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Summary 
 

The main scope of this work is to explore the fundamental theoretical treatment of 

intermolecular forces of interaction between atoms and molecules and some of the mathematical 

approaches employed in the representation of these interactions, and to apply these techniques 
to evaluate the intermolecular forces in certain atomic and molecular systems. 

The material is presented firstly through an introductory assertion of some of the basic 

ideas applied in the next sections, followed by a comprehensive theoretical exposition of the 

aspects most relevant to the electromagnetic and quantum mechanical understanding of 

intermolecular forces, presented in the same manner as done by A. Stone [1]. In the third section 

the mathematical models that are historically and practically relevant are reviewed, and these 

are then tested computationally in the fourth section to provide an overall picture of their 

validity and accuracy at representing the energy of interaction between closed electron shell 

atoms and ions. The fifth section includes the conclusions drawn throughout the project. Finally, 

due acknowledgements are given and a list of the references and bibliography employed is 
included. 

This field of study is encompassed in the area of atomic and molecular physics, yet it is 

relevant in many other disciplines. The reader should be sufficiently accustomed to the 

principles of physics, mathematics and chemistry and particularly to quantum mechanics to 
adequately follow the discussion. 

As to the author, the development of this work has required many academic competences 

presented in the courses that deal with the following subjects: Python language, Computational 

Physics, Electromagnetism, Quantum Mechanics, Atomic and Molecular Physics and 
Condensate Matter Physics. 
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   Introduction 
 

 

 

1.1 A brief historical approach 

The idea of a composite world made up of physically indivisible particles of minute size 

first arose with Democritus, a Greek philosopher, around the 4th century BCE. Later on, the 

Roman poet and philosopher Lucretius transmitted the ideas of Epicureanism, proposing that 

the static macroscopic bodies were composed on a small scale by rapidly moving atoms 

bouncing off each other. These assessments on the nature of matter were apparently long 

forgotten in European scientific history until the first experimental evidence for the corpuscular 
composition of matter appeared at the end of the 18th century.  

Modern atomic thinking developed throughout the last centuries, resting on the 

investigations of John Dalton concerning the atomic theory in chemistry (1812), the earlier 

discovery of Boyle’s law (1662), Charles Law (1787) and Gay-Lussac’s law (1809) on the 

proportionalities of the volumes, temperatures and pressures of gases, and later Avogadro’s Law 

(1811) on the proportionality of a gas’ volume to the number of particles. The success of these 

observations led to the development of the Kinetic Theory of Gases in the middle of the 19th 

century with the work of Rudolf Clausius (1857), although earlier pioneers1 were neglected by 

their contemporaries. With the advent of Faraday’s laws of electrolysis and the stoichiometry 

of many chemical reactions, the idea of atoms and molecules as the basic components of matter 

became consolidated. Further developments in the 20th century like x-ray diffraction or high 

resolution microscopy (STM or AFM), have reported copious evidence of the atomic and 
molecular characteristics of matter.  

 

1.2 Physical basis of intermolecular forces 

Following this trend of thinking the understanding of forces of interaction between atoms 

and molecules arose naturally, especially so when considering the existence of condensed 

                                                        
1 : D. Bernoulli (1738), R. J. Boskovich (1745), M. Lomonosov (1747), G. L. Le Sage (1780), J. Herapath (1843), J. J. 
Waterston (1843) and A. Krönig (1856) theorized extensively on the kinetic theory of gases. 
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phases of matter which display evident attractive forces between atoms and molecules. 

Furthermore, the finite density of matter and difficulty in compressing it shows that at short 
range these intermolecular forces become repulsive. 

Consequently, one may propose that the energy of 

interaction between two molecules as a function of the 

distance that separates them must take the form shown in Fig. 

1.1, with a long range attractive region and a steeply 

repulsive region at short range accounting for the 

aforementioned phenomena. There’s a minimum in the 

energy of interaction at a distance 𝑅𝑚, the depth of this 

attractive well is symbolized by 𝜀. These features are general 

to all molecular interactions, yet the form of the function U(R) 
depends on the particular molecules concerned.  

Van der Waals first took these ideas into account when describing real gases. He 

suggested that the incompressibility of the molecules could be expressed as a fixed volume 𝑏, a 

consequence of molecules being undeformable, and that the attractive forces between molecules 

effectively reduced the pressure of a gas on its container by a factor 𝑎, proportional to the square 

of the density. The gas law then took the form  𝑃 + 𝑎 ⁄ 𝑉2  𝑉 − 𝑏 = 𝑅𝑇, which gives a 

considerably good account of the condensation of gases into liquids and the constants 𝑎 and 𝑏 

correspond well enough with the properties of molecules in view of modern understanding. 

The parameter  𝜀 can be thought of as being approximately the energy required to 

separate a liquid condensate into its constituent molecules for each pair of adjacent molecules, 

and it is typically in the region 1 − 260 𝑚𝑒𝑉. It is considerably weaker than the energy of 

dissociation of a chemical bond which is greater than 2000 𝑚𝑒𝑉. Also, the parameter  𝑅𝑚 is 

affected by the attractive forces of distant molecules, effectively compressing adjacent 

molecules closer and making direct measurement unviable, as opposed to the Van der Waals 

parameter b which can be obtained through direct methods and can give a reasonable first 

estimation of the distances of equilibrium 𝑅𝑚. These are usually in the range of 2 − 4 Å, 

comparatively bigger with respect to chemical bonds which are of the order of 1 Å. 

1.2.1 Origin and classification of intermolecular forces 

The forces involved in molecular interactions, as well as the ones involved in the bonding 

of atoms that make up molecules, are ultimately due to the electromagnetic interaction. The 

main difference between the physical phenomena that comprises molecular interactions 2 is the 

distance at which these forces become relevant, thus they can be seen as either long range or 
short range interactions.  

                                                        
2 The term molecule will be taken to mean atoms and molecules in the following discussion. 

Fig 1.1.   General picture of the 
intermolecular potential energy 
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The long range interactions, which also appear in short range but persist at larger 

distances, have a functional energy of the form 𝑈~𝑅−𝑛. The most relevant contributions are: 

I. Electrostatic, which originate from the classical interaction of static charge 

distributions or permanent multipoles of a pair of molecules. They can be either 
attractive or repulsive, but they are strictly pairwise additive. 

II. Induction. This effect comes into being from the distortion of a particular molecule 

in the electric field of all its neighbours. Because these fields may reinforce or cancel 
out each other, this effect is strongly non-additive and it is always attractive. 

III. Dispersion is not classically defined, as it arises from to the fluctuation in the charge 

distribution of the molecules as electrons fluctuate around due to their quantum-
mechanical nature. 

Besides these main contributions to intermolecular forces, there are other minor 

contributions: when at least one of the molecules is in an excited state resonance interactions 

also appear, there are also magnetic interactions of very small magnitude whenever both 

molecules have unpaired spins or there are nuclei with non-zero spin. Given that long range 

interactions are described in terms of power series in 𝑅−1 these diverge when 𝑅 → 0, so they 

are only valid for large separations even if they are still present at short ranges. 

At short range, when the molecular wavefunctions overlap significantly, the electron 

exchange between molecules plays an important role and the repulsion energy between them 

behaves as 𝑈~𝑒−𝛼𝑅. Quantum-mechanical effects of approximately additive nature dominate 

at this stage given that the electron wavefunctions become wider as a result of this overlapping, 

thus the momentum distribution compresses and an attraction between the molecules appears 

in favour of this lower energy configuration. However, considering that electrons are fermionic 

matter, their wavefunctions require Pauli antisymmetry, maintaining this constraint requires 

energy and acts overall as a repulsive force. The latter becomes the dominant term and the 
exchange is overall repulsive. Hence the name exchange-repulsion forces. 

There are also exchange-induction and exchange-dispersion contributions arising from 

wave function overlap that dampen the energy of interaction and act as attractive forces. Charge 
transfer effects are thought of as exchange-induction effects and are non-additive. 

1.2.2 Intermolecular forces between several molecules 

The energy of interaction in an n-molecule system can only be approximately thought of 

as a pairwise addition of the energies of interaction between the molecules. The reality of the 

situation is that including an extra molecule to a system alters the overall energy of interaction 

between any pair of molecules in the system. In other words, if we view the energy of interaction 

between the molecules as a series 𝑈 and the energy of any isolated molecule 𝑖 as 𝑊𝑖, the energy 

of the assembly would be: 
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𝑊 =  𝑊𝑖

𝑖

+ 𝑈 =  𝑊𝑖

𝑖

+  𝑈𝑖𝑗

𝑖>𝑗

+  𝑈𝑖𝑗𝑘

𝑖>𝑗>𝑘

+  𝑈𝑖𝑗𝑘𝑙

𝑖>𝑗>𝑘>𝑙

+ ⋯ 

Thus for each pairwise addition of the interaction of m molecules within the n-body 

system, an m+1 correction to the energy appears. Even though these terms are increasingly 

smaller, they can’t be altogether neglected, the three-body terms may become too large to 

ignore. However, this approximation is good enough in most situations if the pairwise 
interaction is properly described. 

The equilibrium geometry is altered by the presence of nearby molecules, this departure 

from equilibrium may be altogether energy efficient. The difference between equilibrium and 

distorted geometry is known as deformation energy, and it constitutes a complicated many-body 
effect which is usually neglected completely.  

 

1.3 Representation of intermolecular forces 

The intermolecular potential energy curve (PEC) displayed in Fig. 1.1 shows the 

behaviour of the interaction energy between two atoms as a function of the separation between 

them but for more complicated systems the intermolecular potential is more adequately 

described as a multidimensional surface, or hyper-surface, which is known as a potential energy 
surface (PES). 

To visualize the interaction potential when there are more than two degrees of freedom 

can only be achieved three-dimensionally by means of a reduced representation. Taking the 

vertical dimension as the energy of interaction and the two horizontal dimensions as 

representative of the six or more coordinates that are in use, the PES thus becomes a surface 

which may be explored as a landscape with hills and valleys, illustrating the possible energy 
configurations as a function of the relative positions. 

