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Abstract  

 Monte-Carlo Tree Search Using Expert Knowledge: An Application to Computer Go and 

Human Genetics 
 

 During the years in which the research described in this PhD dissertation was done, Monte-Carlo Tree 

Search has become the preeminent algorithm in many AI and computer science fields. This dissertation 
analyzes how expert knowledge and also online learned knowledge can be used to enhance the search. The 

work describes two different implementations: as a two player search in computer go and as an optimization 

method in human genetics. It is established that in large problems MCTS has to be combined with domain 

specific or online learned knowledge to improve its strength. This work analyzes different successful ideas 
about how to do it, the resulting findings and their implications, hence improving our insight of MCTS. The 

main contributions to the field are: an analytical mathematical model improving the understanding of 

simulations, a problem definition and a framework including code and data to compare algorithms in human 
genetics and three successful implementations: in the field of 19x19 go openings named M-eval, in the field of 

learning playouts and in the field of genetic etiology. Also, an open source integer representation of 

proportions as Win/Loss States (WLS), a negative result in the field of playouts, an unexpected finding of a 

possible problem in optimization and further insight on the limitations of MCTS are worth mentioning. With 
the exception of some background materials introducing the game of go and MCTS, the dissertation is entirely 

written in English. 

 
 

 Incorporación de conocimiento experto a la búsqueda en árbol mediante procesos estocásticos y 

su aplicación en el juego abstracto del go y en genética humana 
 

 Durante el periodo de desarrollo de esta tesis Monte-Carlo Tree Search (MCTS la búsqueda en árbol 

mediante procesos estocásticos) se ha convertido en el algoritmo principal en muchos problemas de 

inteligencia artificial e informática. Esta tesis analiza la incorporación de conocimiento experto para mejorar la 
búsqueda. El trabajo describe dos aplicaciones: una en el juego del go por ordenador y otra en el campo de la 

genética humana. Es un hecho establecido que, en problemas complejos, MCTS requiere del apoyo de 

conocimiento específico o aprendido online para mejorar su rendimiento. Lo que este trabajo analiza son 
diferentes ideas de cómo hacerlo, sus resultados e implicaciones, mejorando así nuestra comprensión de 

MCTS. Las principales contribuciones al área son: un modelo analítico de las simulaciones que mejora la 

comprensión del papel de las simulaciones, un marco competitivo incluyendo código y datos para comparar 
métodos en etiología genética y tres aplicaciones con éxito: una en el campo de las aperturas en go de 19x19 

llamada M-eval, otra sobre simulaciones que aprenden y una en etiología genética. Además, merece la pena 

destacar: un modelo para representar proporciones mediante estados llamado WLS con software libre, un 

resultado negativo sobre una idea para las simulaciones, el descubrimiento inesperado de un posible problema 
utilizando MCTS en optimización y un análisis original de las limitaciones. Con la excepción de unos 

materiales introductorios sobre el juego del go y Monte-Carlo Tree Search, la tesis está completamente escrita 

en inglés. 
 

by Santiago Basaldúa Lemarchand 
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Chapter 1. Introduction 

1.1 Thesis overview for English readers 

 

The purpose of this PhD dissertation is to study and experiment about expert knowledge, both offline 

learned and online learned, applied in two different implementations of Monte-Carlo Tree Search (MCTS) in 

the fields of computer go (a minimax implementation of MCTS) and human genetics (MCTS applied in 

optimization). All non-introductory materials are written in English, both the state of the art research in the 

fields and our original research. In the case of our application to human genetics, since this dissertation is 

intended for an audience of computer scientists, all necessary explanations about biology and genetics are 

included in English in 5.1. 

 

Chapter 3 is dedicated to the description of successful methods for providing knowledge (in the form of a 

priori values) to the tree search including the most important ideas introduced by other authors and our original 

research: M-Eval. [1, 2]. Chapter 4 is dedicated to the stochastic evaluation function, known as playout in the 

field of computer go. It includes the most successful and widely accepted methods by other authors and our 

own research: WLS [3] and learning playouts [4]. Chapter 5 is a self-contained dissertation on the application 

of MCTS in the field of human genetics for an audience of computer scientists/mathematicians covering from 

the background to the experimental results and can also be read independently without any go background. All 

the experiments in genetics are performed using the GEM platform (described in 6.2), an original work of the 

main author, first implemented to research bias in case-control association studies [5] and finally, including the 

results of this thesis [6]. Chapter 6 describes all the software used in this thesis, which was almost completely 
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written by the main author. Chapter 7 contains the discussion including recent research in MCTS and chapter 8 

enumerates the conclusions. 

 

An English reader with understanding of go, computer go and Monte-Carlo Tree Search can safely jump 

to page 30. Otherwise, the following references may be useful: 

 

 About Go: Introduction by the American Go Association [7], introduction by the British Go 

Association [8], an interactive online tutorial [9], an introductory book written by the top 

professional player Cho Chikun [10], Wikipedia article on the game [11], a wiki site exclusively 

dedicated to go [12] and official rules in English: Chinese-style [13] and Japanese-style [14]. 

 About the meaning of Go terms used in this dissertation, such as semeai, joseki, sente, etc., 

Sensei's Library [12] is a very good place to find a description of those terms. 

 About Computer Go: Two excellent analyses on pre-MCTS computer go by Erik van der Werf 

[15] and Martin Müller [16], Wikipedia article on computer go [17], an updated list of computer 

go bibliography [18] and the Computer Go Mailing List where most researchers share news and 

ideas [19]. 

 About Monte-Carlo Tree Search: At first (around 2007). MCTS was still named UCT (Upper 

Confidence-bound for Trees). Rewarding credit to the seminal papers, UCT was first described by 

Levente Kocsis and Csaba Szepesvari in 2006 [20] and implemented in computer go by Sylvain 

Gelly and David Silver [21] introducing pattern-based playouts in collaboration with Yizao Wang 

[22]. Most important early improvements include RAVE [21, 23], progressive widening by Rémi 

Coulom [24] and progressive bias by Guillaume Chaslot [25]. A first description of an UCT 

engine including pseudo-code by Magnus Persson (author of the program Valkyria) can also be 

found online [26]. A modern web site dedicated to MCTS is also worth mentioning [27]. 

 

  

1.2 Descripción de la tesis en español 

 

Esta tesis trata sobre la incorporación de conocimiento experto, obtenido tanto offline como online, a la 

búsqueda en árbol con evaluación estocástica, MCTS (Monte-Carlo Tree Search). En la tesis se describen dos 

aplicaciones, una al juego del go (una aplicación minimax) y otra en el campo de la genética humana (una 

aplicación de optimización).  Los contenidos fundamentales están descritos en inglés, tanto la descripción del 



 

 

4 

estado de la técnica en las respectivas áreas, como la descripción del trabajo de investigación realizado y las 

conclusiones. 

 

En cuanto a la descripción de los fundamentos, el capítulo 2 contiene una descripción en español que 

abarca el juego del go, desgraciadamente insuficientemente conocido en España, desde su historia, las reglas y 

la relevancia mundial del juego. El capítulo también describe someramente algunos de los avances en go por 

ordenador hasta la aparición de MCTS. Finalmente, el capítulo describe una aplicación básica de MCTS a un 

problema de optimización a modo de introducción del algoritmo fundamental de la tesis, MCTS. Además, 

incluye un resumen en español de la implementación de MCTS en genética descrita en inglés en el capítulo 5. 

 

Los fundamentos de biología y genética necesarios para entender la aplicación en genética humana están, 

únicamente en inglés, en el apartado 5.1. 

 

El capítulo 3 está dedicado a diversos métodos de incorporación de conocimiento al árbol MCTS en forma 

de evaluación a priori. Incluye métodos descritos por otros autores y nuestro trabajo original M-Eval [1, 2]. El 

capítulo 4 está dedicado a la función de evaluación estocástica conocida como playout en el campo del go por 

ordenador. Incluye métodos descritos por otros autores junto con nuestra investigación original que incluye 

WLS [3] y playouts que aprenden [4]. El capítulo 5 es una descripción completa de la aplicación en el campo 

de la genética humana que incluye todos los fundamentos de biología y genética necesarios para ser entendida 

por matemáticos o informáticos. Todos los experimentos de genética se realizaron con la plataforma GEM, una 

obra original del autor principal, utilizada primero para investigar el sesgo en estudios de asociación casos-

controles [5] y finalmente, incluyendo los resultados de la tesis [6]. El capítulo 6 describe todo el software 

utilizado en esta tesis y desarrollado casi totalmente por el autor. El capítulo 7 contiene la discusión de la tesis 

junto con una descripción de trabajos de investigación en MCTS. Finalmente, el capítulo 8, que también está el 

español, enumera las conclusiones de la tesis. 
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Chapter 2. Background (in Spanish) 

2.1 Introducción al juego del go 

2.1.1 Historia del juego del go 

 

China antigua: La tradición sitúa el origen del go, cuyo nombre chino es weiqi, hace más de 4000 años 

en tiempos del emperador Yao (2357-2255 AC) o su sucesor, Shun (2255-2205 AC). Confucio menciona el 

juego en ―Los Analectas‖ en el siglo 6 AC. Posteriormente, hay numerosos grabados y documentos que 

prueban su existencia. El primer tratado conocido sobre go tiene aproximadamente 2000 años, es el Yi Zhi 

(Esencia del go) escrito por Ban Gu (32-92 DC). 

 

 

Figura 2.1. El juego del go en la antigua China. 
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Japón en el periodo Edo (1603-1868): Aunque este juego chino ya era popular en Japón desde el siglo 

VIII, el primer "gran maestro" de go es Honinbō Sansa (nacido Kanō Yosaburo) un monje budista. En 1612 

funda la escuela Honinbo que junto con las escuelas Yasui, Inoue y Hayashi constituyen las cuatro grandes 

escuelas de este periodo. El estudio del go se convierte en una profesión respetada. Las escuelas conservan 

archivos de las partidas jugadas y en ellas se dedican únicamente al estudio del juego como un camino dentro 

del budismo. Además, pasa a formar parte de la educación masculina, pues éste es un periodo de poder ejercido 

por un comandante militar, el Shogún, y el go es la base para la enseñanza sobre estrategia. 

 

Europa siglo XVIII: Leibniz publica una descripción del juego que denomina ―juego chino‖. El artículo 

original en latín aparece en primer lugar en la revista berlinesa “Miscellanea Berolinensia Ad Increme 

Scientiarum” en 1710.  El artículo describe las reglas del juego con una ilustración china de una partida de go. 

 

 

Figura 2.2. Fragmento del artículo de Leibniz 1710 y su traducción al francés en 1847 

 

 Este artículo es traducido al francés en 1847 por Alliey y publicado en la revista  «Le Palamède des 

échecs et autres jeux». 

 

 El go profesional en la actualidad (2009): Existe fundamente en Japón, Corea, China y Taiwán, pero 

también en EEUU. La lista de torneos con premios para el ganador superiores a 100 000 dólares 

norteamericanos: Ing Cup 500 K$, Kisei 365 K$, Meijin 330 K$, BC Card Cup 300 K$, World Oza 285 K$, 

Honinbo 280 K$, LG Cup 250 K$, Samsung Cup 200 K$, Chunlan Cup 170 K$, Fujitsu Cup  141 K$, Judan 
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126 K$, Tengen 122 K$ y Oza 118 K$ es suficientemente amplia para que el go sea una profesión a la que se 

aspira desde la infancia. Algunos jugadores, como el coreano Lee Chang-ho, nacido en 1975 y que ya ha 

ganado 132 torneos profesionales, son ídolos en sus países y para los aficionados al go del mundo entero (datos 

de 2009). 

  

2.1.2 Las reglas básicas del go 

 

Intersecciones, grupos, libertades: Sobre un tablero cuadrado, inicialmente vacío, que tiene marcada una 

retícula de 19x19 intersecciones se sitúan piedras blancas y negras por turnos, teniendo cada jugador un color. 

Las piedras se sitúan únicamente sobre intersecciones vacías y no se mueven. Las piedras que tienen una 

piedra adyacente del mismo color, según las direcciones horizontal y vertical marcadas por la cuadrícula 

forman un grupo indivisible. 

 

 

Figura 2.3. Grupos y libertades. 

 

Así, la figura 2.3 a la izquierda muestra tres grupos (uno negro y dos blancos). Los grupos tienen siempre 

un cierto número de intersecciones vacías alrededor. Solamente se cuentan las intersecciones vacías en sentido 

horizontal y vertical. Estas intersecciones vacías adyacentes se denominan libertades. En la figura de la 

izquierda están señaladas las 5 libertades del grupo negro y las 4 de cada uno de los grupos blancos. Obsérvese 

que una de las libertades del grupo negro es compartida por dos piedras del mismo, pero sigue siendo una 

única libertad ya que es una única intersección. 

 

Capturas: Cuando un grupo tiene ocupadas todas sus intersecciones adyacentes por piedras enemigas, es 

decir, cuando pierde su última libertad, es capturado y retirado del tablero. En la figura 2.3 a la derecha vemos 

(mitad izquierda) un grupo negro que tiene solamente una libertad (la intersección A). Al jugar el blanco sobre 

este punto (mitad derecha), el grupo negro pierde su última libertad y es retirado del tablero. 
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Más reglas necesarias: Lo ya expuesto es todo el fundamento del go. De estas reglas básicas surge la 

necesidad de precisar cinco cosas más: la prohibición del suicidio, la regla del ko, cuándo termina una partida, 

el concepto de vida incondicional y el de vida en seki. Pero todos estos conceptos no son más que decisiones 

lógicas impuestas por las situaciones que descubrimos a medida que vamos explorando lo que puede resultar 

de la aplicación de los fundamentos aquí expuestos. En la introducción en inglés hemos incluido referencias de 

algunos libros y descripciones [7, 8, 10] que pueden ser consultados para comprender completamente el juego. 

