pressure, this one controls
the star formation, for densities higher than this the cold phase needed for star formation is
expected to form.
Standard value: nH = 0.1 cm−3

• Resolution: By changing the number of particles we can get a different resolution.
Standard value: ndm = 1× 105, ngas = 1× 105

• SNII heating temperature: This controls the numbers of particles heated by each SNII explo-
sion.
Standard value: TSN = 107.5 K

The values for the different simulations are the ones shown in Table 1.
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id ndm ngas fgas
Delay time

A (M� yr
−1 kpc−2)

nH,EOS nH,SF TSN (K)
(Myr) (cm−3) (cm−3)

1 105 105 0.1 30 1.191×10−4 0.1 0.1 107.5

2 105 105 0.1 0 1.191×10−4 0.1 0.1 107.5

3 105 105 0.16 30 1.191×10−4 0.1 0.1 107.5

4 105 105 0.16 0 1.191×10−4 0.1 0.1 107.5

5 105 105 0.1 30 1.515× 10−4 0.1 0.1 107.5

6 105 105 0.1 30 1.191×10−4 1 0.1 107.5

7 105 105 0.1 30 1.191×10−4 0.1 1 107.5

8 105 105 0.1 30 1.191×10−4 1 1 107.5

9 105 105 0.1 30 1.191×10−4 10 0.1 107.5

10 105 105 0.1 30 1.191×10−4 0.1 10 107.5

11 105 105 0.1 30 1.191×10−4 10.0 10 107.5

12 105 105 0.16 30 1.191×10−4 10 0.1 107.5

13 105 105 0.16 30 1.191×10−4 0.1 10 107.5

14 105 105 0.16 30 1.191×10−4 10 10 107.5

15 105 105 0.1 30 1.191×10−4 100 10 107.5

16 105 105 0.1 30 1.191×10−4 100 10 107

17 105 105 0.16 30 1.191×10−4 100 10 107.5

18 105 105 0.16 30 1.191×10−4 100 10 107

19 105 105 0.16 0 1.191×10−4 100 10 107.5

20 106 106 0.1 30 1.191×10−4 0.1 0.1 107

Table 1: Values of the parameters for the different runs of the simulation. The first row corresponds
to the standard values, for the rest of the runs the values changed are bolded. Here, an id is
established for each simulation for future reference.

3.4 Analysis

Star Formation History

To analyze the SFH we integrate the output obtained directly from gadget. This output gives
different types of measures for the star formation rate for each time step, we will use the total solar
masses formed per year.

However, just plotting this data is too noisy to give a general idea of the real SFH, so we inte-
grated over 149 time bins, to get a smoothed plot.
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Dark matter density profile

We are interested in the density profile at the final time of the simulation and the deviations from
a NFW profile [20], this profile consists on the mean density of each layer as a function of radius.
To check this we need to compute the density profile the same way they did, assuming spherical
layers, even though there is not perfect spherical symmetry. To do the fit we stay below R200 (the
radius within which the density is 200× ρcrit).

The fit is done in the log-log plane to a NFW profile (eq. 47).

ρ =
ρ0

r

rs

(
1 +

r

rs

)2 (47)

where rs is the scale radius.

Gas mass

Here, the aim is to be able to see if there are inflows and outflows taking place. To know this we
add up, for each time step, the mass of all gas that has a radius lower than 1 kpc and lower than 2
kpc from the central regions of the simulated galaxies where core formation may occur.
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4 Analysis of the results

After running all of the simulations with the different parameters we are going to compare them, see
what are the changes, and check if we were able to get a profile different than the NFW, specially
if we get a profile with a core.

4.1 Star Formation History

The SFH give us an idea of the evolution of the galaxy and we can check if it looks realistic. We see
the following behaviour: First, everything collapse to the center, causing the first outburst of star
formation, this happens soon after the simulation begins; then, the feedback generated should de-
crease the star formation, but, since the galaxy is still collapsing, the star formation should increase
again soon after that, and be slowed by feedback again; giving a bursty SFH. Once the collapse is
over we expect the star formation to decrease steadily since the galaxy is isolated and, therefore,
there cannot be any inflows that cause more star formation.