If we consider the molecules as rigid bodies these PES are dependent on the set of 

generalised coordinates  𝑞𝑖  that represent the degrees of freedom available to the molecules, 

these being translations in space or rotations around the molecule’s origin of coordinates. 

However, the molecular properties on which the intermolecular forces depend are affected by 

the vibrational degrees of freedom of the molecules, hence coupling may arise between 

intermolecular and intramolecular motions leading to changes to the vibrational frequencies and 

to the equilibrium angles and lengths of the bonds between molecules. In this work non-
vibrating molecules will be considered so these effects will not be taken into account. 

To better understand these PES, it is worthwhile going into how the coordinate systems 

are constructed and how the degrees of freedom are defined in terms of these. A ‘global’ 

coordinate system referenced by Cartesian axes may be employed when there’s more than one 

molecule. This global frame {X, Y, Z} is defined, for example, in reference to macroscopic 
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features, it is fixed in space and relates molecules to each other through translations and 

rotations. It is also possible to define local or molecular frames of reference by attaching a set 

of coordinate axes {x, y, z} to each molecular centre, taking the 𝑧 axis along the symmetry axis 

of the molecule, the 𝑥 axis perpendicular to the molecular plane and the 𝑦 axis forming a right-

handed orthogonal set. In order to illustrate the degrees of freedom of a system let’s consider 
two characteristic examples: 

 In the case of an atom interacting with a linear molecule 

we can set a global frame with the Z axis through the 

linear molecule’s symmetry axis and originating at the 

centre of mass, and define the atom’s position in terms of 

the variable 𝑅  , which symbolizes the separation between 

the molecule and atom, and two angular variables  𝜃, 𝜑  

referring to the orientation of 𝑅  , as shown in Fig. 1.2. 

This arrangement implies 3 degrees of freedom. By 

taking a frame of reference tied to the molecule, which in 

this case implies fixing the atom in the XZ plane, the PES 

obviously becomes independent of the angular variable 𝜑 

and 𝑈 = 𝑈 𝑅, 𝜃 .  

 For two non-linear molecules and by reference to a 

global frame, each molecule requires a set of Euler-angle 

rotations  𝛼, 𝛽, 𝛾  to define its orientation, which 

correspond to rotations around the 𝑍,  𝑋′ and 𝑍′′ axes 

respectively, and three Cartesian coordinates to define its 

position, making a total of 12 degrees of freedom. If the 

global Z axis is set through the system’s centre of mass 

and the positions of the molecules are defined by a 

vector 𝑅   that joins both molecular centres, the degrees of 

freedom are reduced to 7. This is shown in Fig. 1.3. 

Furthermore, due to the symmetry of the system in the 

XY plane, the dependency of the PES on the Euler 

angles 𝛼1 and 𝛼2 may be expressed as 𝛼 =  𝛼2 − 𝛼1 and 

the degrees of freedom reduced to 6. Therefore, the 

potential is defined by 𝑈 = 𝑈 𝑅, 𝛼, 𝛽1, 𝛾1, 𝛽2, 𝛾2 . 

For a system comprised of 𝐴 atoms, 𝑁 > 2 molecules, of 

which L are linear, the number of intermolecular degrees 

of freedom are 6 𝑁 − 1 − 𝐿 + 3𝐴.  

 

Fig. 1.2.   Linear 
molecule interacting 

with an atom. 

Fig. 1.3.    Two non-linear 
molecules interacting. The 

global 𝑍 axis is presented as 
well as the local axes 𝑧1 and 𝑧2. 
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 Theoretical models 
 

 

 

As mentioned in section 1.2, the electromagnetic interaction is the most prominent 

contribution to the energy of interaction. All the interactions that contribute to define the PES 

ultimately come from the Coulombic interaction, except for the magnetic terms which are less 

relevant. Therefore, in describing these interactions there arises the need to define how charge 

is distributed in a molecule and to do so independently for long and short range contributions 
to the interaction energy, in compliance with the distinctions that have already been established. 

 

2.1 The electric field created by a molecule 

With the aim of obtaining the precise form of the potential energy 𝑈 𝑞𝑖 , let us start by 

considering the energy of electrostatic interaction between two molecules. Taking as reference 

Fig. 2.1, the electrostatic potential generated at a point 𝑅  𝐵 by discrete charge distributions 𝑒𝑎 

which are around a position  𝑎 + 𝑅  𝐴 relative to a global frame of reference has the form: 

𝑉𝐴 𝑅  𝐵 =  
 𝑒𝑎

4𝜋𝜀0 𝑅  𝐵 − 𝑅  𝐴 − 𝑎  
𝑎

=  
 𝑒𝑎

4𝜋𝜀0 𝑅  − 𝑎  
𝑎

                      2.1.1  

and the electrostatic potential energy of interaction created by discrete charge distributions is: 

ℋ′ =  
 𝑒𝑎 𝑒𝑏

4𝜋𝜀0 𝑅  + 𝑏  − 𝑎  
𝑎,𝑏

                2.1.2  

 when written in terms o  f the charge densities 𝜌𝐴 𝑎 , 𝑅  𝐴  

and 𝜌𝐵 𝑏  , 𝑅  𝐵  centred about 𝑅  𝐴 and 𝑅  𝐵 it becomes [1]: 

ℋ′ =  𝑑𝑎 𝑑𝑏  
𝜌𝐴 𝑎 , 𝑅  𝐴 𝜌

𝐵 𝑏  , 𝑅  𝐵 

4𝜋𝜀0 𝑅  + 𝑏  − 𝑎  
     2.1.3  

Fig. 2. 1     Two interacting molecules A 
and B. 
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2.2 Long-range molecular interactions 

It is most common to express the electrostatic potential as a convergent multipolar 

expansion when the intermolecular separation is large. The different multipolar moments 

generated by molecule 𝐴 appear explicitly in the multipolar expansion for the potential 

generated by such molecule.  

By taking a Taylor series expansion about 𝑅  𝐴 and making use of the tensor notation, 

Einstein summation convention3 and other relations4, the potential  2.1.1  becomes: 

    𝑉𝐴 𝑅  𝐵 =  
 𝑒𝑎

4𝜋𝜀0
𝑎

 
1

R
+ 𝑎𝛼  

𝜕

𝜕𝑎𝛼

1

 𝑅  − 𝑎  
 

𝑎  =0

+ 
1

2
𝑎𝛼𝑎𝛽  

𝜕2

𝜕𝑎𝛼𝜕𝑎𝛽

1

 𝑅  − 𝑎  
 

𝑎  =0

+ ⋯    

=  
 𝑒𝑎

4𝜋𝜀0
𝑎

 
1

R
− 𝑎𝛼  

𝜕

𝜕𝑅𝛼

1

 𝑅  − 𝑎  
 

𝑎  =0

+ 
1

2
𝑎𝛼𝑎𝛽  

𝜕2

𝜕𝑅𝛼𝜕𝑅𝛽

1

 𝑅  − 𝑎  
 

𝑎  =0

− ⋯  

=  
 𝑒𝑎

4𝜋𝜀0
𝑎

 
1

R
− 𝑎𝛼∇𝛼

1

R
+ 

1

2
𝑎𝛼𝑎𝛽∇𝛼∇𝛽

1

R
− ⋯  .                                         2.2.1  

in this expression we can identify the zeroth-order moment term as the total charge of molecule 

A, 𝑀 =   𝑒𝑎𝑎 = 𝑞; the first-order moment term is the dipole moment 𝑀 𝛼 =   𝑒𝑎𝑎 𝑎𝛼 = 𝜇 𝛼 

and the second-order moment is the quadrupole moment 5 𝑀 𝛼𝛽 =  𝑒𝑎𝑎𝛼𝑎𝛽𝑎 =  𝑒𝑎  𝑎𝛼𝑎𝛽 −𝑎

1

3
𝑎2𝛿𝛼𝛽 =

2

3
Θ𝛼𝛽

 . The same rules apply for the higher order moments. 

With this in mind we rewrite the electrostatic potential as: 

𝑉𝐴 𝑅  𝐵 = 𝑇𝑞𝐴 − 𝑇𝛼𝜇 𝛼
𝐴 +

1

3
 𝑇𝛼𝛽Θ 𝛼𝛽

𝐴 − ⋯+
 −1 𝑛

 2𝑛 − 1 ‼
𝑇𝛼𝛽…𝜈

 𝑛 
ξ 𝛼𝛽…𝜈
𝐴 𝑛 

+ ⋯            2.2.2  

where, in general: 

𝑇𝛼𝛽…𝜈
 𝑛 

= 
1

4𝜋𝜀0

 ∇𝛼∇𝛽 …∇𝜈

1

R
                                               2.2.3  

are the corresponding Cartesian components of the so called interaction tensors T. The 

subscripts 𝛼, 𝛽, 𝛾, etc. can each be 𝑥, 𝑦 𝑜𝑟 𝑧, and the definition of the Cartesian interaction 

tensors 𝑇 employs Kronecker deltas for mathematical economy.  

                                                        
3 Any repeated subscript entails a summation over the system’s coordinate axes, so: 𝑓𝛼 = 𝑓𝑥 + 𝑓𝑦 + 𝑓𝑧  

4 
𝜕

𝜕𝑥

1

 𝑅  −𝑟  
=

𝜕

𝜕𝑥

1

√ 𝑋−𝑥 2+ 𝑌−𝑦 2+ 𝑍−𝑧 2
= −

𝜕

𝜕𝑋

1

 𝑅  −𝑟  
 The same is true for coordinates y and z. 