También el tutorial descrito en [9] está disponible en español. 

 

 

Objetivo del juego: Los principales objetivos pueden ser:  

 

a. Pierde el primero que no puede poner más piedras. Esto se conoce como reglas chinas 

tradicionales y ya no se juega porque la última fase de la partida carece por completo de interés 

al ser meramente rellenar de piedras el territorio que se ha obtenido previamente. 

b. Gana el que ocupa más ―espacio‖. Definimos ―espacio‖ incluyendo las piedras. Este espacio se 

conoce como área o reglas chinas. Es más sencillo para principiantes pues no necesita evaluar si 

los grupos que quedan están vivos (no pueden ser capturados) y permite realizar jugadas 

innecesarias sin penalización. 

c. Gana el que ocupa más ―espacio‖. Definimos ―espacio‖ contando solamente las intersecciones 

vacías enteramente rodeadas por un mismo color. Este territorio puede contener grupos 

"muertos", es decir que pueden ser capturadas por el adversario. Se conoce como territorio o 

reglas japonesas. Además, hay que sumar la diferencia entre el número de piedras capturadas por 

ambos jugadores. Tiene la ventaja de necesitar contar muchos menos puntos. Cuando ya no se es 

un principiante, resulta más fácil para evaluar la posición durante el juego al contar solamente lo 

imprescindible. 

 

Un principiante puede crearse la idea falsa de pensar que se trata de objetivos diferentes jugar con reglas 

chinas o japonesas, en realidad son el mismo objetivo. Es cierto que hay pequeñas diferencias que no merece la 

pena analizar aquí, pero éstas resultan en una diferencia que casi nunca excede de un punto y solamente deben 

ser tenidas en cuenta al final de la partida. La evolución del objetivo es una evolución natural que ha tenido el 

juego a medida que se ha ido profundizando en lo esencial del mismo. El contenido de esta tesis no depende de 

que se utilicen reglas chinas o japonesas (las reglas chinas tradicionales ya no se utilizan). Como se ha dicho, la 

diferencia solamente es relevante al final de la partida. Para un programa de ordenador resulta más sencillo 
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utilizar reglas chinas ya que no requieren analizar qué está vivo y qué está muerto. Si se quiere obtener una 

aproximación suficientemente buena al valor que producirían las reglas japonesas (en términos de diferencia 

entre ambos jugadores, no el valor de cada uno) hay que contar el número de veces que juegan (no pasan) los 

jugadores durante la partida y compensar la diferencia en puntos. El resultado será correcto, excepto en casos 

de reglamentos específicos. 

 

 

Figura 2.4. Ejemplo con reglas chinas tradicionales. 

 

En la figura 2.4 desde la posición de la izquierda la partida está decidida. La intención de este ejemplo es 

insistir en que hasta esta jugada ambos jugadores estaban repartiéndose el tablero en jugadas que tenían un 

valor en puntos, blanco peleaba para extenderse hacia abajo y negro hacia arriba. Un principiante podría pensar 

que negro (que es el siguiente en jugar) puede invadir la parte superior. En el centro se muestra un intento 

fallido, la secuencia 1, 2 ... 7 fracasa para negro, cuyo grupo es capturado jugando blanco en A. Realmente, con 

una respuesta correcta todos los posibles intentos fallarían. Por lo tanto, no queda más remedio (según las 

reglas chinas tradicionales) que seguir jugando cada uno en su propio territorio hasta alcanzar la posición de la 

derecha, que deja 2 libertades a cada grupo. Como el último en jugar ha sido negro, éste ganaría la partida ya 

que blanco no puede jugar. Se ve que incluso con reglas chinas tradicionales el objetivo del juego no es otro 

que conseguir el mayor territorio seguro posible y el resto de la partida equivale a contar el territorio 

previamente obtenido. Si negro no hubiese tenido más territorio (1 punto más) no hubiese podido jugar el 

último o se habría obligado a jugar dejando un solo "ojo" (en este sentido: libertad completamente rodeada de 

piedras del propio color o rodeada por el borde), lo que habría permitido capturar su grupo. En este caso, 

aunque hubiera seguido jugando, todas sus piedras habrían podido ser capturadas jugando siempre blanco el 

último y, por lo tanto, ganando. Igualmente, si en la posición de la derecha, blanco cometiera el error de jugar 

una piedra más como muestra la figura 2.5 ya solamente tendría una libertad y sería capturado por negro. 
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Figura 2.5. Si un grupo no mantiene dos "ojos", puede ser capturado. 

 

Es decir, blanco debe dejar que su grupo tenga dos "ojos" (hablando de reglas chinas tradicionales, los 

ojos serían de un solo punto no adyacentes). En el juego actual (reglas chinas o japonesas) no se rellenan los 

territorios de piedras del mismo color, así que no es necesario dejar los ojos explícitamente, es suficiente con 

que sea evidente que podría jugarse para dejar los dos ojos. Los jugadores experimentados son capaces de 

saber en posiciones cerradas si pueden conseguirse dos ojos (es decir, el grupo está vivo) o si no (el grupo está 

muerto). Los jugadores principiantes pueden intentar la captura continuando la partida para determinar si está 

vivo o finalmente muere. Este añadir jugadas (posiblemente) innecesarias no tiene penalización alguna con 

reglas chinas, pero sí puede modificar el resultado bajo reglas japonesas. En la figura 2.5 tras la jugada blanca 

de la izquierda, negro captura (centro). Negro siempre sería el último en jugar porque cualquier piedra blanca 

sería capturada finalmente tras una breve secuencia hasta alcanzar una posición como la de la derecha, donde 

blanco ya no tiene ninguna jugada legal. Poner piedras en intersecciones vacías de un solo punto está 

prohibido, porque se capturarían a sí mismas al no tener libertades. Lo mismo ocurre con la piedra blanca, que 

no puede extenderse hacia la izquierda porque crearía un grupo sin libertades que se capturaría a sí mismo. 

Esto se conoce como la prohibición del suicidio. 

 

 

Figura 2.6. Contando el resultado final. 
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Reglas chinas: En la partida anterior, simplemente cuando ambos jugadores consideran que ya no pueden 

conseguir más de lo que tienen, ambos pasan y se termina la partida. Se cuenta el territorio rodeado y las 

propias piedras (figura 2.6 izquierda) resultando, blanco: 24, negro: 25, negro gana por 1. Normalmente, puesto 

que negro tiene ventaja por empezar la partida se daría a blanco unos puntos de compensación (denominado 

komi). Obsérvese, que si negro fuera inexperto y no supiera si su territorio está seguro (no puede ser invadido 

con éxito), podría añadir una piedra innecesaria en su propio territorio sin que cambie el marcador (figura 2.6 

centro). 

Reglas japonesas: En la partida anterior, siempre que no hubiera habido capturas (o ambos bandos 

hubieran capturado el mismo número de piedras) y, nuevamente, sin compensación de komi, el resultado con 

reglas japonesas es (figura 2.6 derecha): blanco 15, negro 16, negro gana por 1. Sin embargo, si negro hubiera 

añadido piedras innecesarias dentro de su propio territorio (como en la figura 2.6 centro) perdería un punto por 

cada una. En la partida de ejemplo sobre un tablero de 7x7 no parece que la diferencia sea grande, pero en una 

partida real (figura 2.7) queda claro, que los puntos que hay que contar son muchos menos cuando se utilizan 

las reglas japonesas.  

 

 

Figura 2.7. Posición final evaluada con reglas japonesas. 
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Además, los grupos muertos (es decir, que pueden ser capturados) tachados con una X naranja se dejan 

sobre el tablero y se cuentan como capturas. Los puntos que no tienen ningún círculo (ni negro, ni blanco) no 

son de nadie. Aunque siguiéramos jugando, nunca podrían llegar a ser territorio. 

 

2.1.3 Evaluación de la habilidad del los jugadores 

 

Para poder comparar el rendimiento de los jugadores de cualquier juego se suele utilizar el índice Elo 

[28]. Este sistema de clasificación, propuesto en 1939 por el matemático húngaro Arpad Elo se aplicó 

rápidamente al ajedrez y se ha extendido a los demás juegos. En ajedrez, solamente 4 jugadores en el mundo 

superan el índice Elo de 2800, 18 más superan el 2700. A partir de 2400 un jugador de ajedrez tiene la 

categoría de maestro internacional, 2200 es el nivel de un maestro candidato, algo que alcanzan unos 20 000 

jugadores en el mundo. En go, lo tradicional es utilizar el sistema japonés (kyu, dan, profesional) descrito más 

abajo pero, por supuesto, también se puede medir el rendimiento de los jugadores utilizando el sistema Elo. La 

hipótesis de partida del sistema Elo es que cada jugador tiene las mismas probabilidades de ganar a su 

adversario que de extraer un número más alto que éste si ambos extraen un número siguiendo una distribución 

normal de idéntica desviación típica y cuya media es el índice Elo. La probabilidad de ganar se puede 

aproximar con la sencilla fórmula basada en la curva logística: 

 

 𝑃𝑟𝑜𝑏𝑔𝑎𝑛𝑎𝑟  𝐴 𝑎  𝐵 =
1

1+10(𝐸𝑙𝑜 𝐵−𝐸𝑙𝑜 𝐴 )/400   (2.1) 
 

Sirva de dato, basándose en la clasificación de jugadores humanos utilizando el índice Elo, que todo el 

conocimiento de ajedrez desde un neófito que lee las reglas por primera vez al mejor jugador del mundo, puede 

categorizarse en 14 escalones representando cada escalón una desviación típica de la distribución normal antes 

mencionada. En go, la misma escala tiene más de 30 escalones. 

 

El sistema japonés usado habitualmente en go utiliza la palabra kyu (que significa grado) y se utiliza para 

asignar niveles de juego bajos e intermedios en orden decreciente, un novato es 35 kyu, un aficionado que ya 

domina el juego es 1 kyu. A partir de ahí se pasa a ser dan en orden creciente. 1 dan es el nivel más bajo dentro 

de lo que se puede considerar como ―maestro‖, algo como un cinturón negro de artes marciales. La escala 

dentro de los ―maestros‖ empezaría en 1 dan hasta el máximo de 9 dan. Todos los jugadores profesionales son 

9 dan y entre ellos hay una escala que va de 1p a 9p basada en los títulos que han ganado. (Esto puede variar 

ligeramente de unas ligas profesionales a otras.) Entre cada grado, se considera que (hasta un máximo de 6) la 

diferencia de grado puede compensarse dando piedras de ventaja al jugador inferior (que juega con negras) a 

razón de una por cada nivel de diferencia. El jugador superior no recibe en este caso compensación de ventaja 
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komi dejándose el valor del komi en medio punto para evitar el empate. Así, un 7 kyu con 4 piedras de ventaja 

estaría en igualdad de condiciones frente a un 3 kyu y un 2 dan con 4 piedras de ventaja frente a un 6 dan. Esto 

no se aplica a los grados profesionales pues las piedras de ventaja representan diferencias demasiado grandes a 

un nivel de juego "casi perfecto". 

 

2.1.4 El papel del conocimiento en go 

 

Para ilustrar cómo al desarrollar las consecuencias que surgen de aplicar un conjunto elemental de reglas, 

puede surgir una ciencia con una gran cantidad de conocimiento, podemos comparar el go con la teoría de 

números.  Igual que la teoría de números se fundamenta en una única operación: contar, es decir, definir 

𝑠𝑢𝑐𝑐(), el siguiente de cada número. Con una definición recursiva basada en 𝑠𝑢𝑐𝑐(), podemos definir la suma, 

con una definición recursiva basada en la suma, la multiplicación, definimos las inversas y … El edificio de la 

teoría de números surge naturalmente de una operación tan elemental. De las reglas aquí expuestas surge el 

edificio del go, el juego de estrategia más profundo conocido. 

 

Además, el go es un problema combinatoriamente intratable. Al ser un juego no aleatorizado, bipersonal, 

finito, de suma cero e información completa, cumple las condiciones del teorema minimax. Esto implica que 

toda posición tiene un valor minimax. Excepto para posiciones triviales de finales de partida, este valor es 

imposible de computar. La complejidad del espacio de estados ha sido estimada [29] en 10171  (frente a 1050  

del ajedrez) y la complejidad del árbol en 10360  (frente a 10123  del ajedrez). Ni siquiera se conoce una función 

de evaluación determinista que permita construir un programa basado en búsqueda minimax global que sea 

mejor que un humano principiante. A diferencia del ajedrez donde una función tan elemental como la 

movilidad (el número de jugadas legales que hay en una posición) y una búsqueda minimax producen un 

programa que supera los 2000 puntos de índice Elo sobre un ordenador doméstico actual [19], algo que pocos 

jugadores humanos alcanzan en su vida y quienes lo hacen lo consiguen con gran esfuerzo. 

 

El go no es solamente un problema intratable. Del estudio del juego realizado durante siglos surgen 

conceptos tácticos y estratégicos que permiten analizarlo de forma estructurada. Cualquier jugador de go 

conoce unas 50 palabras, la mayoría en japonés que dan nombre a situaciones y permiten analizar el papel de la 

iniciativa, de la forma de los grupos, de las múltiples alternativas para conseguir un mismo objetivo, de las 

interacciones entre objetivos, etc. Hay situaciones cuya evaluación correcta exige anticipar decenas de jugadas 

más o menos forzadas y que un jugador entrenado es capaz de evaluar mediante un análisis estático. Este 

―lenguaje del go‖ constituye un marco en el que estudiar el valor y la urgencia de cada jugada posible. El go es 
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interesante no tanto por ser intratable, como por ser un problema en el que se necesita de inteligencia para 

avanzar, el competidor humano ha alcanzado niveles de excelencia y es evaluable de manera no 

antropocéntrica (ya que se trata de un juego en el que se gana o se pierde) a diferencia de otras actividades 

intelectuales humanas donde la evaluación está sesgada por antropocentrismo.  