(a) Parameters fgas and tSNII . (b) Star formation efficiency.

(c) Number of particles (resolution)
(d) Density thresholds (the green and red lines overlap
the blue and the orange lines respectively).
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(e) Density thresholds. (f) Both fgas and density thresholds.

(g) fgas and the temperature of SNII, with nH,EOS =
100cm−3 and nH,sf = 10cm−3.

Figure 3: SFH of the different runs of the simulation, grouped by the parameters changed in each
run (simulations with different density threshold are grouped in more than one plot for clarity).
Note that the first series of each plot (blue line) has the considered standard values for comparison.

Note that the blue line in each of the plots in Figure 3 is the reference simulation. The parameter
values for this case are stated in the first row of Table 1.

Unexpectedly, making tSNII zero results in a higher star formation rate (Figure 3a), which is
only reached in the simulation with high density thresholds and lower SNII temperature. However,
the shape of this series are not exactly what we expected, they become more smoothed, instead of
the expected bursty star formation. This increase in the star formation rate also happens when the
gas fraction is larger, as should be expected, and the otherwise behaviour of the SFH is similar.

As for the SFH for the different values of star formation efficiency, which increases for a smaller
value of A (Figure 3b), being A the normalization of th Kennicut-Schmidt law, results in a peak
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of star formation, completely removing the bursty shape. Although this peak is smaller than the
ones obtained for different values of fgas and tSNII , the shape of it indicates the contribution of the
feedback is not able to stop the star formation.

Changing the resolution (by increasing the number of particles, Figure 3c) results in a peak of
star formation that happens sooner than the other runs. It also gets slightly less bursty. But the
most interesting thing is that the peak happens sooner than all the other cases, which means that
the collapse is happening faster.

We now change the values of the density threshold (Figures 3d, 3e and 3f), this is grouped in
three sets, one with a small change in both density thresholds (from 0.1 to 1), one with a larger
variation (from 0.1 to 100) and another one where also fgas is changed. We can see in Figure 3d that
a small change in the density threshold for the equation of state slightly change the SFH, increasing
a little the peak of star formation, but keeping the overall behaviour. However, the change in the
density threshold for the star formation does not change the SFH at all (the results overlap in the
picture).

A larger increase in nH,sf , does change the profile, resulting in a ”peaky” SFH. However, this
faces away when nH,EOS is also changed, showing that for equal values of the density threshold
the behaviour is dominated by the density threshold stablish for the star formation. It seems that
increasing the initial gas fraction enforces this dominance of the equation of state over the star
formation, since the profiles overlap for whatever value nH,sf has, whenever nH,EOS is the same;
anyway, the effect of the different values of the star formation is less important, since the profile is
clearly affected by the value of fgas, although the peak with this thresholds is lower.

When the value of nH,EOS gets even larger (Figure 3g) the profile gets more bursty, however, this
behaviour is canceled when we decrease the SNII temperature, resulting in a peak in star formation.
This can also be seeing in the case where the initial gas fraction is 0.16; also, when tSNII is null the
peak gets larger, but some bursty behaviour can be seen when the SFH is decreasing.

4.2 Navarro, Frenk and White profile

There are two interesting things to check here, how each of the runs fit to a NFW profile (Figure
4), since we would like to see what parameters are able to break this profile, and also, how differ-
ent the density profiles are from one simulation to another, to make the comparison easier (Figure 5).