5 Such a definition is necessary since the dependence on 1 𝑅⁄  satisfies Laplace’s equation and so there is no contribution to 
the potential from the trace 𝑀𝛼𝛼. Permutation of the subscripts doesn’t change the value. 
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We see how convenient this notation is when the operations entailed are carried out: 

4𝜋𝜀0𝑇 =
1

R
                                                           2.2.3.1  

 4𝜋𝜀0𝑇𝛼 = −
𝑅𝛼

R3
                                                       2.2.3.2  

 4𝜋𝜀0𝑇𝛼𝛽 =
3𝑅𝛼𝑅𝛽 − 𝑅2𝛿𝛼𝛽

R5
                                          2.2.3.3  

4𝜋𝜀0𝑇𝛼𝛽𝛾 = −
15𝑅𝛼𝑅𝛽𝑅𝛾 − 3𝑅2 𝑅𝛼𝛿𝛽𝛾 + 𝑅𝛽𝛿𝛼𝛾+𝑅𝛾𝛿𝛼𝛽 

R7
               2.2.3.4  

This notation allows to easily determine not only the contributions to the potential from 

the permanent multipoles of molecule 𝐴, but also the electric field  𝐹𝛼
𝐴 𝑅  𝐵 = −∇𝛼𝑉

𝐴 𝑅  𝐵 , the 

field gradient  𝐹𝛼𝛽
𝐴  𝑅  𝐵 = −∇𝛼𝛽𝑉

𝐴 𝑅  𝐵   and successive higher derivatives created by its charge 

distribution.  

Thus, returning to equation  2.2.2 , the 𝛼 components of the electric field and field 

gradient at 𝑅  𝐵 created by the potential 𝑞𝐴𝑇 that arises from the charge 𝑞𝐴 are as follows: 

𝐹𝛼
𝐴 𝑅  𝐵 = −𝑞𝐴𝑇𝛼        ;        𝐹𝛼𝛽

𝐴 = −𝑞𝐴𝑇𝛼𝛽                              2.2.4.1  

In the case of the dipolar moment 𝜇 𝛾
𝐴, the potential it produces is −𝜇 𝛾

𝐴𝑇𝛾 and the electric 

field and field gradient take the following form: 

𝐹𝛼
𝐴 = 𝜇 𝛽

𝐴𝑇𝛼𝛽       ;       𝐹𝛼𝛽
𝐴 = 𝜇 𝛾

𝐴𝑇𝛼𝛽𝛾                               2.2.4.2  

By taking these relations, the higher order derivatives and equations  2.2.2  and  2.2.3 , 

into account, the electrostatic interaction energy can be written in terms of the multipolar 
expansion, giving: 

          ℋ′ = 𝑞𝐵𝑉𝐴 − 𝜇 𝛼
𝐵𝐹𝛼

𝐴 +
1

3
Θ 𝛼𝛽

𝐵 𝐹𝛼𝛽
𝐴 + ⋯ = 𝑞𝐵  𝑇𝑞𝐴 − 𝑇𝛼𝜇 𝛼

𝐴 +
1

3
 𝑇𝛼𝛽Θ 𝛼𝛽

𝐴 − ⋯ 

+ 𝜇 𝛼
𝐵  𝑇𝛼𝑞

𝐴 − 𝑇𝛼𝛽𝜇 𝛽
𝐴 +

1

3
 𝑇𝛼𝛽𝛾Θ 𝛽𝛾

𝐴 − ⋯ 

+
1

3
Θ 𝛼𝛽

𝐵  𝑇𝛼𝛽𝑞
𝐴 − 𝑇𝛼𝛽𝛾𝜇 𝛾

𝐴 +
1

3
 𝑇𝛼𝛽𝛾𝛿Θ 𝛾𝛿

𝐴 − ⋯ + ⋯  

                 = 𝑇𝑞𝐴𝑞𝐵 + 𝑇𝛼 𝑞
𝐴𝜇 𝛼

𝐵 − 𝑞𝐵𝜇 𝛼
𝐴 + 𝑇𝛼𝛽  

1

3
𝑞𝐴Θ 𝛼𝛽

𝐵 − 𝜇 𝛼
𝐴𝜇 𝛽

𝐵 +
1

3
𝑞𝐵Θ 𝛼𝛽

𝐴  + ⋯      2.2.5  

this expression is an operator, therefore if we require the electrostatic interaction potential then 

we must take the expectation value of  ℋ′. 
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If we were to have N interacting molecules instead of two, the interaction energy can be 

generalized by summing these contributions pairwise given that the Coulombic interactions is 
strictly additive. 

2.2.1 Perturbation theory for long-range interactions. 

If the molecules 𝐴 and 𝐵 are far enough apart the multipolar expansion   2.2.5  will be 

valid and the interaction energy small. In this situation perturbation theory is a valid approach 

to solve the eigenvalue equation of the Hamiltonian. Let’s consider a set of electrons that are 

identified as belonging to molecule 𝐴. These electrons may be described by a wavefunction Ψ𝑚
𝐴  

and a Hamiltonian ℋ𝐴 can be defined in terms of these electrons. The same can be stated for 

molecule 𝐵, with a wavefunction  Ψ𝑚
𝐵  describing its electrons and a Hamiltonian ℋ𝐵 defined 

according to this set of electrons. The Hamiltonian for the two molecules, including the 

perturbative Hamiltonian ℋ′, can be written as: 

ℋ = ℋ𝐴 + ℋ𝐵 + ℋ′ = ℋ0 + ℋ′                                            2.2.6  

The unperturbed Hamiltonian for the combined system, ℋ0, verifies the Symmetrisation 

Postulate of Quantum Mechanics: the exchange of any two identical particles of the system 

preserves the correct symmetry. Thus, the unperturbed states can be given as the product 

functions Ψ𝑚
𝐴Ψ𝑛

𝐵, which can be simplified as |𝑚𝑛 . We have, then, the energy eigenstates: 

ℋ0|𝑚𝑛 =  ℋ𝐴 + ℋ𝐵 |𝑚𝑛 =  𝑊𝑚
𝐴 + 𝑊𝑛

𝐵 |𝑚𝑛 = 𝑊𝑚𝑛
0 |𝑚𝑛                   2.2.7  

where ℋ𝐴|𝑚 = 𝑊𝑚
𝐴|𝑚  and ℋ𝐵|𝑛 = 𝑊𝑛

𝐵|𝑛  are the energy eigenstates of the isolated A and 

B molecules, respectively, and |𝑚𝑛 = |𝑚𝐴𝑛𝐵 = |𝑚𝐴 ⨂|𝑛𝐵  is the product of their state bases. 

For a simpler argument let’s assume that the interacting molecules have a closed shell 

electronic structure, such that their ground states are non-degenerate. The energy of the ground 
state of the two interacting molecules in second order perturbation theory [2] is, therefore: 

                𝑊00 = 𝑊00
0 + 𝑊00

 1 
+ 𝑊00

 2 

= 𝑊00
0 +  00|ℋ′|00 −  

 00|ℋ′|𝑚𝑛  𝑚𝑛|ℋ′|00 

𝑊𝑚𝑛
0 − 𝑊00

0

𝑚,𝑛≠0

                              2.2.8  

In most cases it suffices to truncate the perturbation series in its second order, but in 

certain systems the third order contribution may be relevant. For example, these third order 

terms account for the three-body dispersive non-additive effects (Axilrod–Teller–Muto 
potential) [1]. 

2.2.2 Electrostatic interaction. 

The zeroth order contribution to the energy, 𝑊00
0 , is a constant value which represents the 

sum of the energies of the isolated molecules A and B and may be suppressed by taking an 
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appropriate origin for the energy.  In the ground state of the unperturbed system the first order 

contribution, 𝑊00
 1 

, is the expected value of the electrostatic Hamiltonian, ℋ′.  

If we go back to the multipolar expansion series  2.2.5 , the interaction energy becomes: 

                  𝑈𝑒𝑠 =  00|ℋ′|00 =  ℋ′ 00

= 𝑇𝑞𝐴𝑞𝐵 + 𝑇𝛼 𝑞
𝐴 𝜇 𝛼

𝐵 0 − 𝑞𝐵 𝜇 𝛼
𝐴 0 

+ 𝑇𝛼𝛽  
1

3
𝑞𝐴 Θ 𝛼𝛽

𝐵  0 −  𝜇 𝛼
𝐴 0 𝜇 𝛼

𝐵 0 +
1

3
𝑞𝐵 Θ 𝛼𝛽

𝐴  0 + ⋯                                  2.2.9  

the expected values of the molecular operator 6 are calculated by choosing an appropriate closure 

relationship in the position state basis set of each molecule. Altogether, it can be concluded that 

both the multipolar expansion and the non-expanded expression  2.1.3  represent the 

electrostatic interaction between two molecules. 

For two neutral species the electrostatic interaction energy is written as the sum of the 
dipole-dipole term, dipole-quadrupole, quadrupole-quadrupole, etc.: 

             𝑈𝑒𝑠 = −𝑇𝛼𝛽𝜇𝛼
𝐴𝜇𝛽

𝐵 −
1

3
𝑇𝛼𝛽𝛾 𝜇𝛼

𝐴Θ𝛽𝛾
𝐵 − Θ𝛼𝛽

𝐴 𝜇𝛾
𝐵 

− 𝑇𝛼𝛽𝛾𝛿  
1

15
𝜇𝛼

𝐴Ω𝛽𝛾𝛿
𝐵 −

1

9
Θ𝛼𝛽

𝐴 Θ𝛾𝛿
𝐵 +

1

15
Ω𝛼𝛽𝛾

𝐵 𝜇𝛿
𝐵 + ⋯                                 2.2.10  

In order to illustrate the electrostatic energy and obtain a treatable expression, let’s 

consider the simplest case of two neutral molecules such that only the dipole-dipole interaction 
contributes to the potential energy. Therefore: 

  𝑈𝜇𝜇 = −𝑇𝛼𝛽 𝜇𝛼
𝐴𝜇𝛽

𝐵 =
𝑅2𝜇𝐴𝜇𝐵 − 3 𝜇𝐴 · 𝑅    𝜇𝐵 · 𝑅   

4𝜋𝜀0𝑅
5  

       = −
𝜇𝐴𝜇𝐵

4𝜋𝜀0𝑅
3
 2 cos 𝜃𝐴 cos 𝜃𝐵 − sin 𝜃𝐴 sin 𝜃𝐵 cos𝜑 = −

𝜇𝐴𝜇𝐵

4𝜋𝜀0𝑅
3
 Υ 𝜃𝐴, 𝜃𝐵 , 𝜑      2.2.11  

As was done in section 1.3, and taking Fig. 1.3 as reference, the global Z axis is set 

along 𝑅  , with the origin at molecule 𝐴. The direction of the dipoles 𝜇𝐴
 and 𝜇𝐵

 is specified by the 

polar angles 𝜃𝐴 , 𝜑𝐴 and 𝜃𝐵 , 𝜑𝐵. By choosing the X axis to coincide with the local 𝑥𝐴 axis of the 

molecule A, 𝑋 ≡ 𝑥𝐴, then the polar angles become related, 𝜑 = 𝜑𝐴 − 𝜑𝐵.  