 

2.2 El go como problema computacional 

 

El primer programa que juega al go fue escrito por Albert Zobrist en 1968. Posteriormente, creó además 

una función para representar el tablero mediante un identificador entero, conocida como Zobrist hashing [30] 

que sigue siendo ampliamente utilizada por su eficiencia, sencillez y capacidad para ser actualizada 

incrementalmente. La idea es muy sencilla, se trata de construir una tabla de números enteros aleatorios 

(generalmente de 64 bits) para cada intersección del tablero si en ella hay una piedra blanca, una segunda tabla 

del mismo tamaño para las piedras negras, una tercera para indicar si está prohibido jugar en una intersección 

porque se produciría la repetición de una posición anterior (regla del ko) y un número aleatorio para indicar si 

juega blanco o negro. El hash que representa la situación, posición de todas las piedras, qué jugador tiene el 

turno y si hay alguna intersección en la que esté prohibido jugar es la O-exclusiva bit a bit de todos los 

números que definen la posición. La posición se identifica con un solo número de 64 bits, con lo que es muy 

fácil ver si ya ha sido evaluada previamente (algo muy frecuente en cualquier tipo de búsqueda de juegos), 

actualizar dicho hash es tan sencillo como realizar una O-exclusiva de los elementos que hayan cambiado y, 

debido a la aleatoriedad de los números, la probabilidad de una colisión es de 2−64  para un hash es de 64 bits. 

 

 

Figura 2.8. Cálculo del hashing de Zobrist de una posición. 

 

En el ejemplo de la figura 2.8 aparecen en el centro los valores relevantes de la tabla de números 

aleatorios para cada una de las intersecciones del tablero. La posición de la izquierda tendrá como hash el valor 
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e3 y e5 negras con c4 blanca: 0x2a60 xor 0x1a28 xor 0x624f = 0x5207. La posición de la derecha tendrá ese 

mismo valor con el añadido de una piedra blanca en d6: 0x5207 xor 0xe27c = 0xB07B. Nótese que obtenemos 

el valor de la posición de la derecha incrementalmente a partir del anterior y no volviéndolo a calcular desde un 

tablero vacío. También funciona "deshacer" una jugada volviendo a obtener el hash de la izquierda a partir del 

de la derecha. 

 

Un trabajo de investigación pionero destacable, que es utilizado en lo que se conoce como ―programas 

clásicos‖, es el algoritmo de vida incondicional de David Benson. Durante 30 años (1976-2005) el algoritmo 

de Benson [31] estaba en la evaluación final de los programas de go cuando éstos necesitan determinar el 

estado de un grupo. El problema de la vida incondicional es determinar si un grupo puede ser capturado o no 

por un adversario que puede jugar ilimitadamente. Por ejemplo, los 2 grupos de la figura 2.4 (derecha) están 

incondicionalmente vivos. En cambio, los grupos de la de la figura 2.4 (izquierda) no lo están, están vivos (no 

pueden ser capturados frente a una defensa correcta), pero no incondicionalmente vivos (pueden ser capturados 

si el adversario puede jugar ilimitadamente sin que haya defensa). Si bien, en una partida real pocos grupos 

llegan a estar incondicionalmente vivos, el algoritmo es muy importante, pues representa el final de la 

búsqueda minimax. Los grupos no incondicionalmente vivos pueden reducirse mediante una secuencia (que 

encontrará la búsqueda minimax) en incondicionalmente vivos o, si no, es que no están vivos. Hasta Benson, 

determinar la vida de un grupo se realizaba mediante un análisis hacia adelante (look ahead) hasta que se 

capturaba (o fracasaba en capturar) el grupo. Benson construye por primera vez un lenguaje matemático del go 

y utiliza la teoría de grafos para demostrar que su análisis estático es equivalente a la búsqueda dentro de un 

marco formal de definiciones, teoremas y demostraciones. En el periodo (1976-2005), se publican más de 250 

artículos sobre go por ordenador, decenas de libros y tesis doctorales. Una lista incompleta de más de 300 

artículos (hasta la actualidad) puede verse en la Universidad de Alberta [18]. Empiezan las competiciones entre 

programas e incluso un millonario de Taiwán creó un premio para evaluar el progreso [32]. 

 

Los mejores programas clásicos que aún existen, algunos de los cuales siguen haciendo nuevas versiones, 

alcanzaron un nivel de juego equivalente a 7 kyu siguiendo la escala descrita en 2.1.3. 

  

Por lo tanto, un programa 7 kyu estaría en igualdad de condiciones recibiendo 7 piedras de ventaja de un 

jugador que fuese 1 dan. Es decir, el programa puede recibir 7 piedras de ventaja de una persona que a su vez 

puede recibir 9 piedras de ventaja de un profesional. 

  

En 2006 los matemáticos húngaros Levente Kocsis y Csaba Szepesvari publican un trabajo que abre una 

nueva vía [20]. Inicialmente, los programas que utilizan el algoritmo se conocen como UCT porque la función 
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propuesta en el trabajo original formaliza el problema en términos de un intervalo de confianza (Upper 

Confidence-bound for Trees), pero el algoritmo general es rápidamente modificado para combinarlo con 

conocimiento específico y los distintos autores pasan progresivamente a utilizar el término más genérico de 

Monte-Carlo Tree Search (MCTS) para incluir todos los algoritmos basados en una búsqueda mediante 

simulación que organiza los resultados obtenidos en un árbol. 

 

MCTS combinado con diferentes heurísticas y formas de integrar conocimiento a priori permite avanzar el 

go por ordenador hasta el nivel de 4 o 5 dan. Es decir, programas que están equilibrados recibiendo 4 o 5 

piedras de ventaja de un jugador profesional. Siendo este avance realizado en seis años el salto más grande en 

la historia del go por ordenador. La distancia con el juego profesional es aún enorme ya que, a medida que el 

nivel de juego se aproxima a la perfección, una piedra de ventaja representa una diferencia mayor, ya que las 

partidas se deciden por ―sutilezas‖ evaluadas con gran precisión, mientras que para un novato una piedra de 

ventaja apenas representa nada. 

 

UCT (o MCTS) ha sido aplicado con éxito a diversos problemas de uno o dos jugadores. En un trabajo del 

año 2009 [33] comunicamos los resultados de una aplicación al Strip Packing Problem  (SPP) y igualando los 

mejores rendimientos publicados entonces en SPP obtenidos por programas que tenían un alto nivel de 

heurísticas especificas del problema, mientras que el programa basado en UCT es un programa carente por 

completo de conocimiento del problema. Incluso encontró un empaquetamiento óptimo (ver figura 2.13), algo 

que no consiguió el programa con el que se estaba comparando. En esta tesis se describe una aplicación en 

genética humana en el capítulo 5. También ha revolucionado el mundo de General Game Playing [34, 35], una 

competición en la que los programas compiten en un juego cuyas reglas les son desconocidas hasta el momento 

de la competición. Los programas aprenden el juego leyendo una definición formal del mismo escrita en GDL 

[36] (Game Description Language). La lista de aplicaciones actualizada a 2012 puede verse en 7.1. 

 

El mundo académico, especialmente el anglosajón, pero también en los principales países europeos y en 

Asia ha tenido siempre la mirada puesta en los avances en computer go formando equipos, organizando y 

participando en competiciones y publicando. En el mundo anglosajón, no solamente el mundo académico sino 

también los medios generales han recogido los principales avances en computer go. Por ejemplo: The Times, 

New York Times, The Economist, Reuters, Abc News, Scientific American, The Guardian, Slashdot, Wired, etc. 
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2.3 Introducción a MCTS 

 

Este apartado contiene una descripción informal sobre las razones que justifican MCTS. Pretende servir 

para entender cuáles son sus puntos fuertes y sus limitaciones, haciendo una descripción de las ideas que 

llevaron a MCTS. Se desarrolla también un ejemplo aplicado a un problema de optimización, el SPP (Strip 

Packing Problem). Para comprender cómo se incorpora MCTS en un programa de go competitivo, hay que ir a 

los capítulos 3 y 4. 

 

2.3.1 UCB y el dilema de exploración/explotación 

 

UCT (Upper Confidence-bound for Trees) es un algoritmo que incorpora un algoritmo anterior llamado 

UCB (Upper Confidence Bound) y lo extiende a un árbol. UCB fue creado para abordar el problema del 

"Single-armed Bandit" [37], en particular, el dilema de exploración/explotación incluido en el mismo. El 

problema del "Single-armed Bandit" (―bandidos de un sólo brazo‖ es una expresión popular inglesa para 

referirse a las máquinas tragaperras) consiste en encontrar la estrategia óptima que tiene un jugador para 

maximizar sus ganancias cuando juega un número 𝑛 de tiradas de un conjunto de 𝑘 máquinas que distribuyen 

un premio según la uniforme 𝑈(0, 𝑝𝑖)  𝑖 𝜖 {1, . . 𝑘} donde 𝑝𝑖  es desconocido y debe estimarse a partir de los 

resultados que el jugador va obteniendo. El jugador puede buscar dos estrategias extremas: 

a. Jugar una vez en cada máquina y, a partir de ahí, jugar solamente en la máquina en la de la que 

obtuvo el premio más alto. 

b. Jugar en todas las máquinas por igual. 

Es importante destacar que lo que el jugador persigue es únicamente maximizar su ganancia y no la 

información sobre la 𝑝𝑖  de cada máquina. El jugador pierde beneficios potenciales si estima erróneamente cuál 

es la mejor máquina, pero no pierde absolutamente nada por estimar erróneamente el valor exacto de la 𝑝𝑖  de 

una máquina que es "de las peores". Es decir, una máquina de la que, tras un pequeño número de pruebas,  

tenemos un nivel de certeza razonable de que no puede ser la mejor.  

 

La estrategia a corresponde con la máxima explotación y la estrategia b con la máxima exploración. Se 

entiende que ninguna de las dos es óptima y que la estrategia óptima tiene que ver con el nivel de confianza 

que tengamos sobre cuál es la mejor máquina. Es decir, con los límites de un intervalo para un cierto nivel de 

confianza predeterminado. Por lo tanto, el dilema de exploración/explotación consiste en encontrar el balance 

adecuado entre jugar más veces nuestra mejor máquina (para obtener mayor beneficio) y explorar las mejores 

candidatas alternativas (para estar seguros de que no nos estamos equivocando de máquina).  
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2.3.2 Los métodos Monte-Carlo ingenuos 

 

Puesto que en go el espacio de búsqueda es prácticamente infinito y no existe una función de evaluación 

fiable, excepto para las posiciones finales del juego, podría proponerse como método: 

 

1. Tras una jugada inicial 𝑚𝑖  jugar partidas de go aleatoriamente hasta que no se puedan poner más 

piedras siguiendo una cierta heurística.  

2. Como esas posiciones finales sí son fáciles de evaluar, anotar cuántas victorias y derrotas produce 

cada jugada inicial 𝑚𝑖  repitiendo el proceso un cierto número de veces 𝑛 para cada una de las 𝐼 

jugadas legales iniciales 𝑖 ∈ {1, . . 𝐼}.  

 

Es decir, de ese espacio de búsqueda prácticamente infinito tomamos una muestra aleatoria, la evaluamos 

y utilizamos métodos estadísticos para generalizar lo que hemos aprendido de una muestra a toda la población. 

A una partida jugada aleatoriamente la denominamos una simulación y nuestra función de evaluación será: 

condicionado a que juguemos cada jugada legal, qué proporción de simulaciones ganamos.  De esta manera, 

surgen los métodos Monte-Carlo ingenuos (inglés naif) que alcanzan un nivel de juego parecido al de un 

principiante o un poco mejor para tamaños de tablero pequeños. La "ingenuidad" de estos métodos está sobre 

todo en que consideran, dentro de las simulaciones, todas las jugadas por igual, es decir, no tienen en cuenta 

que ciertas respuestas son obvias, incluso para un principiante. 

  

2.3.3 UCT es UCB aplicado en un árbol a una evaluación estocástica 

Tabla 2.1. Similitud entre el problema UCB y los métodos Monte-Carlo. 

UCB MÉTODOS MONTE-CARLO DESCRIPCIÓN 

n (número de jugadas) n (número de simulaciones) Es un coste. La capacidad de cálculo 
es finita. Queremos identificar la 
mejor máquina/jugada pudiendo 
realizar un cierto número de 
ensayos. 

Ganancia de una tirada Resultado de una simulación No tenemos otra función de 
evaluación que el resultado de un 
experimento aleatorio. Función de 
evaluación estocástica. 

Explotación: Maximizar las ganancias 
= jugar más veces la mejor máquina. 
 
Exploración: para estar así 
razonablemente seguros de saber 
cuál es la mejor máquina ya que la 
evaluación tiene ruido. 

Podemos simular cada jugada el 
mismo número de veces (máxima 
exploración) o aplicar UCB y 
conseguir una estimación de menor 
varianza para el número de victorias 
de las mejores jugadas. 

El balance exploración/explotación 
es controlable mediante UCB 
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En la tabla 2.1 se resumen y muestran las analogías que existen entre el algoritmo UCB y los métodos 

Monte-Carlo, vemos que ambas técnicas son similares. La primera dificultad es que la partida uniformemente 

aleatoria no representa una partida razonable, porque no siguen a cada jugada las continuaciones esperadas. No 

sirve de nada realizar una jugada que obtendría un gran beneficio frente al 99% de las respuestas posibles (y, 

por lo tanto, parecería muy buena si el juego recibe una evaluación uniformemente aleatoria) y, en cambio, 

resulta una mala jugada si el adversario contesta correctamente a la misma. Además, a menudo esta 

contestación correcta será obvia para un jugador humano. Esto no es tenido en cuenta en las simulaciones y es 

una gran limitación, precisamente la idea central de la búsqueda minimax es cubrirse frente a las mejores 

respuestas del adversario, no frente a respuestas aleatorias.  