Here we check possible deviations from the NFW profile in the central part of the halo. All
the plots are in Figure 4, and a comparison between the different runs (grouped by the parameters
changed) are in Figure 5. First, we can see from our standard case that the innermost regions are
not perfectly fit with the NFW profile, but that is due to the resolution, since it gets worse por
radius lower than ∼ 0.3kpc, which is approximately the softening length (0.332 kpc). And even
when the fit gets worse it does not have a flat core. This is not changed by an increase in the initial
fraction of gas (Figure 4c)

When we decrease tSNII for supernova of type II, however, the profile gets much more flat for
radius lower than 1kpc; this is specially obvious in Figure 4d.
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(a) id: 1 (b) id: 2 (c) id: 3 (d) id: 4

(e) id: 5 (f) id: 6 (g) id: 7 (h) id: 8

(i) id: 9 (j) id: 10 (k) id: 11 (l) id: 12

(m) id: 13 (n) id: 14 (o) id: 15 (p) id: 16

(q) id: 17 (r) id: 18 (s) id: 19 (t) id: 20

Figure 4: Density profile and its fit to a Navarro, Frenk and White profile for the different simula-
tions, from left to right and top to bottom, following the same order as Table 1. The real profile is
represented as the scatter plot and the dashed line is the best fit to the NFW profile. The red lines
indicates the softening length.
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The behaviour for different star formation efficiencies [Figure 4e] is really similar, high density
in the central parts when star formation is higher, and a slightly less cuspy profile.

For the density threshold for star formation, the effects are only visible when the value is high
enough, and even then the profile is not flat. However, the density threshold for the equation of
state does flatten the profile, specially for higher values; also, this parameter dominates over nH,sf ,
although the effects of nH,sf are noticed when it takes the value 10 cm−3. The results are less
obvious when fgas = 0.16, but the profiles change the same way.

Decreasing the temperature of the SNII does not seem to flatten the profile, however, the combi-
nation of initial fraction of gas higher and lower SNII temperature results in a flat profile, although
it gets flats at a radius too close to the resolution limit. This does not happen when tSNII is null,
and the density in the central regions is higher.

Changing the resolution does not seem to affect the formation of a core, since the profile is nicely
fit by a NFW profile.

(a) Different initial fraction of gas and tSNII . (b) Different star formation efficiency.

(c) Resolutions (number of particles).
(d) Density threshold up to 1 (the green and red lines
overlaps the blue and orange lines respectively).
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(e) Density threshold with range 0.1 − 10. (f) fgas = 0.16. Density threshold with range 0.1 − 10

(g) Different fractions of gas and SNII temperature
with nH,EOS = 100 cm−3 and nH,sf = 10 cm−3.

Figure 5: Comparison of density profiles for the different simulations grouped by the parameters
changed in each run.

4.3 Gas mass in the innermost regions

This can give us information about inflows and outflows of gas from the center, since the gas mass
can change either because of the star formation (consuming part of the gas), or because it is moving
to of from the outer parts. This can be interesting since one of the theories states that cusp-core
transformation can be given by gas outflows.

In figure 6 we show the gas mass within 1 kpc (solid) and 2kpc (dashed) of the centre of the
simulated galaxies. Here we can see that, first, the gas falls to the center, which activates the star
formation. Then, it gets used up and ejected to the outer layers. We would expect to be subsequent
inflows and outflows of gas, but for most of these parameters the gas just changes smoothly, by
flowing to the outer layers or being used in star formation. There are signs of inflows and outflows
for the run with highest density threshold while keeping the fraction of gas and the temperature
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of SNII as the standard values (Figure 6g). However, others works show that density thresholds
around 10 are enough to have inflows and outflows, this may be related to the way the energy is
distributed after supernova explosions, in this code a lot of energy is put into a small number of
particles, but this changes when we decrease TSNII , and we cannot see these flows of gas. The
behaviour is similar with 30 Myr of delay time or without delay.

(a) Runs with different fraction of gas and tSNII . The
solid line goes for the inner 1 kpc, and the dashed line
for the inner 2 kpc.

(b) Runs with different star formation efficiency. The
solid line goes for the inner 1 kpc, and the dashed line
for the inner 2 kpc.

(c) Runs with different resolution (number of particles.
The solid line goes for the inner 1 kpc, and the dashed
line for the inner 2 kpc.

(d) Runs with slightly different density thresholds.
The solid line goes for the inner 1 kpc, and the dashed
line for the inner 2 kpc (the green and red lines overlaps
the blue and the orange lines respectively).
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(e) Runs with a large difference in the density thresh-
olds. The solid line goes for the inner 1 kpc, and the
dashed line for the inner 2 kpc.