Furthermore, it is clear that the most energetically favourable orientation would 

have Υ 0, 0, 0 , representing a head-tail configuration, and in this case the angular factor would 

be −2. The most unfavourable orientations would have Υ 𝜋, 0, 0  and Υ 0, 𝜋, 0  or head-head 

                                                        
6 In order to simplify the bra-ket notation, the matrix elements are expressed as:   0𝐴0𝐵|𝐴 |0𝐴0𝐵 =  00|𝐴 |00 =  𝐴  00 
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configuration, with an angular factor +2. Either Υ  −
𝜋

2
,
𝜋

2
, 0 , antiparallel, or Υ  

𝜋

2
,
𝜋

2
, 𝜋 , 

parallel, would be attractive for dipolar molecules, which would give an angular factor −1.  

2.2.3 Induction or polarization interaction. 

The second order energy describes the induction and dispersion energies. This is 

appreciated when the second order term that appears in  2.2.7  is separated into three parts. The 

combination of excited and ground states for each molecule expresses the induction energy, 
whilst having both molecules in excited states refers to the dispersion energy:  

𝑊′′ = 𝑈𝑖𝑛𝑑
𝐴 + 𝑈𝑖𝑛𝑑

𝐵 + 𝑈𝑑𝑖𝑠𝑝 

where: 

𝑈𝑖𝑛𝑑
𝐴 = −  

 00|ℋ′|𝑚0  𝑚0|ℋ′|00 

𝑊𝑚
A − 𝑊0

𝐴

𝑚≠0

                                   2.2.12  

𝑈𝑖𝑛𝑑
𝐵 = − 

 00|ℋ′|0𝑛  0𝑛|ℋ′|00 

𝑊𝑛
B − 𝑊0

𝐵

𝑛≠0

                                     2.2.13  

𝑈𝑑𝑖𝑠𝑝 = −  
 00|ℋ′|𝑚𝑛  𝑚𝑛|ℋ′|00 

𝑊𝑚
𝐴 + 𝑊𝑛

𝐵 − 𝑊0
A − 𝑊0

B

𝑚,𝑛≠0

                                2.2.14  

By means of the expansion  2.2.8  truncated at the second order term, the induction 

energy  2.2.13  becomes: 

             𝑈𝑖𝑛𝑑
𝐵 = − 

1

𝑊𝑛
B − 𝑊0

𝐵  00  𝑇𝑞𝐴𝑞𝐵 + 𝑇𝛼 𝑞
𝐴𝜇 𝛼

𝐵 − 𝑞𝐵𝜇 𝛼
𝐴 − 𝑇𝛼𝛽𝜇 𝛼

𝐴𝜇 𝛽
𝐵 + ⋯  0𝑛 

𝑛≠0

×  0𝑛  𝑇𝑞𝐴𝑞𝐵 + 𝑇𝛼′ 𝑞𝐴𝜇 𝛼′
𝐵 − 𝑞𝐵𝜇 𝛼′

𝐴  − 𝑇𝛼′𝛽′𝜇 𝛼′
𝐴 𝜇 𝛽′

𝐵 + ⋯  00              2.2.15  

the matrix elements of the first term vanish because 𝑞𝐵
 is just a constant and any molecular 

excited state would be orthogonal to the molecule’s ground state. Considering the 

orthonormality relationships in the state’s basis of molecule A, the implied integration over its 
coordinates is performed. This gives: 

               𝑈𝑖𝑛𝑑
𝐵 = −

1

2
 𝑞𝐴𝑇𝛼 − 𝑇𝛼𝛽𝜇 𝛼

𝐴 + ⋯ 𝛼𝛼𝛼′
𝐵  𝑞𝐴𝑇𝛼′ − 𝑇𝛼′𝛽′𝜇 𝛼′

𝐴 + ⋯ − ⋯

= −
1

2
 𝐹𝛼

𝐴𝛼𝛼𝛼′
𝐵 𝐹𝛼′

𝐴 − ⋯                                                                                         2.2.16  

the expression 𝐹𝛼
𝐴 is the electric field components created by molecule A at the position of 

molecule 𝐵 and the quantum mechanical expression is identified as being the components of 

the electric dipole-dipole polarizability tensor of molecule B. The dipolar polarizability gives 
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the measure by which an external and constant electric field would induce a dipolar momentum 
in a given molecule. This magnitude can be calculated through the following expression [1]: 

𝛼𝛼𝛼′
𝐵 =   

 0|𝜇 𝛼
𝐵|𝑛 𝐵 𝑛|𝜇 𝛼′

𝐵 |0 𝐵 +  0|𝜇 𝛼′
𝐵 |𝑛 𝐵 𝑛|𝜇 𝛼

𝐵|0 𝐵

𝑊𝑛
B − 𝑊0

𝐵

𝑛≠0𝑛≠0

                 2.2.17  

 If the static dipole-quadrupole and quadrupole-quadrupole polarizabilities of the 

molecule B, 𝐴𝛼,𝛼′𝛽′
𝐵  and 𝐶𝛼𝛽,𝛼′𝛽′

𝐵
 respectively, are included in the induction energy  2.2.16  as 

was done for the electrostatic energy (2.2.10), then it reads: 

𝑈𝑖𝑛𝑑
𝐵 = −

1

2
 𝐹𝛼

𝐴𝛼𝛼𝛼′
𝐵 𝐹𝛼′

𝐴 −
1

3
 𝐹𝛼

𝐴𝐴𝛼,𝛼′𝛽′
𝐵 𝐹𝛼′𝛽′

𝐴 −
1

6
 𝐹𝛼𝛽

𝐴 𝐶𝛼𝛽,𝛼′𝛽′
𝐵 𝐹𝛼′𝛽′

𝐴 − ⋯      2.2.18  

In some situations it is necessary to consider non-linear polarizability effects or 
hyperpolarizabilities, which are terms beyond the second-order perturbation theory.  

To clarify the form of the induction interaction, let us consider the interaction of an ion 𝐴, 

and a noble gas atom 𝐵, both being in their ground states and having a closed electronic shell. 

This is the configuration that will be treated in section 4.2. Due to the symmetry of closed shell 

atoms their electric dipolar polarizabilities are isotropic. The polarizability tensor is diagonal 

for such a case, 𝛼𝛼𝛾
𝐴 = 𝛼𝐴𝛿𝛼𝛾 and 𝛼𝛽𝛿

𝐵 = 𝛼𝐵𝛿𝛽𝛿 , and the electric field produced by the ion would 

be 𝐹𝑧 = −𝑞 4𝜋𝜀0𝑍
2⁄  along the Z axis. The induction energy created by the ion on the atom 

would be 𝑈𝑖𝑛𝑑
𝐵 = −𝑞2𝛼𝐵 4𝜋𝜀0𝑍

4⁄ . From this we can gather that the electric field goes with 𝑅−2 

and the induction energy goes as 𝑅−4. For an electrically neutral but dipolar molecule  𝑞𝐴 = 0,

𝜇𝐴 ≠ 0 , the electric field goes with  𝑅−3 and the induction energy goes as 𝑅−6. In each of these 

cases the induction energy is always attractive.  

It is worthwhile pointing out that the electric field 𝐹𝛼
𝐴 for a molecule 𝐵 surrounded by 

many molecules will be the vector sum of the electric fields generated by the 𝐴 molecules. In 

such a situation, the induction energy cannot be described by simple pairwise addition and 
therefore it displays a non-additive character. 

2.2.4 Dispersion interaction. 

Returning to equation  2.2.15  and considering only the first non-zero contribution 

in ℋ′ for electrically neutral molecules, the dipole-dipole term, the expression becomes: 

                         𝑈𝑑𝑖𝑠𝑝
 6 

= −  
 00 𝜇 𝛼

𝐴𝑇𝛼𝛽𝜇 𝛽
𝐵 mn  mn 𝜇 𝛾

𝐴𝑇𝛾𝛿𝜇 𝛿
𝐵 00 

𝑊𝑚
𝐴 + 𝑊𝑛

𝐵 − 𝑊0
A − 𝑊0

B

m,n≠0

 

= − 𝑇𝛼𝛽𝑇𝛾𝛿  
 0|𝜇 𝛼

𝐴|𝑚  0 𝜇 𝛽
𝐵 𝑛  𝑚 𝜇 𝛾

𝐴 0  𝑛 𝜇 𝛿
𝐵 0 

𝑊𝑚0
𝐴 + 𝑊𝑛0

𝐵

m,n≠0

                   2.2.19  
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where 𝑊𝑚0
𝐴 = 𝑊𝑚

𝐴 − 𝑊0
A and 𝑊𝑛0

𝐵 = 𝑊𝑛
𝐵 − 𝑊0

B. Although the numerator of this expression can 

be factorized into terms referring to molecule 𝐴 and terms referring to molecule 𝐵, the 

denominator cannot.    