 

La solución que ofrece MCTS es construir un árbol en memoria con el conocimiento del que disponemos 

(los resultados de las simulaciones). La exploración dentro del árbol deja de ser aleatoria y favorece la 

explotación, es decir, recorrer más veces las mejores ramas del árbol, incluyendo las mejores respuestas a las 

jugadas. Es muy importante porque es el árbol el que organiza las jugadas y sus respuestas. De esta forma, a 

cada jugada le siguen (suponiendo que se hayan realizado suficientes simulaciones) las respuestas más 

probables mejorando la evaluación.  

 

UCT (la primera forma de MCTS) consiste en quedarnos con lo mejor de los dos mundos construyendo 

un árbol en memoria. Cada iteración del algoritmo recorre el árbol desde el nodo inicial siguiendo en cada 

nodo el camino que indique la evaluación UCB hasta llegar a una hoja del mismo. Alcanzada esa hoja, 

realizaremos una simulación a partir de la misma. Conocido el resultado de la simulación, lo propagaremos 

hacia atrás por el árbol para actualizar el conocimiento del problema. Además, habrá que tener un criterio para 

decidir cómo crece el árbol. El criterio normal es extender las hojas que han sido visitadas un cierto número de 

veces, esto consigue que el árbol crezca más en las direcciones más prometedoras de manera automática 

aprovechando el propio UCB. 

 

La evaluación UCB consiste en elegir en cada nodo j aquél hijo i que maximice: 

 

 𝑉 =
𝑣𝑖

𝑛𝑖
+  𝐾 ×  ln 𝑛𝑗  / 𝑛𝑖   (2.2) 

 

Donde:  

 𝑣𝑖  es el número de victorias acumuladas por las simulaciones del nodo hijo 𝑖 

 𝑛𝑖  es el número simulaciones que han pasado por el nodo hijo 𝑖 
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 𝑛𝑗  es el número simulaciones que han pasado por el nodo padre 𝑗 

 𝐾 es una constante que permite controlar el balance exploración/explotación. 

 

 La ecuación 2.2 es la propuesta originalmente por Kocsis y Szepesvari [20]. Se puede observar que, para 

un valor dado del número de visitas del padre (es decir, a la hora de comparar unos hijos con otros), la 

ecuación no representa otra cosa que la proporción de éxitos observados (el valor máximo verosímil en la 

estimación) más un intervalo de confianza basado en la normal (cuya varianza disminuye como 1/√𝑛) para 

una cierta significación (cada valor de significación se corresponderá con un cierto valor de 𝐾). Tiene sentido 

usar la distribución normal como la hipótesis más sencilla y porque la repetición de un experimento en 

idénticas condiciones se distribuye como una binomial, que se aproxima mediante la normal tras un número 

suficiente de observaciones. 

 

2.3.4 Ejemplo: UCT aplicado al SPP 

 

Podemos ilustrar UCT con un ejemplo tomado del Strip Packing Problem. Este problema es un caso 

particular de los problemas de empaquetamiento (Packing Problems). Según la clasificación comúnmente 

aceptada [38], se denomina el problema de Strip Packing 2-D ortogonal. Se trata de empaquetar un conjunto 

previamente conocido de rectángulos de manera que ocupen el menor espacio posible. Los rectángulos pueden 

rotarse 90 grados. Hay que situarlos sobre una cinta cuya anchura es un dato del problema. Por lo tanto, 

minimizar la longitud de cinta empleada equivale a minimizar el área utilizada. Consideramos que el problema 

de colocar rectángulos se reduce a elegir entre jugadas legales de un juego. Únicamente consideramos colocar 

un rectángulo sobre la línea más baja de la cinta, si hubiera más de una, la que esté más a la izquierda. Y, 

dentro de esta línea, coloco el rectángulo a la izquierda. Esta simplificación del problema se conoce como 

heurística bottom-left (BL). De esta forma, el conjunto de jugadas legales queda definido por la longitud del 

segmento más bajo de la cinta y el conjunto de los rectángulos que queden por colocar. Una simulación 

consistirá en elegir aleatoriamente entre los rectángulos que puedan colocarse en el segmento BL y sus 

orientaciones (0 o 90
0
) hasta haberlos colocado todos. Cada simulación tendrá un resultado que es la longitud 

de cinta utilizada que queremos minimizar. 

 

Supongamos que tenemos 4 rectángulos que denominamos A, B, C y D y que los podemos colocar 

también rotados lo que indicaremos con A', B', C', D' 
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Figura 2.9. El nodo raíz desplegado antes de la primera simulación. 

 

 

Inicialmente, el árbol no está creado, solamente tenemos un nodo raíz vacío. Desplegamos el nodo raíz 

añadiéndole un hijo por cada jugada legal (figura 2.9). Cada nodo acumula el número de veces que ha sido 

visitado y la suma de los valores objetivos de las soluciones obtenidas que han pasado por el mismo. 

  

La primera simulación, al ver que el nodo raíz está vacío lo expande, a continuación evalúa cuál es el 

mejor candidato según la función UCB. Evaluamos todos los hijos del nodo actual según:  

 

 

 𝑉 =
 𝑙𝑜𝑛𝑔 𝑖

𝑛𝑖
− 𝐾 ×  ln 𝑛𝑗  / 𝑛𝑖   (2.3) 

 

 

Que es la ecuación 2.2 con el intervalo de confianza cambiado de signo ya que en este caso, pretendemos 

minimizar y en cada nodo, el lugar del número de victorias contamos la suma de longitudes obtenidas  𝑙𝑜𝑛𝑔𝑖 . 

Como todos los nodos aún tienen 𝑛𝑖 = 0, asignamos 𝑉𝑖 = 0 para que cada nodo reciba al menos una visita. De 

todos los nodos, nos quedamos con el de menor valor. Al ser todos inicialmente iguales, supongamos que 

hemos elegido 𝐴.  
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Figura 2.10. El árbol tras la primera exploración del nodo A actualizada. 

 

Por lo tanto, la primera iteración del algoritmo elije el nodo A, coloca sobre la cinta el rectángulo A. Al 

ver que el nodo A no tiene suficientes visitas, no lo expande todavía. Después de colocar A coloca todos los 

demás rectángulos en una secuencia aleatoria, supongamos que la secuencia ha sido A, D', B, C y que la 

longitud de la cinta (valor objetivo de dicha solución) es 17. Ahora propaga el resultado desde el nodo donde 

terminó la exploración del árbol hasta arriba, quedando como vemos en la figura 2.10. 

 

Las siguientes iteraciones seguirán eligiendo en primer lugar los nodos que aún no han sido visitados. 

Supongamos que tras 25 iteraciones el resultado sea el que muestra la figura 2.11. 

 

Si hemos fijado el umbral para desplegar los nodos en 4 visitas y, suponiendo que el término de 

exploración 𝐾 ×  ln 𝑛𝑗 / 𝑛𝑖  sea pequeño, la iteración 26 elegirá el nodo A', pues 59/4 <  54/3 <  41/2 <

 35/1. Al ver que tiene 4 visitas, lo expandirá, supongamos que tras colocar A' solamente podemos colocar C',  

D y D' pues el espacio que deja A no es suficiente para B, ni B' ni C. (La aplicación de SPP real tiene una 

opción adicional, que es "pasar" e ir al siguiente tramo horizontal, que omitimos para simplificar.) 
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Figura 2.11. El árbol tras las 25 primeras iteraciones. 

 

El nuevo árbol, tras la expansión del nodo, será el que muestra la figura 2.12.  

 

 

 

Figura 2.12. El árbol tras la primera expansión de un nodo. 
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Sobre el nuevo árbol, la parte determinista del algoritmo habrá elegido A', C' y a continuación, una 

simulación aleatoria elegirá, supongamos B, D. Evaluamos la secuencia A', C', B, D y propagamos el resultado 

hacia arriba igual que siempre. 

 

Regla de parada: En el caso de go, no se necesita regla de parada. Simplemente se realizan tantas 

iteraciones como sea posible dentro del tiempo disponible y se elije la mejor jugada entre los nodos hijos del 

nodo raíz (por seguridad, la que más visitas tiene ya que la de mayor valor podría ser exploratoria). En el caso 

del SPP, el programa en todas las iteraciones compara si la longitud resultante es la mejor obtenida hasta el 

momento, si es así, almacena la secuencia que la originó. Hay que destacar que una de las ventajas es que el 

algoritmo puede interrumpirse en cualquier momento y siempre tiene una solución aceptable. En el caso del 

SPP, también puede interrumpirse el algoritmo cuando la longitud del árbol alcance todas la piezas colocadas 

ya que a partir de ahí, desaparece el componente aleatorio de la simulación final en la variante principal, que es 

la secuencia más larga del árbol y la más veces seleccionada.  

 

Convergencia hacia el valor óptimo: Suponiendo que no hubiera limitaciones de memoria ni de tiempo 

(en el caso de 4 rectángulos, casi inmediatamente), en el caso de una búsqueda minimax, el algoritmo acabaría 

por tener un árbol que cubriría todo el espacio de búsqueda y que carecería de componente aleatoria final, así 

que la variante principal seguiría el camino óptimo. Esto no es automáticamente cierto cuando se aplica MCTS 

a problemas de optimización como el descrito en este ejemplo tal y como se discute en 7.2.6. 

 

Componente de exploración: Si nos fijamos en la expresión 𝐾 ×  ln 𝑛𝑗  / 𝑛𝑖  observamos que cada vez 

que un nodo no es seleccionado, 𝐾 y su número de visitas 𝑛𝑖  son constantes mientras que el número de visitas 

de su padre, 𝑛𝑗  se incrementa en 1. Más o menos lentamente, dependiendo del valor de la constante K, este 

término aumenta y el nodo acaba por recibir una nueva visita. Si el valor resultante de esa iteración confirma 

que el nodo tiene un valor 
 𝑙𝑜𝑛𝑔 𝑖

𝑛𝑖
 poco interesante, al aumentar 𝑛𝑖 , vuelve a disminuir el término y el nodo ya 

no es seleccionado hasta que aumente más el número de visitas de su padre. Por el contrario, si la evaluación 

del nodo no era correcta y resulta que su valor disminuye, el nodo pasa a ser seleccionado más fácilmente y 

recibe más visitas. 

 

Es importante destacar que, a medida que aumenta el número de iteraciones, el valor de cada nodo varía, 

porque el árbol que le sigue relaciona las secuencias correctamente al ir ganando en conocimiento del 

problema. 
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2.3.5 MCTS 

 

Ésta es la versión más simple del algoritmo, conocida como UCT aplicada en un problema de 

optimización aunque la mayor parte de las aplicaciones descritas son búsquedas de dos jugadores. Por 

supuesto, en el caso de juegos bipersonales, las victorias se consideran vistas por el jugador que juega en ese 

nodo. Cada jugador busca maximizar sus victorias que son las derrotas del otro. Por lo tanto, es una forma de 

búsqueda minimax. También puede usarse, como en el ejemplo anterior, con un único ―jugador‖ para resolver 

problemas de optimización combinatoria. También se puede considerar un objetivo 𝑟 𝜖 𝑅 (por ejemplo, 

proporción aprovechada de una lámina) en lugar de 𝑣 𝜖 {0,1} (derrota/victoria) para utilizar el mismo 

algoritmo en problemas de optimización.  

 

Una gran ventaja es que el algoritmo aprende solo. No necesita de heurísticas introducidas por un experto  

para saber qué caminos explorar. Pero también puede combinarse con conocimiento a priori para ordenar la 

búsqueda en problemas muy complejos. Este es precisamente el objeto de esta tesis. A pesar de comprobar que 

el algoritmo básico es suficientemente bueno para competir con algoritmos especializados en problemas 

sencillos como el SPP [33] en problemas realmente complicados con una explosión combinatoria intratable 

incluso para conjuntos de pocas decisiones, el conocimiento del problema aprendido durante la búsqueda u 

offline resulta imprescindible para proporcionar soluciones competitivas a través de la exploración guiada 

(capítulo 3) y el aumento de la plausibilidad en las simulaciones (capítulo 4).  

 

 

Figura 2.13. Empaquetamiento óptimo del SPP obtenido mediante UCT. 
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El conjunto de todos los algoritmos que incorporan esta idea, la de organizar en un árbol los resultados de 

un proceso estocástico (la simulación de una solución elegida al azar) se engloba bajo el nombre de MCTS 

Monte-Carlo Tree Search. UCT es por lo tanto, la forma más sencilla de MCTS utilizando la ecuación 2.2. 

MCTS a menudo combina la información con otra información a priori, al menos en los programas de go. 

 

2.4 Aplicación de MCTS en genética humana 

 

Este apartado resume la aplicación del algoritmo MCTS al campo de la genética humana realizada en esta 

tesis y descrita extensamente en el capítulo 5.  

 

La aplicación se engloba dentro de lo que se conoce como estudios de asociación genotipo-fenotipo. 

 

Un fenotipo es un rasgo visible en un individuo. En nuestro caso, una variable categórica. 