(f) Runs with different fraction of gas and density
thresholds. The solid line goes for the inner 1 kpc,
and the dashed line for the inner 2 kpc.

(g) Runs with different fraction of gas and SNII tem-
perature. The solid line goes for the inner 1 kpc, and
the dashed line for the inner 2 kpc.

Figure 6: Gas mass in the innermost regions of the galaxy for the different simulations. The solid
line goes for the inner 1 kpc, and the dashed line for the inner 2 kpc.

4.4 Stellar density profile

Here we analyze the stellar distribution, we can see that the effect of the different parameters over
this feature is not as big as the previous ones. The shape is approximately the same for all simula-
tions, we can see a bulge in the innermost regions (a flatten profile), with a exponential fall in the
outer layers.

What changes from one simulations to another is the size of the bulge and the total stellar mass.
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For example, the simulation with fgas = 0.16 and tSN = 0 Myr has almost no bulge, while the
case with nH,sf = 10 cm−3 and nH,EOS = 0.1 cm−3 has a bulge that extends to 0.5 kpc. The
differences in the total stellar mass are explained by the different SFHs. The galaxy formed from
the simulation with highest density thresholds and no delay time seems to be more concentrated
in the central regions, with the density profile falling rapidly, it was also the one with the highest
concentration of dark matter in the center.

Comparing these with the dark matter density profiles it seems that galaxies with a bulge has
a tendency to follow a NFW profile, whether the profiles where there is no bulge or is the smallest
are the ones that seem to have a dark matter core. This can be because the higher star formation
in the center deepens the potential, preventing the galaxy from forming a dark matter core.

(a) Runs with different fraction of gas and tSNII . (b) Runs with different star formation efficiency.

(c) Runs with different resolution (number of particles.

(d) Runs with slightly different density thresholds (the
green and red lines overlaps the blue and the orange
lines respectively).
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(e) Runs with a large difference in the density thresh-
olds.

(f) Runs with different fraction of gas and density
thresholds.

(g) Runs with different fraction of gas and SNII tem-
perature and with nH,EOS = 100 cm−3 and nH,sf =
10 cm−3.

Figure 7: Stellar density profile for the different simulations grouped by the parameters changed in
each run.
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4.5 Mass relations

Since we begin with the same initial mass, we can expect the total mass to be the same for all of
our galaxies. But this is not true for the stellar or mass, since star formation it is different in each
simulations, as we saw.

As it is expected galaxies with the highest star formations rates end up with the highest stellar
mass and the lowest gas mass. Apart from this two values there are two clear tendencies in Figure
8c, which are grouped by the initial fraction of gas. In Figures 8a and 8b we can see the simulations
ordered by the stellar mass and gas mass, respectively, and we can see that the total mass of the
galaxy (M200) is slightly larger that what we set in the initial conditions (we end up with a galaxy
of 6 · 1010 M� instead of 5 · 1010 M�), this is due to the calculations done when generating the
initial conditions.

(a) Relation between stellar mass and total halo mass
for all galaxies.

(b) Relation between gas mass and total halo mass for
all galaxies.

(c) Relation between gas mass and stellar mass for all
galaxies.

Figure 8: Mass relations for different components for all the simulations
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5 Conclusions

Several groups have found that cores can form within galaxy formation simulations that include
baryons and the effects of feedback. For example, Governato et al. 2010 [9] and Pontzen and Gov-
ernato 2014 [26] find cores formed by outflows of gas, whilst Di Cintio 2014 [7] find a dependence of
core formation on the ratio of stellar to halo mass, as did Chan, Keres, Oñorbe et al. 2015 [5] whilst
Read, Agertz and Collins 2016 [28], also found a dependence of core formation on star formation
rate. By contrast, simulations run with the EAGLE code have generally found cuspy dark matter
density profiles, even when baryons are included (see Sawala et al. 2016).