One way to deal with this difficulty is due to London (1930), who rewrote  2.2.19  as: 

𝑈𝑑𝑖𝑠𝑝
 6 

= − 𝑇𝛼𝛽𝑇𝛾𝛿  
𝑊𝑚0

𝐴 𝑊𝑛0
𝐵

𝑊𝑚0
𝐴 + 𝑊𝑛0

𝐵

 0|𝜇 𝛼
𝐴|𝑚  𝑚 𝜇 𝛾

𝐴 0 

𝑊𝑚0
𝐴

 0 𝜇 𝛽
𝐵 𝑛  𝑛 𝜇 𝛿

𝐵 0 

𝑊𝑛0
𝐵         2.2.20 

m,n≠0

 

 The terms  𝑊𝑚0
𝐴 𝑊𝑛0

𝐵  𝑊𝑚0
𝐴 + 𝑊𝑛0

𝐵  ⁄  do not allow factoring out the product of static 

dipolar electric polarizability components 𝛼𝛼𝛾
𝐴  and 𝛼𝛽𝛿

𝐵   2.2.17 . A first approach is to express 

this is in terms of the averaged excitation energies 𝑈𝐴 and 𝑈𝐵, id est, to follow the Unsöld 

approximation: 

𝑈𝑑𝑖𝑠𝑝
 6 

≈ −
𝑈𝐴𝑈𝐵

4 𝑈𝐴 + 𝑈𝐵 
𝑇𝛼𝛽𝑇𝛾𝛿𝛼𝛼𝛾

𝐵 𝛼𝛽𝛿
𝐵                                    2.2.21  

Considering again the simple case of isotropic polarizabilities, 𝛼𝛼𝛾
𝐴 = 𝛼𝐴𝛿𝛼𝛾 and 𝛼𝛽𝛿

𝐵 =

𝛼𝐵𝛿𝛽𝛿 , and taking into the account the form of the interaction tensors  2.2.3 , the following 

expression is obtained: 

 𝑈𝑑𝑖𝑠𝑝
 6 

≈ −
𝑈𝐴𝑈𝐵

4 𝑈𝐴 + 𝑈𝐵 
𝑇𝛼𝛼𝑇𝛼𝛼𝛼

𝐴𝛼𝐵 = −
3𝑈𝐴𝑈𝐵

2 𝑈𝐴 + 𝑈𝐵 

 𝛼𝐴𝛼𝐵

 4𝜋𝜀0 
2𝑅6

= −
𝐶6

𝑅6
     2.2.22  

this is the well-known London formula for the dispersion energy between two atoms and it can 

also be used for molecules when it gives the dispersion interaction averaged over relative 

orientations of the two molecules. This expression is not often employed to estimate the 

dispersion energy due to the difficulty of estimating the average excitation energies, but upper 

and lower limits may be obtained by substituting 𝑈𝐴 and 𝑈𝐵 by either the first excitation energies 

or the ionization potentials for 𝐴 and 𝐵. 

 A mathematically exact form of the dispersion energy is based on the work of Casimir 
and Polder (1948), which employs the following mathematical identity: 

1

𝐴 + 𝐵
=

2

π
  

𝐴𝐵

 𝐴2 + 𝜗2  𝑏2 + 𝜗2 

∞

0

𝑑𝜗                                2.2.23  

which is valid for 𝐴, 𝐵 positive and can be established by a contour integration on the complex 

plane. Applying this formula to the energy denominator in  2.2.20 , where 𝑊𝑚0
𝐴 + 𝑊𝑛0

𝐵 =

ħ 𝜔𝑚
𝐴 + 𝜔𝑛

𝐵 , we get: 

𝑈𝑑𝑖𝑠𝑝
 6 

= −
2ħ

𝜋
𝑇𝛼𝛽𝑇𝛾𝛿   

𝜔𝑚
𝐴  0|𝜇 𝛼

𝐴|𝑚  𝑚 𝜇 𝛾
𝐴 0 

ħ  𝜔𝑚
𝐴  2 + 𝜗2 

𝑚≠0

 
𝜔𝑛

𝐵 0 𝜇 𝛽
𝐵 𝑛  𝑛 𝜇 𝛿

𝐵 0 

ħ  𝜔𝑛
𝐵 2 + 𝜗2 

𝑛≠0

 𝑑𝜗
∞

0

       2.2.24  
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here we can look at equation  2.2.17  to recognize the summations over states as being the 

dynamic polarizabilities of 𝐴 and 𝐵 at the imaginary frequency 𝑖𝜗 [1], and expression (2.2.14) 

can be written as: 

𝑈𝑑𝑖𝑠𝑝
 6 

= −
ħ

2𝜋
𝑇𝛼𝛽𝑇𝛾𝛿  𝛼𝛼𝛾

𝐵  𝑖𝜗 𝛼𝛽𝛿
𝐵  𝑖𝜗 𝑑𝜗

∞

0

                            2.2.25  

The dynamic polarizability expresses the response of the molecule to an external electric 

field which is sinusoidally dependent with time. This magnitude is closely tied to atomic and 

molecular spectroscopy. The dynamic polarizability at imaginary frequencies 𝛼𝛼𝛾
𝐵  𝑖𝜗  does not 

have an easy physical interpretation but its mathematical properties are sufficiently regular and 

the integral  2.2.25  can be solved numerically. 

  Similarly to the London-Unsöld treatment, the dispersion energy 𝑈𝑑𝑖𝑠𝑝
 6 

 will now become: 

𝑈𝑑𝑖𝑠𝑝
 6 

= −
3ħ

 4𝜀0 
2𝜋3𝑅6

 𝛼𝐴 𝑖𝜗 𝛼𝐵 𝑖𝜗 𝑑𝜗
∞

0

= −
𝐶6

𝑅6
                     2.2.26  

 By including higher order components in the expression (2.2.14), terms depending on 

dynamic polarizabilities for dipole-quadrupole, quadrupole-quadrupole, dipole-octupole, etc. 
appear under the integral. For centrosymmetric atoms this treatment simplifies and leads to: 

𝑈𝑑𝑖𝑠𝑝 = −
𝐶6

𝑅6
 −

𝐶8

𝑅8
 −

𝐶10

𝑅10
− ⋯                                        2.2.27  

where: 

𝐶6 = 𝐶𝜇,𝜇
𝐴𝐵         𝐶8 = 𝐶𝜇,Θ

𝐴𝐵 + 𝐶Θ,𝜇
𝐴𝐵          𝐶10 = 𝐶Θ,Θ

𝐴𝐵 + 𝐶𝜇,Ω
𝐴𝐵 + 𝐶Ω,𝜇

𝐴𝐵              2.2.28  

Following Casimir and Polder’s method, the different 𝐶𝑛 coefficients for even indexes 𝑛 

can be obtained from the corresponding integrals [7]. For instance, the coefficient 𝐶𝜇,Θ
𝐴𝐵 

is  
15ħ

2 4𝜀0 
2𝜋3𝑅8  𝛼𝐴 𝑖𝜗 𝐴𝐵 𝑖𝜗 𝑑𝜗

∞

0
. 

Note as well that for more complicated molecular interactions, the 𝐶𝑛 coefficients will 

depend on the relative orientations of the molecules. The higher order contributions are to be 
included in accurate calculations, however, as we shall see, they are reduced by damping effects. 

 

2.3 Short-range molecular interactions 

So far we’ve been ignoring exchange effects associated with the overlapping of anti-

symmetrized wave functions. The reason behind this simplification is that at large distances 

these contributions tend to zero and only the attractive electrostatic terms raised by the 
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molecular electronic wave functions prevail. In the case of short-range interactions the 

exchange-repulsion effects play a major role and the quantum mechanical treatment with 

standard perturbation theory fails in this situation. For an introductory study such as the present 

work, going into a lengthy discussion on short-range interactions would be impractical and, 
therefore, the simplest treatment is presented to explore these complications. 

2.3.1 Perturbation theory for short-range interactions. 

By taking a look at the usual Rayleigh-Ritz perturbation theory [2], the limitations of 
perturbative models at short range are immediately apparent: 

 There isn’t an unambiguous definition up to the order of the perturbation 

expansion given that the unperturbed and perturbed terms of the Hamiltonian are 
non-invariant with respect to electron permutation. 

 The Hamiltonian eigenstates must be anti-symmetrized, hence, even if the 

states |𝑚𝐴 |𝑛𝐵  are orthogonal, the anti-symmetrized products |𝑚𝐴𝑛𝐵  are not. A 

set of orthonormal eigenstates cannot be formed. 

There are many perturbative methods [1] proposed to deal with the anti-symmetry of the 

unperturbed states, but the first order energy is the same in all of them: basically it is the 

difference between the expected value of the system Hamiltonian ℋ in the anti-symmetrized 

product state  |0𝐴0𝐵  and the zeroth order energy of the non-interactive system, which is a 

unique constant and disappears through proper choice of origin of the energy coordinates: 

𝐸00
 1 

=  ℋ 00 −   𝑊0
A + 𝑊0

B                                             2.3.1  

2.3.2 Electrostatic interaction: penetration effects. 

The electrostatic energy described by the relation  2.1.3  can be made to converge at any 

distance but fails at short distances when the molecular charge distributions overlap. The 

converged result is in error by an amount known as penetration energy. 

Let’s take the situation of a proton interacting with a hydrogen-like atom of nuclear 

charge 𝑍 to simply illustrate this behaviour. The ground state wavefunction of the atom 

is 𝜑1𝑠 𝑅 = √𝑍3 𝜋⁄ 𝑒−𝑍𝑅, the associated charge distribution will be 𝜌 𝑅 = −𝑒| 𝜑1𝑠 𝑅 |2 =

−𝑒 𝑍3 𝜋⁄  𝑒−2𝑍𝑅. The electrostatic potential 𝑉 𝑅  generated at a distance 𝑅 from the atom’s 

nucleus by the electric charge distribution is obtained by solving Poisson’s equation ∇2𝑉 =

−𝜌 𝑅 𝜀0⁄ = 4𝑍3𝑒−2𝑍𝑅, where 4𝜋𝜀0 = 1 in atomic units. The charge density is spherically 

symmetric and so is the potential, thus: 

𝑉 𝑅 = −
1

𝑅
+  𝑍 +

1

𝑅
 𝑒−2𝑍𝑅 = −

1

𝑅
 1 − 𝑒−2𝑍𝑅 1 + 𝑅𝑍  = −

1

𝑅
𝑓1 2𝑍𝑅      2.3.2  
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The function 𝑓1 2𝑍𝑅  is known as the damping function, its value is 1 at long range and 

tends to zero at short range as to suppress the singularity of the electric monopole term (the 

charge). The exponential term describes the penetration correction to the potential at short-range 

that arises from the finite extent of the charge distribution. The general case must include the 

higher-order electric multipole terms and all 𝑅−𝑛 singularities are cancelled out from the 

complete penetration correction, leaving only the term 𝑍/𝑅 from the electron-nuclei interaction. 