 

Para entender lo que es un genotipo, se recomienda la lectura del apartado 5.1. Brevemente, el genoma es 

el conjunto de toda la información genética de una especie. Se construye a partir de las secuencias medidas en 

un conjunto de individuos. Cada individuo tiene variaciones en su genoma con respecto al genoma de 

referencia que es la versión más frecuente en toda la población. Estas variaciones, conocidas como 

polimorfismos, ocupan posiciones fijas conocidas. Existen más de 4 millones de posiciones que se sabe que son 

variables en el genoma humano. Dentro de estas variaciones, hay un tipo especialmente importante tanto por su 

frecuencia como por su mayor facilidad de análisis, que es el Polimorfismo de un Solo Nucleótido SNP 

(pronunciado, snip). Es decir, un polimorfismo que tiene solamente dos posibles formas para un punto concreto 

del genoma. Un alelo es cada una de las formas de un polimorfismo. En el caso de un SNP cada una de las dos 

formas: la de referencia y una posible alternativa. Un genotipo es un conjunto cualquiera de alelos para los 

polimorfismos de un individuo. Utilizando técnicas de microarray, puede medirse una gran cantidad de SNPs  

de un individuo en un solo análisis, en nuestro estudio 650 000 SNPs para cada individuo.  

 

2.4.1 Breve descripción del problema 

 

Por lo tanto, un estudio de asociación genotipo-fenotipo consiste en clasificar individuos a partir de un 

conjunto de SNPs de tamaño 𝑛. El fenotipo puede ser: tener o no tener una enfermedad (en terminología de 

estudios de casos y controles: ser un caso o un control), un rasgo visible como el color del pelo, etc. Los rasgos 
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continuos como la estatura, también pueden categorizarse. El apartado 5.1 describe algunos de los posibles 

mecanismos biológicos que explican los fenotipos. Se comprende que el proceso es muy complejo para que 

todas las posibles interacciones sean representadas por modelos matemáticos ya que esto obligaría a utilizar 

modelos con un alto número de grados de libertad, aumentando el problema del overfitting. Incluso para un 

solo SNP, tenemos 650 000 candidatos, lo que obligaría, debido a la existencia de test múltiples a elevar 

mucho los umbrales de significación utilizando métodos como el de Bonferroni. Sin embrago, ni los tamaños 

muestrales ni el tamaño de los efectos son suficientemente grandes para utilizar el método de Bonferroni que, 

claramente, no fue concebido para "millones de tests múltiples". Estos problemas y otros de tipo metodológico 

recogidos en la tabla 5.11 son descritos en el apartado 5.2. 

 

2.4.2 El algoritmo de clasificación utilizado 

 

Para evitar este overfitting, decidimos emplear un método no paramétrico que tiene en cuenta únicamente 

las distribuciones de frecuencias de cada alelo en cada uno de los grupos del fenotipo. El método compara la 

verosimilitud de que este genotipo haya sido extraído al azar de un sorteo en el que las probabilidades de 

extraer cada uno de sus alelos son las propias de cada uno de los grupos. Esto es posible porque la frecuencia 

de cada uno de esos alelos en cada uno de los grupos es conocida. El algoritmo está descrito completamente en 

5.5.2. Al no tener parámetros que ajustar, es de esperar que sea más robusto frente a overfitting que otro 

algoritmo en el que se puedan encontrar valores de parámetros que permitan aprenderse la muestra, pero cuyas 

conclusiones van a generalizarse mal. Es importante que, además, el algoritmo tenga validación cruzada, en 

este caso repetida varias veces. Utilizamos las frecuencias aprendidas en un grupo de "entrenamiento" y 

medimos el número de individuos correctamente clasificados de un conjunto de test. Esto se realiza un cierto 

número de veces. 

 

2.4.3 Las medidas de asociación comúnmente empleadas 

 

En nuestro primer trabajo publicado en genética [5] implementamos los diferentes métodos de asociación 

entre un SNP y un fenotipo categórico descritos en 5.3. Tradicionalmente, una vez que se han identificado 

SNPs cuyo poder de clasificación (frecuentemente, en el caso de enfermedades, hablaremos de riesgo en lugar 

de clasificación) está probado, la forma de realizar asociación entre varios SNP y un fenotipo es contar el 

número factores de riesgo. Es decir, un modelo aditivo que suma algo por cada factor de riesgo. Esto, a pesar 

de haber sido aceptado ampliamente porque la enorme complejidad de buscar modelos de varios SNPs entre 
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conjuntos tan grandes solamente está siendo abordada recientemente, es incorrecto por varios motivos, 

incluyendo: 

 

 No representa la complejidad biológica. Las interacciones biológicas son mucho más complejas 

que una simple suma. 

 No representa la asociación estadística entre factores. Muchas veces hay redundancia y un 

segundo factor apenas aumenta la información que ya tenemos por el primero. 

 

En nuestro estudio probamos experimentalmente que se pueden encontrar conjuntos de SNPs con mucho 

mayor poder de clasificación que simplemente utilizando los que mejor funcionan individualmente. Esto es 

además cada día más aceptado y ya ha sido descrito por otros autores, incluyendo [39]. 

 

2.4.4 Los experimentos realizados 

 

Los experimentos comparan tres métodos para encontrar conjuntos de 𝑛 ∈ {4, 8, 12} SNPs que mejor 

clasifican a 1043 individuos de un estudio público de diversidad humana conocido como HGDP [40] en 

categorías que representan grupos de etnicidades humanas consideradas estandarizadas en genética humana 

[41] en 3, 5 o 7 categorías.  

 

Los métodos son: la implementación de MCTS descrita en 5.6 frente a otros dos métodos descritos en 5.7.  

 

El primero de estos métodos es la utilización de los mejores clasificadores individuales según cada uno de 

los criterios descritos en 5.3 y que, individualmente, son los mejores métodos descritos en la literatura. En 

lugar de utilizar solamente el mejor, utilizamos el conjunto de los 𝑛 ∈ {4, 8, 12} mejores de cada criterio.  

 

El segundo método es un método muy eficiente para encontrar los mejores modelos lineales de 𝑛 factores. 

El algoritmo explora los diversos valores de 𝑛 desde 1 hasta el valor deseado, realizando primero una rápida 

estimación del modelo en función de los resultados obtenidos por el modelo padre (el mismo modelo con un 

factor menos) y el factor que se añade al mismo. Esta estimación se convierte en la prioridad con la que el 

modelo va a ser finalmente evaluado. Los modelos van esperando en una cola y se evalúa a cada vez el de 

mayor prioridad. Además, si éste no tiene el número de factores deseado, sus hijos son añadidos a la cola. 

Normalmente, como en este caso, la regla de parada es un determinado tiempo. Con una capacidad de cola 

ilimitada y un tiempo ilimitado este algoritmo sería una búsqueda exhaustiva sin repetición. 
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2.4.5 Los resultados obtenidos 

 

En todos los experimentos, los dos métodos basados en búsqueda superan en gran medida al método 

basado en la lista de los individualmente mejores. Dentro de los métodos basados en búsqueda, MCTS obtiene 

los mejores resultados en todos los problemas con 𝑛 > 4 y también es el método que demuestra una mayor 

mejora con el tiempo añadido de CPU. Los resultados completos están descritos en 5.8. 

  



 

 

30 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

Chapter 3. Applying knowledge in the tree search 

 

 

This chapter reviews the most important ideas tested to produce successful MCTS implementations. The 

first two sections are not go specific; we describe four important ideas that can be considered in many game 

playing or optimization applications. In section 3.1 we introduce main ideas focusing on their motivation, and 

their influence on the algorithm, leaving the implementation specific details to the cited literature. In section 

3.2, we describe mathematical models commonly used to deal with a priori information. After that, we 

introduce the most important limitation of MCTS as it is implemented today, both from a generic and also a go 

specific point of view. The rest of the chapter describes our original research in detail about using a full board 

evaluation function based on offline learned expert knowledge as a source of a priori information for the 

opening of 19x19 go. [1, 2, 42] 

 

3.1 Successful ideas used in other programs 

 

 

Below we describe some successful ideas that are used in many MCTS implementations, including: some 

techniques for biasing moves (i.e., combining a priori information with the results of the simulations), RAVE 

a technique that increases the amount of information available, progressive widening a technique that focuses 

the search in large problems initially to the a priori best candidates and we also discuss ways to implement 

parallelization.  
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3.1.1 Biasing moves 

 

MCTS is a tree search and, just like in any tree search, the order in which the possible decisions (moves) 

are explored is essential, especially as the tree is wide and has many possible decisions that are not suitable. 

Finding heuristics that partially sort the set of legal moves is an obvious idea that has been present since the 

beginning of MCTS. This is sometimes named "progressive bias" as it was called in one of the early papers on 

the subject [25]. It is "progressive", as the authors of the paper intended, since in most cases, it fades out as the 

"real information" becomes less scarce. Quoting the original paper: "The influence of this modification is 

important when a few games have been played, but decreases fast (when more games have been played) to 

ensure that the strategy converges to a selection strategy." Some authors like David Fotland, the author of The 

Many Faces of Go have described their bias as permanent and it does not fade out at all: "mfgo_bias is 

unchanging, per move, within a range of about ±2%, based on mfgo’s move generator’s estimate of the quality 

of the move." [19]. Others authors just introduce some "fake" a priori simulations when the node is created and 

these "results" become naturally less important as the node is updated with real results. We use a separate term 

with an "a priori" estimate of the value of the node that plays a (decreasingly weighted) role until a horizon (in 

terms of number of real visits) is reached. After that, it does not interfere with the real information at all. The 

mathematical details of some described implementations are given in the next section. 

 

In this thesis, we prefer the less specific "a priori information" to "progressive bias" to refer to the 

heuristics playing a role in determining the order of exploration in the nodes when simulations are scarce or 

nonexistent. 

 

What heuristics are used as a priori information in the tree search is domain dependent, but in general, all 

heuristics used in the simulations like those described in 4.2, 4.6 and 4.7.5 are obvious candidates. The seminal 

papers include a number of simple heuristics [22, 25, 43] and also of more complex ideas including offline 

learned weights [24, 44]. Since then, other ideas have been described [45]. 

 

3.1.2 RAVE 

 

Somewhat unexpectedly, since the precise order of the moves is vital in most domains (including go), 

moves also tend to be "generally good" or "generally bad" independently of the moment in which they are 

played. In absence of accurate information about how good a move is in a given situation, the knowledge about 

how good the move is overall is frequently better than no knowledge at all. The main advantage of this idea is 
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that the rate at which (even though inaccurate) information is updated is really high. Many moves are played in 

each simulation; hence, after a small number of simulations most moves will have information. This idea was 

already used in the pre-MCTS era with the name All Moves As First (AMAF) heuristic. In [46] the authors 

implemented the heuristic in GOBBLE a program that is the first documented Monte-Carlo go program dated 

back to 1993 [47]. Later "rediscovered" applied to tree search RAVE (Rapid Action Value Estimation) is now 

part of most strong MCTS engines. RAVE is the tree version of AMAF. The idea is updating the information 

kept in all sibling nodes of the played move (rather than updating only the played node) with the results of all 

moves played in the simulation. This, like in AMAF, increases the rate at which information is updated, but 

unlike in AMAF the information is specific for the board as it stands in the node from which the simulation 

was played. Different branches of the tree will (asymptotically) get different wins/visits proportions that are 

specific to the branch of the tree from which the simulations are played. But just like in AMAF, they are 

inaccurate since they do not represent the value of the moves played in correct sequences. 

 

RAVE was described by its original authors in [21, 23]. Another study [48] analyzes different alternatives 

of information updating policies. 

 

It is a heuristic used in most strong programs (all except Nomitan to our knowledge). It is usually 

weighted to fade out as the number of visits increases and combines very well with progressive widening 

(3.1.3) which is very important for large board sizes. 

  

RAVE should not be considered go specific. In all domains in which the total number of legal decisions 

does not change completely for each game state, but is essentially a choice from a set (of manageable size) 

defined by all possible decisions, RAVE can be considered a valid heuristic. This is the case in the two 

optimization problems analyzed in this thesis: strip packing and the 𝑛 factor GEP (Genetic Etiology Problem 

described in section 5.5). It is also the case of connection games like Hex, Havannah or TwixT and of many 

board games where moves are essentially board positions like Reversi, Amazons or Gomoku. This condition 

does not guarantee that RAVE will be useful, but at least, it does guarantee that RAVE will rapidly increase the 

rate at which by-move information is updated. 

 

3.1.3 Progressive widening 

 

As the width of the MCTS tree increases, the amount of nodes created without visits or with very few 

visits also increases. When this happens, if a priori information is weighted too heavily, we are losing the 
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advantages of tree search, i.e., having a model of answers that contains game outcome information from 

"likely" follow ups. Results are biased by preconceptions that may or may not be applicable to the position 

analyzed. If, on the other side, we weight a priori information too weakly, the combinatorial explosion of 

meaningless nodes would make the algorithm need a huge amount of time and memory until it starts following 

meaningful sequences. A solution to this problem is limiting the width considered to a list of few (3 to 6) 

moves and not widening this list until the parent node has received enough visits. This idea has an additional 

advantage when combined with RAVE: RAVE updates parent board specific information not just for the 

moves played, but for all their siblings since they will frequently be played later in the playout. When the width 

is widened, the candidates to be the next move explored do not only have a priori information but they also 

have position specific RAVE information. When this information is used (in combination with a priori 

information) to decide which move is the next to be analyzed, RAVE can pick up a move that was not near the 

top according to a priori ranking but is showing very successful (although ignoring precise move ordering) in 

the playouts. This, like RAVE itself, helps finding good candidates. 

 

Progressive widening was first described in [24]. The original description is somewhat different from the 

one given here. Rémi Coulom has a specific tree expansion policy in which he is gathering information before 

actually adding the nodes to the tree. When the nodes are "promoted to internal node" the heuristic works just 

as described above: 

 

"When a node in the Monte-Carlo search tree is created, it is searched for a while without any pruning, 

selecting the move according the policy of random simulations. As soon as a number of simulations is equal to 

the number of points of the board, this node is promoted to internal node, and pruning is applied. Pruning 

consists in restricting the search to the n best moves according to patterns, with n growing like the logarithm 

of the number of random simulations. More precisely, the n-th (n ≥ 2) move is added when 40 × 1.4
n−2

 

simulations have been run. On 19x19, because of the strength of the distance-to-the-previous-move feature, 

progressive widening tends to produce a local search, again like in Mogo." 