These EAGLE simulations, in general, have a relatively smooth SFH, compared to the behaviour
observed in other simulations e.g. Di Cintio et al. 2014 [7]. We do know that a bursty star formation
driving gas outflows is important in core formation models within cosmological simulations (e.g.
Pontzen & Governato 2014 [26]). We endeavored to understand the differences between the EAGLE
model and these other models that form cores. We did this by changing a range of parameters of
the EAGLE model and testing their effects on core formation. We found that the changes observed
when modifying the parameters were not dramatic. Looking at the star formation history, we saw
that:

• The effects of modifying parameters such us the star formation efficiency, density threshold
for star formation and the delay time and the temperature of SNII results in a large peak of
star formation and the behaviour of star formation remains smooth rather than bursty.

• The effect of increasing nH,sf , the density threshold for star formation, is minimal when the
density threshold for the equation of state is equal or higher.

• A high value of nH,EOS , i.e. retaining an ideal equation of state at higher densities, does result
in a slightly more bursty star formation rate although it remains relatively smooth compared
to other models such as FIRE simulations (Chan et al. 2016 [5]).

• Increasing the initial fraction of gas increases the star formation peak and when we combine
this with variation of the density threshold the profiles get smoother than other simulations
with the same values for the density thresholds.

• The effect of increasing the resolution is that the star formation peak happens earlier.

The case with a more bursty star formation history resulted in more outflows and a flatter pro-
file. This effect was quite small in the EAGLE simulations, however. The biggest difference is made
when we change the delay time of SNII feedback. When there is a delay between forming stars
and providing feedback, the galaxy is stable to core formation, which can be because stars add to
the potential well before gas is ejected, and then the changes in the potencial are less dramatic.
Another interesting parameter is the temperature of SNII, in EAGLE this temperature is high to
avoid artificial cooling, but this has the effect that a few particles are heated to a high temperature,
instead of spreading the energy around more, like they do in other models where a large number of
particles are heated to a lower temperature. This means that, in EAGLE, less mass is being ejected
during star formation, then, the processes that create cores are not taking place; this is consistent
with the gas mass plots.

Also, the formation of a bulge seems to be related to the dark matter profile, preventing the dark
matter to form a core. This is because the formation of stars in the inner region has deepened the
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potential well, making core formation more difficult. This is perhaps why the delay in supernova
feedback was the most important parameter in our study. With a 30 Myr delay in supernova feed-
back, stars are able to form in this period which adds to the potential and minimizes changes in the
potential when feedback finally occurs. We do know that the supernova feedback is delayed in star
forming regions. This may be interpreted as requiring other forms of stellar feedback, which occur
prior to supernova energy, to form cores. In EAGLE this stellar feedback is modeled by the change
in equation of state, which proves a pressure in star forming regions. Our simulations indicate that
this type of feedback does not transform cusps into cores.

As mentioned, the standard EAGLE simulations find no cores, just as we can see in the standard
case in our simulation, that shows a nice NFW fit. We have seen that parameters such as the delay
time for SNII, the density threshold for the equation of state and the resolution are able to obtain
a profile slightly different than NFW, with a small core being formed in the center regions, which
correspond to simulations with a slightly more bursty star formation; but there is not a huge dif-
ference for any set of parameters. Moreover, when we use parameters similar to those of Di Cintio
et al. 2014 [7] or Chan et al. 2016 [5] the simulations still do not form a core, whilst theirs do, we
also observe no sign of inflows and outflows, whilst their simulations present these movements of
gas. Also, even when cores are formed, they are significantly smaller than the ones formed in other
simulations, Di Cintio et al. 2014 [7], Governato et al. 2010 [9], Pontzen & Governatio 2014 [26],
Read et al. 2016 [29] and Chan et al. 2016 [5].

So in the end we can conclude that the most important difference between EAGLE code and
others is the SN feedback prescriptions, as well as the way that feedback from stars is implemented,
rather than the star formation prescriptions or the equation of state (which can prevent to much
gas falling to the center, and the core formation processes require gas falling to the center and then
being expelled).
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