The dispersion and induction terms are also accompanied by singularities of this kind and are 
normally treated by means of their corresponding damping functions. 

2.3.3 Exchange and repulsion interactions. 

If the anti-symmetrisation of a two-molecule system’s wavefunction is performed new 

contributions to the electrostatic energy appear [1]. These are the exchange and repulsion terms. 

From the perturbative treatment a simple agreement about the dependency with distance of the 

energy of exchange and repulsion can be reached: it changes exponentially with the separation 

distance 𝑅. An accurate representation would be a function of the form: 

𝑈𝑒𝑟 = 𝐾𝑒−𝑏 𝑅−𝑅0                                                           2.3.3  

where 𝐾 is an arbitrary fixed constant (for instance: 𝑈𝑒𝑟 = 𝐾 when 𝑅 = 𝑅0), 𝑏 is a parameter 

that accounts for the range of the energy of exchange and repulsion and typically varies 

around 2 − 4 Å−1, it is also known as a Born-Mayer parameter, and  𝑅0 depends on the size and 

structure of the interacting molecules concerned. 

2.3.4 Induction and dispersion interactions: damping effects. 

From the symmetry-adapted perturbative theory calculations at short range it is clear that 

the second-order contributions stay finite when the separation 𝑅 between molecules goes to 

zero. The only singularity arises from the electrostatic terms associated to the repulsion between 

the nuclei of the system’s atoms. With this in mind and considering the expression  2.2.26 , 

let’s multiply each term by the corresponding damping function to resolve the singularities: 

𝑈𝑑𝑖𝑠𝑝 = −𝑓6 𝑅 
𝐶6

𝑅6
 − 𝑓8 𝑅 

𝐶8

𝑅8
 − 𝑓10 𝑅 

𝐶10

𝑅10
− ⋯                       2.3.4  

Each damping function 𝑓𝑛 𝑅  must suppress the corresponding 𝑅−𝑛 singularity so it 

should tend to zero or to a constant with the behaviour 𝑅𝑛 when 𝑅 → 0. In the literature there 

are several functional forms of these damping functions [1], in the next chapter we introduce 
one of the most popular: the Tang-Toennies damping function. 

In the simplest case, the interaction between a closed-shell ion and an atom, the induction 

energy’s leading term in the multipole expansion at short distances behaves according to 𝑅−4, 

while for neutral polar molecules it is proportional to 𝑅−6. At short ranges, these terms must be 

multiplied as well by the corresponding damping functions. 
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 Interaction potential models 
 

 

 

The main goal of this chapter is to present some of the historical potential models, the 

Lennard-Jones and Born-Mayer potentials, as well as the more realistic Tang-Toennies and 

Pirani potentials. These treatable mathematical functions will be employed in the fourth chapter 
to illustrate and compare their behaviour computationally in atomic systems. 

 

3.1 The Lennard-Jones potential 

It was first introduced in 1906 by Mie and later adopted by Lennard-Jones, and it consists 

of a repulsive term 𝐶𝑛 𝑅𝑛⁄  and attractive term  −𝐶𝑚 𝑅𝑚⁄  with 𝑛 > 𝑚. After London’s work on 

the dispersion forces the values 𝑚 = 6 and typically 𝑛 = 12 were chosen. The LJ potential is: 

𝑈𝐿𝐽 𝑅 = 4𝜀   
𝜎

𝑅
 
12

−  
𝜎

𝑅
 
6

 = 𝜀   
𝑅𝑒

𝑅
 
12

− 2 
𝑅𝑒

𝑅
 
6

                       3.1.1  

where 𝜀 represents the depth of the potential well, 𝑅𝑒 being the position of the equilibrium 

position (the minimum position such that 𝑈𝐿𝐽 𝑅𝑒 = −𝜀), 𝜎 = 2−1/6𝑅𝑒 is the position where 

the repulsive branch crosses zero. Therefore, the potential depends on two parameters, 𝑅𝑒 or  𝜎 

and 𝜀, which can be adjusted to experimental data and/or ab initio calculations. The attractive 

term is the leading term in the 𝑅−1 expansion of the dispersion energy. The repulsive term has 

no theoretical justification, beyond its steep repulsive form, given that it should be of 
exponential form. 

 From a mathematical standpoint this model potential is a particular case of a family of 

analytical functions, or Mie potentials, sometimes called generalized LJ potentials, which are 

characterized by a minimum of energy in 𝑅𝑒 independent of the parameters 𝑚, 𝑛, where 𝑛 > 𝑚, 

and an acceptable asymptotic behaviour for 𝑅 → ∞. These potentials have the form: 

𝑈𝐿𝐽 𝑛,𝑚, 𝑅 = 𝜀  
𝑚

𝑛 − 𝑚
 
𝑅𝑒

𝑅
 
𝑛

−
𝑛

𝑛 − 𝑚
 
𝑅𝑒

𝑅
 
𝑚

                            3.1.2  



22     Interaction potential models 

 

Introduction to Intermolecular Forces 
 

3.2 The Born-Mayer potential  

Born and Mayer suggested in 1932 to replace the repulsive term of the LJ potential by 

an exponentially decreasing function, which, combined with the London expression for the 
dispersion contribution, gave rise to the ‘exp-6’ potential: 

𝑈𝑒𝑥𝑝−6 𝑅 = 𝑈𝐵𝑀 𝑅 + 𝑈𝑑𝑖𝑠𝑝
 6 

 = 𝐴𝑒−𝑏𝑅 −
𝐶

𝑅6
                               3.2.1  

Both the exp-6 potential and the Buckingham-Corner potential, which has a 𝑅−8 

dispersion term as well, are unsuitable for some calculations but are physically acceptable. The 

reason is that the exponential part tends to the constant 𝐴 as the separation decreases, yet it 

remains finite when 𝑅 = 0, so the dispersive term becomes dominant at very short-range and 

the potential has an incorrect behaviour, leading to 𝑈𝑒𝑥𝑝−6 𝑅 → 0 → −∞.  

Alas, in the time of its inception the exponential part was computationally inconvenient 
so the LJ potential was preferred although it too has obvious deficiencies. 

 

3.3 The Tang-Toennies potential 

An accurate description of the van der Waals potentials is provided by the Tang-Toennies 

potential introduced in 1984 [3], which has recently been shown to be a generalized form of the 

Heitler-London theory, with a five-parameter analytical expression: the first three dispersion 

coefficients 𝐶6,  𝐶8 and 𝐶10 and the parameters 𝐴 and 𝑏 of the BM repulsion potential.  

In this model, the short-range repulsive BM potential is added to a damped dispersion: 

𝑈𝑇𝑇 𝑅 = 𝐴𝑒−𝑏𝑅 −  𝑓2𝑘 𝑏𝑅 
𝐶2𝑘

𝑅2𝑘

𝐾

𝑘=3

                                        3.3.1  

For most rare gas systems the 𝐶2𝑘 coefficients can be obtained theoretically with high 

accuracy. Note that the BM range parameter 𝑏 is the only parameter in the damping 

functions 𝑓2𝑘 𝑏𝑅 , understandable when considering that the damping of the dispersion 

potential is a consequence of the wavefunction overlapping.  

These damping functions are incomplete gamma functions: 

 𝑓2𝑘 𝑏𝑅 = 1 −
γ 2k + 1, bR 

2𝑘!
= 1 − 𝑒−𝑏𝑅  

 𝑏𝑅 𝑛

𝑛!

2𝑘

𝑛=0

                       3.3.2  

where we may verify that 𝑓2𝑘 𝑅 → 0 → 0, where γ 2k + 1, bR  has a 𝑅2𝑘+1 behaviour for 

small 𝑅, and 𝑓2𝑘 𝑅 → ∞ → 1, thus correcting the improper behaviour of the dispersion 
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contribution. This can be proven by taking a look at some inequalities that follow easily from 

the incomplete gamma function γ 2k + 1, bR =  𝑡2𝑘𝑒−𝑡𝑑𝑡
𝑏𝑅

0
 [5]. If the boundary 0 ≤ 𝑡 ≤

𝑏𝑅 is applied, then 𝑡2𝑘𝑒−𝑏𝑅 ≤ 𝑡2𝑘𝑒−𝑡 ≤ 𝑡2𝑘 and γ 2k + 1, bR  is bounded in the following 

fashion: 

𝑒−𝑏𝑅
 𝑏𝑅 2𝑘+1

2𝑘 + 1
≤ γ 2k + 1, bR ≤

 𝑏𝑅 2𝑘+1

2𝑘 + 1
                                     3.3.3  

where γ 2k + 1, bR ~𝑏𝑅2𝑘+1  2𝑘 + 1 ⁄  as 𝑅 → 0. 

These damping functions acting on the dispersive terms 𝑅−6,  𝑅−8 and 𝑅−10 are shown 

in Fig. 3.1 for the He-He dimer employing the BM parameter 𝑏 = 1.335 Å−1 that corresponds 

to a He-He interaction.  

As the order of the dispersive term 

goes up the distance at which the damping 

function becomes effective is greater, thus 

the behaviour 𝑈𝑇𝑇 𝑅 → 0 → ∞ is 

attenuated by the lower order terms and 

truncating the series at 2k=10 is usually 

sufficient to correct the dispersive potential 

in the van der Waals region. However, one 

may notice that the TT damping functions 

over-dampen the dispersive term 𝑈𝑑𝑖𝑠𝑝 

at 𝑅 → 0.  