 

Using the logarithm of the number of parent visits to determine the width, as the original author does, has 

become common practice. Most implementations use equation 3.4 with some tuned constants: 

 

 

 𝑁𝑝𝑤 = 𝐾𝑠 · log 𝐾𝑓 . 𝑛𝑗  + 𝑁𝑚𝑖𝑛   (3.4) 
 

 

𝑁𝑝𝑤  is the number of children of the parent node 𝑗 to be explored and 𝑛𝑗  is the number of visits of j. 
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Hiroshi Yamashita, author of the program Aya, reported 𝐾𝑠 = 1/log(1.4), 𝐾𝑓 = 1/40 and 𝑁𝑚𝑖𝑛 = 2 as 

the values used by Aya. Our program has a configurable categorical factor setting the values to narrower/wider 

exploration in five categorical steps, the intermediate setting corresponding to Aya's values with 𝑁𝑚𝑖𝑛 = 4. 

 

 

3.1.4 Parallelization of MCTS  

 

MCTS has very suitable qualities, one is being an anytime algorithm. Anytime algorithms have naturally 

good parallelization. In this case, parallelization consists in running the same algorithm in different CPU-cores 

or computers and sharing information. 

 

Parallelization algorithms fit in two categories: 

 

 Shared memory. One multi-core computer runs a multithreaded application. 

 In a cluster. A cluster of computers sharing a fast network use an MPI (Message Passing 

Interface) to keep nodes in synch. 

 

We did not implement cluster parallelization in our program. Some open source programs a have cluster 

parallelized version including Fuego [49] and Pachi [50]. Hideki Kato, who successfully implemented cluster 

parallelization for the program Zen, was one of the early researchers on cluster parallelization [51]. The ideas 

implemented range from root parallelization (the term is used for either strictly the root nodes or the set of 𝑘 

nodes with the highest number of visits) where the results of a small set of nodes are synchronized via MPI 

messages, to more advanced algorithms [52]. Some implementations use more ambitious paradigms like a 

single tree shared among many computers, in which the computer owning the leaf node runs the simulation. 

This has been successfully implemented by Lars Schäfers, author of Gomorra and is still unpublished by 2012. 

Studies on root parallelization applied to go include [53]. A paper describing both shared memory and cluster 

MCTS parallelization methods was published recently by a go program author [54]. 

 

As far as shared memory parallelization is concerned, one of the early works [55] describes various 

methods. The study is conditioned by considering thread locking as a serious limitation. This has been 

overcome by implementing lockless schemes. The work is also worth mentioning as the ideas described in it 

have influenced cluster parallelization. At the beginning of 2009 we were already working on lockless 
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parallelization which allows the algorithm to run without any measurable interlocking and with the probability 

of results being lost kept so low that its impact cannot be measured experimentally. The key idea is using CPU 

instructions reading/writing variables stored in the nodes always atomically. Also, incrementing the number of 

visits by the use of the lock inc CPU instruction. Note that this is instruction level locking only, it makes the 

whole read/update/write cycle atomic. It should not be confused with thread locking in which a thread waits for 

some condition. Our program is one of the first three implementing lockless tree update. We had already 

implemented it when the idea was mentioned for the first time by Rémi Coulom in [19]. That same year the 

Fuego team described it a conference whose proceeding were published the following year [56]. Today, all 

strong engines implement a lockless shared tree when running on a single computer. In terms of playing 

strength, lockless tree sharing scales (by identical number of simulations) just like playing the same number of 

simulations in sequence. In terms of real time CPU usage, the improvement is less than expected from the 

number of threads, since memory and CPU cache sharing produce a global slowdown resulting in less 

simulations being computed than a linear model would predict. 

 

It is also worth noting that shared tree parallelization is not independent from the exploration/exploitation 

equilibrium. Many threads simultaneously exploring the same tree favor exploitation since in the beginning the 

deterministic part of the UCT algorithm will chose the same path. This can be compensated either by setting 

the UCT constant to a value including more exploration or by inserting a virtual visit as the tree is travelled 

downwards. An additional visit (without a win) acts like a virtual loss and favors exploring alternative paths in 

the tree. When the simulation is done, either a win or a loss is updated (without adding another visit, 

obviously) keeping the information to date. This idea, known as virtual loss, was also described in [55]. 

 

3.2 Including a priori information in the tree 

 

The description of the MCTS algorithm includes selection at each step the action 𝑎∗ maximizing a value: 

 

 𝑎∗ =
𝑎𝑟𝑔𝑚𝑎𝑥 𝑉(𝑠, 𝑎)

𝑎         
  (3.5) 

 

𝑠 being the state of the game at the node, (i.e., the board position, the player in turn and the moves made 

illegal by repetitions, if any). In this section we analyze different functions used to define 𝑉(𝑠, 𝑎). This 

procedure is used to select the next node to be visited while exploring the tree, but it is not a good idea to use it 

to determine what the best move at root is since it may contain an "exploratory" node whose value is not well 

established. When the search has been completed, the "standard" policy is selecting the move with the highest 

number of visits which is the best decision "so far". 
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3.2.1 Mathematical models described to deal with a priori information 

 

Below, some models are described ranging from the simplest model without RAVE to more complete 

models including separate a priori information terms. 

 

The first model which does not include RAVE or a priori information is the "vanilla" UCT formula: 

 

 𝑉 𝑠, 𝑎 =
𝑤 𝑠,𝑎 

𝑛 𝑠,𝑎 
+ 𝐾 ·  

log (𝑛 𝑠 )

𝑛(𝑠,𝑎)
  (3.6) 

 

where 𝑛 𝑠, 𝑎  is the number of visits stored in each child node for action 𝑎 at state 𝑠, 𝑛 𝑠  is the number 

of visits in the parent node representing state 𝑠, 𝑤 𝑠, 𝑎  is the number of wins for action 𝑎 at state 𝑠 and 𝐾 is a 

constant defining the exploration/exploitation tradeoff. This model was proposed in [20]. 

 

The first introduction of RAVE was proposed in [21] and we are not presenting its mathematical details 

here as the function was improved by its original authors, first advanced in [57] and finally published in a 

revision article on RAVE in [23]. The improved version, which we include below, analyzes the variance and 

the bias introduced by RAVE. Like in the analysis detailed below in 4.1.1, the simulation is the repetition of a 

Bernoulli process; hence its variance is determined by the binomial distribution. This analysis does not study 

the underlying Wiener process and treats the simulation as unbiased without further questioning, considering 

the value to which the simulations asymptotically converge the "true" value of the position and, since it does 

not match the value obtained from RAVE, the latter is considered biased in the sense: 𝐸[𝑄𝑈𝐶𝑇 − 𝑄𝑅𝐴𝑉𝐸 ] ≠ 0. 

This bias is given the name 𝑏𝑟  reestablishing: 𝐸 𝑄𝑈𝐶𝑇 − 𝑄𝑅𝐴𝑉𝐸 + 𝑏𝑟 = 0. 𝑄𝑈𝐶𝑇  is the value obtained from 

UCT (without any confidence interval), i.e., the proportion 𝑤𝑖𝑛𝑠/𝑣𝑖𝑠𝑖𝑡𝑠 for the move and 𝑄𝑅𝐴𝑉𝐸  is the value 

estimated using RAVE. 

 

Also, the author mentions: "The RAVE estimate has a lower variance, but a higher bias than the UCT 

estimate. When there is little experience, the RAVE estimate is more reliable; when there is more experience, 

the UCT estimate is more reliable." It is worth noting that the smaller variance of RAVE is only expected 

because of its higher number of visits, being both variances following the binomial distribution: 

 

 𝜎𝑈𝐶𝑇
2 = 𝑞𝑢 · (1 − 𝑞𝑢)/𝑛  (3.7) 

 

 𝜎𝑅𝐴𝑉𝐸
2 = 𝑞𝑢 · (1 − 𝑞𝑢)/𝑚  (3.8) 
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Where 𝑛 < 𝑚 are the number of visits of the UCT evaluation and the RAVE evaluation respectively, and 

𝑞𝑢  is the "true" value of the node from which the proportions of RAVE wins is a biased estimator, hence the 

same in both equations, simplifying the analysis. 

  

The Gelly and Silver suggest a value 𝑉 𝑠, 𝑎  combining both proportions in a convex sum: 

 

 𝑉 𝑠, 𝑎 = 𝛽 · 𝑉𝑅𝐴𝑉𝐸  𝑠, 𝑎 +  1 − 𝛽 · 𝑉𝑈𝐶𝑇 𝑠, 𝑎   (3.9) 
 

being: 

 

 𝑉𝑅𝐴𝑉𝐸  𝑠, 𝑎 =
𝑤𝑅𝐴𝑉𝐸  𝑠,𝑎 

𝑚  𝑠,𝑎 
+ 𝐾𝑟 ·  

log (𝑚 𝑠 )

𝑚 (𝑠,𝑎)
  (3.10) 

 𝑉𝑈𝐶𝑇 𝑠, 𝑎 =
𝑤 𝑠,𝑎 

𝑛 𝑠,𝑎 
+ 𝐾𝑢 ·  

log (𝑛 𝑠 )

𝑛(𝑠,𝑎)
  (3.11) 

 

 

analogous definitions to equation 3.6. 𝑚 𝑠, 𝑎  is the number of RAVE visits for action 𝑎 at state 𝑠, 

𝑤𝑅𝐴𝑉𝐸  𝑠, 𝑎  is the number of RAVE wins for the same state, 𝑚 𝑠 is the sum of the number of RAVE visits of 

all siblings (stored in the parent, but it is not the same as the number of RAVE visits of the parent), 𝐾𝑟  and 𝐾𝑢  

are two constants. 

 

The whole point is finding the value 𝛽 that minimizes the MSE (mean squared error) in equation 3.9. 

 

 𝑀𝑆𝐸 = 𝜎𝑢𝑟
2 + 𝑏𝑢𝑟

2 = 𝛽2 · 𝜎𝑟
2 +  1 − 𝛽 2 · 𝜎𝑢

2 + 𝛽2 · 𝑏𝑟
2  (3.12) 

 

 

Differentiating with respect to 𝛽, equaling to 0 and isolating 𝛽: 

 𝛽 =
𝜎𝑢

2

𝜎𝑢
2+𝜎𝑟

2+𝑏𝑟
2 =

𝑚

𝑚+𝑛+𝑚 ·𝑛 ·𝑏𝑟
2/𝑞𝑢 ·(1−𝑞𝑢 )

  (3.13) 
 

 

The whole 𝑏𝑟
2/𝑞𝑢 · (1 − 𝑞𝑢) term is just a constant representing a hypothesis about the bias 𝑏𝑟

2 and the 

true value of the node 𝑞𝑢 . In Pachi [50], the value is set to 𝑏𝑟
2/𝑞𝑢 ·  1 − 𝑞𝑢 = 1/3000. Yoji Ojima, known as 

Yamato, the author of the go program Zen [58], reported 𝑏𝑟
2/𝑞𝑢 ·  1 − 𝑞𝑢 = 1/400 for Zen. 

 

Hiroshi Yamashita, the author of the go program Aya [59], reported using a simplified version of 𝛽 with 

𝐾𝑟 = 𝐾𝑢 = 0.31 

 

 𝛽 =  
100

3·𝑛+100
  (3.14) 

 

without using 𝑚 at all. 
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This mathematical framework is used in many strong programs. Since it does not provide an independent 

term for a priori information, it is usually introduced by adding some virtual wins and visits to the node when 

creating it rather than initializing it with 0 wins, 0 visits. Other programs like, as mentioned in 3.1.1, Many 

Faces Of Go [60] use a specific bias term added to this value. 

 

3.2.2 A priori information and tree search as implemented in GoKnot 

 

Now, we describe the mathematical model as implemented in our own program, GoKnot (described below 

in 6.1). This is our original research. The framework just described, although mathematically sound, is based 

on some oversimplifications and has the disadvantage of not allowing distinguishing between a priori 

information and information really obtained from the simulations. We wanted to keep these two values 

separate for two reasons: 

 

 We hypothesize that bias introduced by virtual a results has negative impact when the a priori 

hypothesis assumed by the heuristic has been proven wrong by the simulations. 

 We want to be able to judge the quality of our a priori information to tune it. For this reason we 

use some metric like Spearman rank correlation to measure "goodness of fit" between a priori 

values and values obtained from simulations. 

 

The main equation in our framework is: 

 

 𝑉 𝑠, 𝑎 = 𝛼 · 𝑉𝑎𝑝  𝑠, 𝑎 + 𝛽 · 𝑉𝑅𝐴𝑉𝐸  𝑠, 𝑎 +  1 − 𝛼 − 𝛽 · 𝑉𝑈𝐶𝑇 𝑠, 𝑎   (3.15) 
 

 

Where 𝑉𝑎𝑝  𝑠, 𝑎  is the a priori value assigned to the node by some heuristics when the node is created. 