Overall, the Tang-Toennis model 

uniquely determines the BM parameters 𝐴 

and 𝑏 when a given set of well 

parameters, 𝑅𝑒 and 𝜖, are chosen. Even though up to eight terms are necessary for convergence, 

dropping the higher order terms and keeping those associated with the damping functions 𝑓6,  𝑓8 

and  𝑓10 introduces only a small error that can be corrected by the adjustment of  𝐴 and 𝑏 near 

the minimum of the potential. 

 

3.4 The Pirani potential 

It is an empirical potential model with just three parameters that are initially adjusted 

from high resolution experimental measurements of the effective cross-sections for collision of 

molecular beams of rare gases [4]. It is most commonly known as Improved Lennard-Jones 

potential. The Pirani potential eliminates most of the short and middle-range inadequacies of 

Fig. 3.1.     Tang-Toennies damping functions of orders 
6, 8 and 10 for the He dimer. 
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the LJ model. The mathematical expression is derived from the Mie potential  3.1.2  and takes 

the form: 

𝑈𝐼𝐿𝐽 R = 𝜖  
𝑚

𝑛 𝑅 − 𝑚
 
𝑅𝑒

𝑅
 
𝑛 𝑅 

−
𝑛 𝑅 

𝑛 𝑅 − 𝑚
 
𝑅𝑒

𝑅
 
𝑚

                        3.4.1  

where, as before, 𝜖 and 𝑅𝑒 represent the depth of the potential well and its location. The first 

term describes the repulsion and the second one represent the long-range attraction. For all 

neutral-neutral systems the value 𝑚 = 6 is assumed, while for ion-neutral interactions 𝑚 = 4 

is chosen and 𝑚 = 1 corresponds to ion-ion situations. The 𝑛 𝑅  term is found to be: 𝑛 𝑅 =

𝛽 + 4  
𝑅

𝑅𝑒
 
2

. The 𝛽 parameter is related to the hardness of the two interacting atoms and varies 

within a limited range following some regularities. Note also that 𝑛 𝑅 → 0 → 𝛽 and 𝑛 𝑅 →

∞ → ∞ and the expression  3.4.1  has a correct asymptotic behaviour. 

The response of this potential is less repulsive than the LJ model, although it doesn’t 

have an exponential repulsive term the short-range is less steep. It shows reasonable behaviour 

since the 𝑛 𝑅  dependence leads to a correct representation of the long-range attraction and 

attenuates the hardness of the repulsive wall as 𝑅 decreases using only three 

parameters  𝜖, 𝛽, 𝑅𝑒 . Moreover, the simply formulated and physically reliable Pirani model is 

particularly useful for molecular dynamics simulations of both neutral and ionic systems and it 
has been adapted for molecule-atom and molecule-molecule interactions by Pirani et al [4]. 
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 Interaction potentials between closed 
electron shell atoms 

 

 

 

In this final chapter the potential models are presented and compared via simple Python 

scripts to obtain valid representations of the accurate interatomic van der Waals potentials for 

homogeneous rare gas dimers and for an atom-ion system, He-L𝑖+, as well as a three-body 

system He-He-L𝑖+. 

 

4.1 Rare gas – rare gas interactions 

The interatomic potentials are calculated for homogeneous pairs of rare gas atom, which 
have a closed shell electronic structure that simplifies the mathematical treatment.  

4.1.1 Tang-Toennies potential 

To study this potential model we make 

use of the parameters that Tang and Toennies 

fitted to ab initio calculations [3], which have 
been shown to be very precise.  

In Table I the necessary dispersion 

coefficients as well as the Born-Mayer 

parameters A and b are presented along with 

the well minimum, 𝑅𝑒, and the well depth, 𝜀, 

for each rare gas atom. 

Firstly, let’s consider the helium dimer 

interaction. We represent in Fig. 4.1 the TT 

potential and, in order to show the differences 

with another potential model, a LJ potential 

whose parameters 𝑅𝑒 and 𝜀 are set at the position and depth of the minimum energy of the TT 

potential is also represented. It is clearly seen that the TT potential has a stepper middle-range  

Fig. 4.1     TT and LJ potentials for the He dimer. 



26     Interaction potentials between closed electron shell atoms 

 

Introduction to Intermolecular Forces 
 

Table I  Parameters and equilibrium data for the homogeneous rare gas dimers. 

 

attractive region and, as seen from the close up, the repulsive short-range region is also slightly 

steeper. Naturally, both potential energy curves coincide at the well minimum, which 

corresponds to a value of 𝑈 𝑅𝑒 = 2.9739 Å  = −0.969 𝑚𝑒𝑉. 

If we were to plot the rest of the noble gas PECs to further compare the behaviour of the 

TT potential model and the correspondingly fitted LJ potentials, the subtle differences apparent 

in the He dimer interaction potential become very great. This can be observed in Fig. 4.2, where 

all rare gas atom pairs, save for helium, are represented with their corresponding LJ PECs. In 

𝑋 − 𝑋 𝐴  𝑚𝑒𝑉  𝑏  Å  𝐶6  𝑚𝑒𝑉Å6  𝐶8  𝑚𝑒𝑉Å8  𝐶10  𝑚𝑒𝑉Å10  𝑅𝑒  Å  𝜀  𝑚𝑒𝑉  

He-He 1.418 · 106 1.335 872.99 2360.95 8602.7 2.9739 0.9469 

Ne-Ne 5.429 · 106 1.301 3814.0 15116.1 71970.3 3.0904 3.6463 

Ar-Ar 2.036 · 107 1.705 38421 271567 2298738 3.7572 12.3539 

Kr-Kr 2.265 · 107 0.987 77439 700587 7286053 4.0111 17.3609 

Xe-Xe 2.59 · 107 0.89 170821 21443427 29041129 4.3657 24.3814 

Rn-Rn 1.514 · 108 0.965 251319 3222670 49994975 4.4768 34.2863 

Fig. 4.2      TT and LJ potentials for the Ne, Ar, Kr, Xe and Rn dimers. 
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each case it is noticeable that the TT potential is steeper in both regions, repulsive and attractive, 

and the LJ potential merely has an adequate shape and a correct well minimum position and 
well depth but is altogether inaccurate as compared to the TT potential. 

4.1.2 Pirani potential 

To test the Pirani model  3.4.1 , let’s 

first consider a comparison with the LJ 

potential for the PEC of the He dimer. By 

using a 𝛽 = 9 factor, in accordance with the 

analysis by Pirani et al. [4], as well as the 
values presented in Table I. 

 The resulting PEC seen in Fig. 4.3 

shows that the steepness of the response of 

the Pirani potential in the attractive and 

repulsive regions is greater, more so in the 
middle-range. 

 The PECs for the rest of the 

homogeneous rare gas dimers have also been 

obtained. As seen in Fig. 4.4, the response of the Pirani potential is very similar to the TT model 

with almost the same repulsive behaviour and also a slightly less attractive tendency in the 

Fig. 4.3       ILJ and LJ potentials for the He dimer. 

 

Fig. 4.4     Comparison of the ILJ and TT potentials for the Ne, Ar, Kr, Xe and Rn dimers. 
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middle and long-range. These PECs were obtained by employing the parameters from Table I 

and a different 𝛽 factor of 10 and 11.5 for the Ar2 and Rn2 dimers respectively, as well as a 𝛽 

factor of 9.5 for the Ne2, Kr2 and Xe2 dimers, while the He2 dimer’s factor is still set at 9. This 

deviation in choosing the 𝛽 factor from the approach taken by Pirani et al provides a closer 

similarity of the Pirani PECs to the TT model while preserving the appropriate attractive and 
repulsive behaviour. 

 

4.2 Atom-ion interactions for the He-L𝐢+system 

4.2.1 Soldán et al potential 

This interatomic potential is employed for the interaction between a closed-shell metal 

ion and a rare gas atom, and is presented in the same way as Soldán et al [6]. It consists of a 

typical Born-Mayer potential for the repulsion term and the damped attractive induction and 
dispersion terms are expressed as a sum: 

𝑈𝑆𝑜𝑙 𝑅 = 𝐴𝑒−𝑏𝑅 −  𝑓𝑛 𝑅 
𝐷𝑛

𝑅𝑛
                                         3.5.1  

where the damping function is the same as in the Tang-Toennies potential. The coefficients 𝐷𝑛 

are related to the polarizabilities, hyperpolarizabilities and dispersion coefficients in the 

following manner:  

 𝐷4 =
𝛼

2
 ;  𝐷6 =

𝐴

2
+  𝐶6 ;  𝐷7 =

𝐵

2
 ;   𝐷8 =

𝐶

2
+

Υ

24
+  𝐶8                    3.5.2  

here 𝐵 and Υ are the dipole-dipole-quadrupole and second dipole hyperpolarizabilities, 

corresponding to the third and fourth order perturbation theory respectively. The 

expressions 𝛼, 𝐴 and 𝐶 are the static dipole-

dipole, quadrupole-quadrupole and octupole-
octupole polarizabilities.  

The work carried out by Soldán et al. 
[6] will be reproduced, and to estimate how 

well they have fitted the parameters to first 

principle calculations, a Pirani potential is 

employed to represent the PEC of the same 

He-Li+system. The parameters for the 

Soldán et al. potential (3.5.1) are those 

displayed in Table II. The dispersion 

coefficients 𝐷𝑛  are calculated from the 

expression (3.5.2).  Fig. 4.5.     Comparison between the Pirani and Soldán 
et al. potentials for the He-L𝑖+ system. 
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The calculations performed with the Soldán et al. model resulted in a different well 

minimum depth and position compared to the one calculated ab initio in their paper. The reason 

for this deviation is unknown, hence the Pirani potential is fitted to the well depth and position 

found with the Soldán et al. potential expression 𝑈𝑆𝑜𝑙 𝑅𝑒 = 1.89 Å = −78.256 𝑚𝑒𝑉. A 

factor 𝛽 = 4.5 and order 𝑚 = 4 are the appropriate choices for this ion-atom setup. 