These heuristics, tuned using CLOP [61], give weights to features described in chapter 4 such as: atari, extend 

from atari, self-atari (with negative bias), urgent answer patterns, eye improvement heuristics and also the 

joseki patterns described below in 3.4.4. 𝑉𝑅𝐴𝑉𝐸  𝑠, 𝑎  does not include a confidence interval: 

 

 𝑉𝑅𝐴𝑉𝐸  𝑠, 𝑎 =
𝑤𝑅𝐴𝑉𝐸  𝑠,𝑎 

𝑚  𝑠,𝑎 
  (3.16) 

 

𝛽 is as in equation 3.13 , 𝑉𝑈𝐶𝑇  𝑠, 𝑎  is as in equation 3.11 and  

 

 𝛼 = max(0,
𝑛𝐻  𝑠,𝑎 −𝑛(𝑠,𝑎)

𝑛𝐻  𝑠,𝑎 
)  (3.17) 
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being 𝑛𝐻 𝑠, 𝑎  the horizon for the a priori information term. The weight of the a priori information 

decreases linearly until the horizon is reached and that decreasing weight is increased to the empirically 

determined value 𝑉𝑈𝐶𝑇  𝑠, 𝑎  which in the end becomes the dominant term.  

 

 

3.3 Current limits of MCTS 

 

This section is a description of the current limits of MCTS. It is included here rather that in the final 

discussion because it is the motivation of the two main contributions of this PhD dissertation to computer go 

described in detail in 3.4 and 4.5 to 4.8.  

 

3.3.1 Limits in terms of computer science 

 

On the good side, MCTS has been described [27] as: aheuristic (it is amazing how a prototype vanilla 

MCTS implementation outperforms state of the art, domain specific implementations in problems like strip 

packing), asymmetric (tree growth that adapts to the topology of the search space), anytime and elegant. We 

wish to add analytically sound. Unlike some randomized methods (including GA and swarms) in which 

mathematical analysis is not usual, MCTS can be analyzed by equations, as we do all through this dissertation. 

MCTS combines the "sense of winning" of Monte-Carlo methods found out naturally without following any 

rules other than the rules of the definition of the problem with the "sense of answering" of tree search. 

  

This way to look at the whole picture was pointed out by Yamato, the main author of the go program Zen, 

the strongest nowadays. He used the Japanese words yomi which means reading for the tree search and 

kankaku which is feeling for the evaluation from the playouts. Note that a go engine is not doing something so 

different of what human do. It read sequences of plausible moves and when it reaches the end of the tree, it 

does a random experiment which represents the kankaku i.e., the feeling it has about the resulting position. Of 

course, humans do it few times and very accurately and computers do it thousands of times and only the whole 

picture makes sense. 

 

But even if MCTS represents a breakthrough in many hard problems (the list of domains increases every 

day as described in 7.1) and finds out its answers unraveling the problem naturally without explicit rules, two 

limitations still apply: 
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 MCTS being an online learning method, there is no simple way to propagate the information 

learned in the tree either across the tree itself (the same local problem has to be solved many 

times) or to the simulations which are usually too simplistic to get evaluation right until the 

position is "almost settled". 

 

 MCTS cannot handle long sequences accurately. Even when the most expected answer is correct 

80% of the times, the probability that a sequence of 10 consecutive correct answers is followed is 

around 10% of the times. When the correct sequence is required to get the correct answer, the 

wrong answer is obtained 90% of the times making the whole idea unworkable. 

 

The first limitation is the reason why MCTS programs weaken when the number of unsolved tactical 

problems increases on the board. MCTS is strong enough to solve each problem in isolation, but as the search 

jumps from one problem to another the problems have to be rediscovered too many times wasting large 

amounts of resources. Ways to (hopefully) work around this problem range from divide and conquer ideas 

mentioned briefly in 3.3.4 to learning playouts. Our original work in learning playouts is described in detail in 

the next chapter. 

 

The second (made worse by the first) explains most of the limits in terms of go. It cannot be directly 

avoided by, for instance, making the tree search less exploratory. The tree search algorithm needs to explore 

alternatives. How else could it know that a move is the best answer if it did not explore the alternative moves 

to it? For that reason, even in the best known part of the tree, the path does not include always the correct 

answer. This is inevitable, note that the whole exploration/exploitation paradigm has been researched deeply. 

Simple ideas that were acceptable few years ago like ε-greedy search are ridiculously inefficient when 

compared to UCT. The problem is even worse since, due to the scarce representation of the "correct answering 

lines" in the entire search, they do not guide the growth of the tree in "correct directions" at all, neither is there 

a way to determine what paths are correct. The amount of search required to establish a ten move long path of 

not obvious moves requiring a precise order is so large that it may be impractical in most cases to "just wait" 

until MCTS finds the path. 

 

3.3.2 Limits in go terms 

 

In terms of go, this difficulty with long sequences explains what players see: 
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 Problems with semeai. The evaluation of a semeai will only be correct when it is played in 

reasonable sequence. The correct sequence is usually not unique, but it is still unlikely to find the 

sequence in the space of all legal sequences. 

 Problems with ko. The value is only correct when the entire ko/threat/response/recapture/etc. 

sequence is played in meaningful orders. In plural, since different paths have to be explored to get 

a representation of the value of everything and the interactions. MCTS engines can make things 

even worse by wasting threats which appear unnecessary but playable moves when they are not 

playable at all. When placed in correct sequence, they decide the outcome of the ko. 

 Close endgames. The engine will not get the correct evaluation since these endgames depend of 

sente and gote. Playing the whole sequence in one order may differ from playing it in another 

order by a few points and, when these points decide the game, the engine does not see the winning 

path frequently enough. 

 

 

3.3.3 The opening as a limitation 

 

And here comes the important point justifying the need of opening knowledge: The opening is just 

another case in which the MCTS engine is weak and for the same reason as in all the others cases. The engine 

does not follow long sequences accurately. In other words, it cannot evaluate territory in the sides and the 

corners as humans who know joseki and opening principles can.  

 

Strong human players who "specialize" in beating the strongest engines (although their playing strength is 

about the same as that of the engine) have declared in public [62] that when they don't get advantage in the 

opening, they just resign because later the engine becomes just too strong.  

 

Note that the length of a played out game from the opening is, in our implementation, between 501 and 

552 moves long 50% of the time as shown by its IQR (interquartile range). The tree search is only 

exceptionally like 20 moves deep. In the opening, it is much less because few moves are forced. This means 

the tree is just floating in over 500 moves of random kankaku which is kyu level even in the strongest engines. 

How could the tree search understand the position without additional help? 
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MCTS has a good sense of local tactics and it can be biased to explore joseki sequences coded as patterns. 

This may make its play look strong to some players, but that still does not result in correct evaluation of neither 

territory nor influence. And this lack of whole board understanding is never forgiven by strong players against 

which the strongest engines do not have the slightest chance in an even game. Even if MCTS evolved to be 

stronger in the middle and end game than humans, it would still have to recover from a disadvantageous 

position because it has ignored opening principles. This forces it to take higher risks later. 

 

It was controversial when we started with this ambitious implementation in 2009 while our engine was 

still weak, and M-eval was certainly not the "lowest hanging fruit" to improve it, if the idea was necessary at 

all. At the time, many critics considered that opening played by strong MCTS engines had no room for 

improvement, probably carried away by the fast early success, without giving the matter a deep insight.  

 

Nowadays, the opening is still a weak point in strong MCTS engines and, as our engine has evolved, the 

whole idea has evolved with it. It is still an improvement in both style and performance. It is now driven by 

joseki patterns and it could finally become a correct way to implement joseki patterns in 19x19 go, rather than 

simply biasing moves that may or may not be applicable considering the board as a whole.  

 

3.3.4 Divide and conquer 

 

Most of the problems resulting from the first limitation described in 3.3.1, i.e., the tree not benefiting from 

the knowledge acquired in other parts of the tree related to the same local sequences, would be bearable if an 

efficient board division algorithm was known. Although important results were obtained in the pre-MCTS era, 

it must be noted that they were applied in the late endgame or in artificially created problems were isolating 

local fights is feasible. Unfortunately, a realistic go engine requires the division to be understood much earlier. 

 

Some approaches are worth mentioning, with success limited to solving specific problems like tsumego 

and endgame. To our knowledge, no strong program uses separate local searches at the moment since 

combining evaluation and not misrepresenting the interactions between local fights is extremely hard. In the 

case of non-interacting local fights, CGT (Combinatorial Game Theory) a very elegant mathematical theory of 

go introduced first by Elwyn Berlekamp in [63] and extended in [64] is worth mentioning. It was influential in 

many "classical" computer go work including the PhD dissertation of Martin Müller [65] a computer go 

pioneer, co-author of Fuego [49]. 
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To define the problem of what is a local fight some words on board metrics may be necessary. Usually, 

humans use the word "local" to define a set of chains representing a subproblem that can be analyzed 

independently, although it usually interacts with other subproblems by interactions (sente/gote, possible ko 

threats, etc.) that can also be analyzed. Defined mathematically, the idea is much more pedestrian and usually 

refers to the region on the board whose distance to some point is below some value according to one of the 

following metrics for the distance between two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) (from worst to best) : 

 

 Manhattan distance: 𝑑𝑀  =  𝑥1 − 𝑥2 +  𝑦1 − 𝑦2  An obvious choice in discrete spaces. 

 Go board distance: 𝑑𝐺  =  𝑥1 − 𝑥2 +  𝑦1 − 𝑦2 + max( 𝑥1 − 𝑥2 ,  𝑦1 − 𝑦2 ) This metric has 

been used in many computer go applications since at least 20 years. We were unable to identify its 

original author hence naming it go board distance. It works better than the Manhattan distance in 

representing the idea of influence. 

 Common Fate Graph Distance [66] is a step in the correct direction to represent chains on the 

board. As all stones have a common fate they are linked counting the distance to the nearest stone 

in the chain. Usually a table of distances from each intersection to each intersection is built, rather 

than computing the distance each time it is needed. It is built by a filling algorithm. The method 

starts from one string and recursively adds close empty intersections and strings close to these 

empty intersections until no more close strings are found within a distance controlled by a 

parameter. Strictly speaking, it is a pseudometric since 𝑑 𝐴, 𝐵 = 0 ⇏ 𝐴 ≡ 𝐵 as the distance 

between two intersections of the same chain is zero. Figure 3.1 shows an example of CFG 

distance. All intersections at a distance ≤ 4 from A, display their distance to A. 

 

 

Figure 3.1. Intersections at CFG distance ≤4 of point A. 
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3.4 M-eval: A Multivariate full board evaluation function 

 

This section describes our original work for implementing an evaluation function for opening positions 

named M-eval described in [1] and later in [2]. In the whole section the board size is 19x19. 

 

3.4.1 Positional judgment in go 

 

Evaluating a board position in go is extremely difficult even for professional players. All evaluation 

functions used in computer go have limitations and produce erroneous results under certain circumstances. 

 

Most of the strength of MCTS comes from the fact that it does not require an explicit evaluation function. 

The Monte-Carlo evaluation is the result of a stochastic process, i.e., the complete playout of a random game. 

Assuming the program understands particular circumstances like seki (see 4.3.3), the evaluation of the final 

position is error free. As the end of the game approaches, given enough simulations, the tree reaches final or 

near final positions. Yose played by strong MCTS engines is equivalent to that of strong players as long as the 

outcome of the game is undecided and the correct move sequences are not too long to be followed frequently. 

In the middle game, MCTS engines show strength due to full board evaluation and often overcome losing local 

fights making excellent use of tenuki and furikawari.  

 

Despite their strength, MCTS programs cannot evaluate opening positions accurately as explained in 

3.3.3. The length of the playout games is (mean = 528, interquartile range (IQR) (501—552)) moves to reach a 

final position (i.e., without remaining moves that are not restricted by a rule). This does not allow the tree to 

reach near endgame positions since the root position contains few moves (e.g., 30) and the maximum length in 

the tree is at most 10 to 15 moves as there are many legal moves and few obvious high priority sequences such 

as killing a big group. Since the whole evaluation is based on self play, MCTS programs are essentially blind 

to deviation from opening principles as both sides do the same. 

  

In game programming, an opening book is a database of full board positions linked to a list of playable 

moves for each position. Opening books can be either created by experts or mined from large sets of high 

quality games extracting the moves seen many times. Full board opening books in 19x19 go have been used by 

many authors including [49, 67, 68]. We have also implemented a book for time saving reasons in tournament 
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games. Only exceptionally more than eight moves (four per side) are played from the book. This represents a 

very small part of the opening. Partial (joseki) pattern matchers have much longer application, but deciding 

which joseki should be applied is a very complicated problem where bad choices can be really bad. 

  

Many books describe go opening principles [69-72]. Cho Chikun [10] describes a method for counting 

territory, estimate thickness and moyo. Also, other researchers have developed positional judgment functions 

[73, 74]. The strength of a go program depends on entire sequences, not just in finding good moves frequently. 

Therefore, algorithms with good professional move prediction rates can produce weaker programs than simple 

but consistent ideas (see 6.1.3) like those described in 4.4. It is hard to tell which of the resulting moves are 

going to be ―understood‖ and successfully exploited by MCTS, our intention is providing usable a priori 

information to MCTS that increases its strength in the opening. 