These results are shown in Fig. 4.5, where it may be observed that the attractive middle 

region of the 𝑈𝑆𝑜𝑙 potential is less pronounced than that of the Pirani model, and the repulsive 

region as well as the minimum energy of the interaction is described reasonably well by both 
potential models.  

Table I   Parameters for Soldán et al. potential. 

 

 

 

4.2.2 Many-body system: He-He-L𝐢+ 

To study the PES of a three-body system as well as the many-body polarization 

correction mentioned in Sec. 1.2.2, a He-He-Li+ trimer configuration as represented in Fig. 4.6 

is considered, and the approach taken by Liu et al. [9] is reproduced. 

A first approximation to the PES of a three-body system can be expressed as the sum of 
three pairwise interactions: 

𝑉2𝐵 𝑟12, 𝑟13, 𝑟23 = 𝑉L𝑖+He 𝑟13 + 𝑉L𝑖+He 𝑟23 + 𝑉HeHe 𝑟12                      4.3.1  

Each pairwise interaction can be calculated using the results already obtained in sections 

4.1 and 4.2.1. We have chosen to use a Pirani potential for the He-He interaction and a Soldán 

et al. potential for the He-Li+ interactions, employing the parameters displayed in Table I and 

Table II. 

However, further considerations have to be taken into 

account given that the charged Li+ ion will polarize the He atoms 

and an induced dipole will be created on both of them. These 

dipoles interact with each other, and this interaction is 

encompassed by a dipole-dipole potential energy term  𝑉𝜇𝜇, the 

analytical expression was given in (2.2.11) and in the present case 
takes the form: 

𝑉𝜇𝜇 =
𝜇 1 𝜇 2 

𝑟12
3  2 cos𝜙1 cos𝜙2 − sin𝜙1 sin 𝜙2     4.3.2  

𝐷4 𝑚𝑒𝑉Å4  𝐷6  𝑚𝑒𝑉Å6  𝐷7  𝑚𝑒𝑉Å7  𝐷8  𝑚𝑒𝑉Å8  𝐴  𝑚𝑒𝑉  𝑏  Å−1  

1475.73 908.57 1158.34 1520.34 567852.57 4.826 

Fig. 4.6.     Geometry of the He-
He-L𝑖+ trimer system. 
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where 𝜇 1 = 𝛼𝐻𝑒/𝑟13
2  and 𝜇 2 = 𝛼𝐻𝑒/𝑟23

2  are the induced dipoles created by the electric charge 

of the ion. To include this dipole-dipole interaction potential in (4.3.1), it must be transformed 

through the appropriate trigonometric relations 7 to get rid of the angular dependency and leave 

it in terms of the interatomic distances 𝑟12, 𝑟13 and 𝑟23: 

𝑉𝜇𝜇 = −𝐶7  
3𝑟23

𝑟13
3 𝑟12

5 +
3𝑟12

4𝑟23
3 𝑟12

5 −
1

𝑟23
3 𝑟13

3 𝑟12
−

1

2𝑟23𝑟13
3 𝑟12

3 −
3

2𝑟23𝑟13𝑟12
5 −

1

2𝑟23
3 𝑟13𝑟12

3   4.3.3  

here, the term 𝐶7 = 604.96 𝑚𝑒𝑉Å7 comes from the induced dipolar polarizabilities 𝛼𝐻𝑒. 

 Finally, the complete description of the trimer interaction including the many-body 
correction takes the form: 

𝑉3𝐵 𝑟12, 𝑟13, 𝑟23 = 𝑉2𝐵 𝑟12, 𝑟13, 𝑟23 + 𝑉𝜇𝜇 𝑟12, 𝑟13, 𝑟23                        4.3.4  

In order to represent the pairwise interacting three-body potential 𝑉2𝐵 (4.3.1), the many-

body corrected three-body potential 𝑉3𝐵 (4.3.4) and the polarization correction 𝑉𝜇𝜇 (4.3.3), the 

contours of the four-dimensional PES for these two configurations are plotted. 

To make the representation easier to analyse, and taking as reference Fig. 4.6, the He(1) 

and Li+(3) system is fixed to a minimum interatomic distance 𝑟13 = 1.91 Å, while the 

                                                        
7 The procedure to obtain this expression is not trivial. 

Fig. 4.7     Classical PES of the 
4
He-

4
He-Li+ system calculated with the 𝑉2𝐵 term (4.3.1). 
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distance 𝑟23 between the Li+(3) and He(2) is allowed to vary over a small range. As for the He 

dimer,  𝑟12 is trigonometrically expressed in terms of the angle  𝜙3 which is bound to the 

interval  80º, 180º .  

The 𝑉2𝐵 PES is shown in Fig. 4.7. The most notable characteristic is that the minimum 

energy of the system, which is 𝑉2𝐵 = −163.35 𝑚𝑒𝑉, takes place at the minimum pairwise 

interatomic distances for both the He dimer and the He(2)-Li+(3) system, respectively 𝑟12 =

2.97 Å   𝜙3 = 102.1º  and 𝑟23 = 1.91 Å. 

This result was to be expected, given that the 

many-body correction was not included the 

pairwise minimum potential energies have 
emerged. 

The 𝑉3𝐵 PES is featured in Fig. 4.8. 

Firstly, in comparison to the 𝑉2𝐵 PES, the 

minimum energy configuration has been 

displaced to  𝜙3 = 180º and its value has 

changed to  𝑉3𝐵 = −161.1 𝑚𝑒𝑉. The PES of 

the dipole-dipole interaction term (4.3.3) is 

shown in Fig. 4.9. It introduces a repulsive 

correction of    𝑉𝜇𝜇 = 2.24 𝑚𝑒𝑉 to the 

Fig. 4.8     PES of the 
4
He-

4
He-Li+ system corrected for the three-body deformation energy. 

 

Fig. 4.9     Repulsive correction that emerges from the 
dipole-dipole interaction term (4.3.3). 
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minimum energy of the system, which corresponds to a 1.4% increase over the pairwise 

interaction potential energy 𝑉2𝐵. It is noticeable that the polarization correction decreases 

slightly in potential energy with the increase in angular separation 𝜙3 between the He atoms, 

and more prominently with the increase of interatomic distance 𝑟23, effectively displacing the 

equilibrium geometry from a triangular to a linear geometry. 

Secondly and finally, the effect of the dipole-dipole interaction term has introduced a 

change to the equilibrium interatomic distances of the He dimer and the He(2)-Li+(3) system, 

which are now considerably different from their pairwise equilibrium positions. These distances 

have become 𝑟12 = 3.823 Å and 𝑟23 = 1.913 Å. 

 

 

 

 Conclusions 
 

 

 

The study that was initially conducted regarding the physical basis of the intermolecular 

forces of interaction between atoms and molecules as well as the formalism for their 

representation and the methods that have been historically employed, following the discussions 

presented by A. Stone in [1], has allowed the successful application of these concepts to study 

the potential energy curves and surfaces of different physical systems, effectively modelling the 

energies of interaction for real systems. As an introduction to this field of research, this project 
has provided valuable knowledge. 

As for the results obtained, several conclusions can be drawn: 

The Tang-Toennies PECs for the homogeneous rare-gas dimers seen in Fig. 4.1 and Fig. 

4.2 that were calculated in the present study have been shown to agree exactly with recent ab 
initio results obtained by Tang and Toennies [3]. It is altogether the most accurate potential 
model that has been employed in the present work. 

Concerning the Pirani or Improved Lennard-Jones potential, the PECs from Fig. 4.3 and 

Fig. 4.4 have been traced with the parameters set by Pirani et al. [4] and those results were 

contrasted with their own first principles calculations. The overall behaviour of the Pirani 

potential is confirmed in the present study as a valid approach to homogeneous rare-gas dimers, 

particularly for the He2, Ne2, Ar2, Kr2 and Xe2 dimers, as well as for He-Li+ systems. The 
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different choices in the 𝛽 factors in all cases except for the He2 dimer have been made by the 

author of this study in search for better agreement with the TT potential model. 

As reported from ab initio calculations by Soldán et al., their potential model is a better fit 

altogether and thus an improvement over the Pirani or ILJ potential for representing the He-Li+ 

interaction. In their study [6], they reported a calculated interatomic energy of −80.47 𝑚𝑒𝑉 for 

an equilibrium interatomic distance of 1.9 Å at a high level of theoretical precision. However, 

using the same potential model and the coefficients they provide, the minimum well depth and 

position reached are −78.257 𝑚𝑒𝑉 and 1.89 Å. This deviation suggests an error in the 

parameters provided, however such error has not been uncovered during the present work. 

Finally, the three-body PES calculations require additional commentary. The equilibrium 

position angle  𝜙3 = 102.72º was calculated by Liu et al. [9], yet this is slightly different from 

what was obtained for the 𝑉2𝐵 PES, shown in Fig. 4.7, which was 𝜙3 = 102.06º. This deviation 

is corrected when an interatomic distance 𝑟13 = 1.908 Å is chosen for the He(1)-Li+(3),  

suggesting that the classical calculation for such interatomic distance can be further improved. 

Aside from this slight difference, many first principles calculations have shown partial 
agreement with the results shown in the present study, again reported in [9]. 

Moreover, the equilibrium geometry of the three-body system shown in Fig. 4.8 is altered 

significantly by the dipole-dipole correction and the pairwise interatomic equilibrium distances 

vary further. The change to the He dimer minimum position can be explained from the change 

in equilibrium geometry of the trimer system, however the change to the He(2)-Li+(3) 

interatomic distance, which became 𝑟23 = 1.913 Å, is indicative of theoretical deficiencies in 

the simple model that was employed. Altogether, it is obvious that Quantum Mechanical 

considerations are necessary to arrive at precise calculations of the equilibrium geometry of the 

He-He-Li+ trimer. 
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