 

3.4.2 M-eval rationale 

 

To explain the motivation underlying our algorithm, the following aims must be kept in mind: 

 

a. Go is a game of balance, e.g., balance between speed and connectivity, between territory and 

influence, etc. Too much connectivity (known as slow play) gives the opponent the opportunity to 

consolidate a territorial advantage, too much speed (known as overplay) leaves exploitable 

weakness behind. Strong play in go is about achieving goals in many different directions always 

considering the achievements of the opponent. There is a natural equivalence between obtaining a 

gain +𝑔 and destroying an equivalent gain −𝑔 from the opponent's achievements. Sometimes the 

former is easier, sometimes the latter. Positional judgment is multivariate in nature. 

b. The relation between the move and the next moves is fundamental. Sometimes the best reason for 

a move is not letting the opponent play that same move. To take the interaction with other moves 

into consideration, positional evaluation requires search.  Search finds strategic go principles like 

miai naturally. When there is an alternative way to reach the same target, urgency decreases 

automatically. Without search, such concepts are hard to define and subject to misevaluation. 

c. Perfect positional judgment (minimax wise) is not intended. The positional judgment evaluation 

proposed here is designed to interact smoothly with MCTS. Rather than determining what the 

―best‖ move is, it aims to guide the search towards directions that are compatible with human go 

opening principles and consistent. 
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d. Any mathematically definable evaluation function implemented in a program will be far from 

flawless. Accepting the limitations of our individual functions, we need more than one way to 

measure each abstract strategic concept. Because of the excess in degrees of freedom, 

dimensionality reduction is mandatory. Furthermore, the first step in this reduction has to be 

based on the knowledge contained in a massive dataset.  

e. Since, without any loss of generality, functions can be defined as positive for each player, named 

qualities (e.g. enclosed territory, influence, thickness, more liberties in a semeai race, etc.), it 

would be very hard to justify that a dimensionality reduction technique translates a positive 

quality by multiplying it times a negative coefficient. That may reduce the squared residuals or 

some other metric, but it does not make sense as an evaluation function. In short, we have to 

preserve the non-negative nature of our qualities. 

 

3.4.3 NMF: Non-negative matrix factorization 

 

Originally introduced by Paatero et al. [75, 76] NMF has extended its use to many fields in data analysis, 

including image analysis. The property of NMF to decompose objects into parts was described by Lee and 

Seung [77] and further studied by Donoho et al [78]. 

 

Given 𝑛 board positions for which 𝑝 qualities have been measured for each player, these non-negative 

values can be written as a matrix 𝑋𝑛×𝑝  which can be decomposed as: 

 

 

 𝑋𝑛×𝑝 = 𝑊𝑛×𝑑 × 𝐻𝑑×𝑝 + 𝑈𝑛×𝑝   (3.18) 
 

    Subject to: 𝑊𝑛×𝑑 ≥ 0, 𝐻𝑑×𝑝 ≥ 0 

 

When the residue 𝑈𝑛×𝑝  is minimized, 𝑉𝑛×𝑝 = 𝑊𝑛×𝑑 × 𝐻𝑑×𝑝  is an approximation of 𝑋𝑛×𝑝  called the NMF 

of 𝑋𝑛×𝑝  and 𝑑 < 𝑝 is the dimension to which the dataset 𝑋𝑛×𝑝  is reduced. 

 

𝑊𝑛×𝑑  is a matrix whose rows (named encodings) are compressed images of the rows of 𝑋𝑛×𝑝 .  

 

Since our intention is using 𝑉𝑛×𝑝  to represent the entire dataset, we want to minimize the informational 

loss resulting of using 𝑉𝑛×𝑝  instead of 𝑋𝑛×𝑝 . That loss is proportional to (it would be equal if  𝑥𝑖𝑗𝑖,𝑗 =

 𝑣𝑖𝑗𝑖,𝑗 = 1) the Kullback-Leibler [79] divergence 𝐷𝐾𝐿(𝑋|𝑉), i.e., the extra message-length per datum that 
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must be communicated if a code that is optimal for a wrong distribution 𝑉 is used instead of a code based on 

the true distribution 𝑋.  

 

Precisely: Rather than minimizing 𝐷𝑆𝐸 , the squared error of the residue  𝑈𝑛×𝑝 , 𝐷𝑆𝐸 =  𝑢𝑖𝑗
2

𝑖 ,𝑗  we 

minimized 𝐷𝐾𝐿 =  log  
𝑥𝑖𝑗

𝑣𝑖𝑗
 𝑥𝑖𝑗𝑖 ,𝑗  which is the same expression as the Kullback-Leibler divergence, but 

without the additional condition requiring 𝑋 and 𝑉 to be probability distributions. This is common practice in 

NMF and included as standard in the Matlab library we used [80]. 

 

We computed the NMF of our dataset using the Lee and Seung algorithm [81] version that uses 𝐷𝐾𝐿(𝑋|𝑉) 

as the cost function. Furthermore, 𝐻𝑝×𝑑
+ , a pseudo-inverse of 𝐻𝑑 ×𝑝 , was computed for the online conversion of 

any point 𝑋1×𝑝  from the initial ℝ𝑝  space to its encoding 𝑊1×𝑑  in ℝ𝑑 , using:  

 

 𝑊1×𝑑 = 𝑋1×𝑝 × 𝐻𝑝×𝑑
+   (3.19) 

 

 

Finally, the 𝐻𝑝×𝑑
+  matrix is scaled to standardize the encoding over the dataset of 110,542 cases created 

taking 2 positions from each game between moves 16 and 62 from the database 6.1.2. I.e., when 𝐻𝑝×𝑑
+  is 

multiplied times the entire dataset measured for the differences between both players, it returns a dataset of d 

variables and 110,542 cases, each variable having 𝑚𝑒𝑎𝑛 ≈ 0 and 𝑆𝐷 = 1.  

 

 

 

3.4.4 Qualities implemented in M-eval 

 

We have experimented implementing M-eval in different versions. The first successful implementation 

was in 2009 on our first MCTS go program QYZ, now called isGO [1]. In two years the program strength has 

increased by tuning, bug fixing and the implementation of other heuristics, primarily RAVE [21, 48] and 

progressive widening [24, 25]. isGO is now a state of the art MCTS engine. The current level in 2012 is around 

100 Elo points stronger than the version achieving the 4
th
 place in the slow KGS 19x19 computer go 

tournament in 2011. We describe the first implementation on which we performed experiments as version 1 

and the last one as version 2 although evolution has been continuous. 
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Following aims a, d and e in 3.4.2, board positions are evaluated by computing a set of 𝑝 qualities 𝑋1×𝑝  

for each player. That vector is dimensionally reduced to 𝑑 components by equation (3.19). Then, 𝑊1×𝑑  is 

reduced to a real value 𝑣 by:  

 

 𝑣 = 𝑊1×𝑑 × 𝐿𝑑×1
′   (3.20) 

 

 

Where 𝐿𝑑×1
′  is a direction learned online by a version dependent algorithm (see 3.4.7). 

 

The value of the position is the difference in 𝑣 measured for both players. 

 

Terms used by human players, such as: strength, potential territory, influence, connectivity, etc. are 

abstract and do not have a mathematical definition. We define qualities which are mathematical functions both 

users want to maximize. Since these qualities are different attempts to measure the abstract underlying 

variables, they are highly correlated. We did parameter tuning analyzing the distribution of each proposed 

quality using a dataset of high level play positions. We also eliminated candidate qualities analyzing their 

redundancy and their use as regressors on a dataset of intentionally unbalanced positions to measure their 

capacity to predict positional advantage. This work was mainly done by trial and error trying to combine 

simple definitions with the maximum available information, including the information available from urgency 

patterns and from ownership maps (i.e., the proportions of black/white ownership of each board intersection 

learned from previous simulations).  

 

Version 1 (the M-Eval version implemented in 2009 and published in 2010 [1]) implemented two types of 

qualities: deterministic qualities, which are only a function of the board position and stochastic qualities which 

combined the board position with previous knowledge of the ownership of each board cell. This ownership was 

computed from previous simulations. This idea intended to have a measure of the strength of stones. The 

drawback was it complicated implementation by requiring updated ownership information. A series of 

experiments, as the strength of the program improved, showed that removing stochastic qualities produced no 

measurable loss of strength. We conjecture that this happened because correlated qualities existed in the 

deterministic set. Another important modification was the implementation of two new qualities that estimate 

territory around the corners and the sides. This is done by regression of stone patterns into final positions of 

master games evaluated by isGO. Results from this estimation are shown in 3.4.9. This quality replaced 

previous territory measures used in version 1. The full list of 19 qualities of version 1 are described in [1]. 

Version 2 (the M-Eval version developed until 2011 and published in 2012 [2]) implements the 8 qualities 

described in table 3.2. 
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Table 3.2. Qualities used in version 2 M-eval 

Name Related go concept Description 

terriCorner Territory Estimated territory in the corner for the current player minus 
that of his opponent. The estimation uses 20,201 big corner 
and 46,979 small corner patterns seen more than 5 times in 
the master's database. To each pattern found the appropriate 
territory is assigned subtracting the standard error of its 
mean. That territory was computed from the final positions of 
the games in the database by isGO. 

terriInSide Territory Estimated territory in the sides for the current player minus 
that of his opponent. The estimation uses 27,881 big side 
patterns seen more than 5 times in the master's database 
computed as in terriCorner. 

strenStones captures, strength Number of stones for the current player minus those of his 
opponent. 

strenLibert Strength Number of liberties for the current player minus those of his 
opponent. 

strenAdjLib Semeai Compensated difference (own - opponent) in liberties for 
each adjacency. An adjacency is a set of 2 groups of different 
color with stones in contact. All different adjacencies are 
considered. 

strenUrgent shape, strength Weighted sum of urgent points for each player. Bad (= 
urgent) shape is not about having very urgent cells, but about 
having many. Urgency is read from a database of 40 cell 
patterns learned from dan/pro level play.  

speedRows34 Influence Number of empty cells in rows 3 and 4 within the reach 
(Manhattan distance ≤ 4) of own stones.  

speedHigher Influence Number of empty cells above row 4 within the reach 
(Manhattan distance ≤ 4) of own stones. 

 

 

 

 

 

 

3.4.5 M-eval search 

 

Following aim b in 3.4.2, the M-eval value used for each candidate move 𝑚𝑖  is the evaluation resulting of 

a short search starting from that position, rather than the evaluation of just the position after playing 𝑚𝑖 . This 

measures the importance of moves including considerations such as miai that are not coded in the evaluation 

function. In version 1 we hypothesized that blurring deterministic evaluation errors by inserting a brief 

stochastic component (a random sample of positions following the root position) was important. The original 

search was interrupted after a small number of moves (4 and 8 moves were tried) and the final node evaluated 

as in equation 3.20. We compared this idea with a short minimax search and the latter proved to be superior 
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both in tree metrics and in self play competitions. The minimax search is 4 nodes deep at root but applies only 

to local answers generated by the joseki patterns and is therefore fast enough. Deeper in the tree, the search 

depth is shortened by each additional depth level and, below tree depth 4, M-eval is not used.  

 

Following aim c in 3.4.2, the result of M-eval is not used directly to choose the move played, but 

integrated with MCTS search. In version 2, when the main MCTS algorithm expands a node, the M-eval object 

is called only if it returned valid information for the parent of the node being expanded. If the M-eval object 

finds known patterns for the corners and sides of the current position, it will search the moves corresponding to 

(𝑠𝑡𝑎𝑡𝑒)  →  𝑎𝑐𝑡𝑖𝑜𝑛 pairs stored for those patterns in the database. The leaves of this short M-eval search are 

evaluated by the M-eval function as in equation 3.20. The resulting value is converted into virtual wins and 

losses that seed the newly created tree node by subtracting average evaluation and seeding only the positive 

values. This conversion uses configurable parameters for persistence (number of virtual visits) and intensity 

(linear scale translating values into wins / losses ratio). 

 

M-eval no longer needs being disconnected after the opening. It automatically evaluates just known 

patterns and local moves suggested by patterns (which support multiple actions). After no known patterns 

remain on the board, it will stop generating a priori information and no longer be queried for the descendants 

of nodes for which it did not provide information. It can gracefully handle complicated boards where some 

parts cannot be evaluated and other parts have simple shapes. The M-eval object will only provide information 

for patterns it can understand. Even if M-eval is a full board evaluation, when boards include not well 

understood areas, these areas produce constant evaluation as no moves will be generated in them during search. 

Since average evaluation is subtracted, the search is guided by local achievements. Currently, M-eval does not 

try to find out absolute values of the positions, instead it finds out relative values of moves frequently played 

by humans around known patterns. These values seed the MCTS search "most promising first".  

 

3.4.6 Offline learning of H
+
pd 

 

For using dimensionality reduction techniques, it is necessary that the complete dataset can be 

approximated with fewer variables. Since board positions of the same game are not independent samples, we 

decided to take only 2 positions from each game between moves 16 and 62 from a database of 55,271 games 

played by dan-level and professional go players (see 6.1.2). This dataset of 110,542 board positions is 

evaluated for the current player (positive qualities) and also subtracting the values measured for his opponent. 
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A Principal Component Analysis (PCA) shows that both versions are good candidates for dimensionality 

reduction techniques. 

 

As shown in figure 3.2, the first four principal components in version 1 explain 75.8% of the total 

variance, and the first two in version 2 explain 42.5%. Note that these numbers cannot be compared directly. 

The former qualities have more variables aiming at the same measure in two ways (deterministic and with 

board ownership information). The information produced by the latter qualities is less redundant and more 

reliable. 

 

Figure 3.2. Principal Component (PC) analysis of the qualities over the learning dataset. 

 

We used PCA only to analyze the multivariate structure in order to decide the rank of the encodings 

matrix, not for reducing dimensionality. Our first choice was 𝑑 = 4 preserving the maximum amount of 

information. This produced too many degrees of freedom for the online learning algorithm. The information 

fed back from 30 to 60 moves selected by the main algorithm was not consistent enough to make a learning 

algorithm converge in ℝ3. The current version uses 𝑑 = 2 which is only one degree of liberty (since the 
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additional restriction  𝐿𝑑×1
′  = 1 applies) and produces online learning in ℝ. This reduction resulted in a 

measurable increase in strength.  

 

𝐻𝑑×𝑝  and 𝐻𝑝×𝑑
+  were computed using Matlab for the Lee and Seung algorithm and Statistica for the 

pseudo-inverse and for verifying direct and inverse transformations of the complete dataset. 

 

3.4.7 Online learning of L'd1 

 

The intermediate encoding (𝑙1, 𝑙2) is a linear combination of the variables described in table 3.2 

previously scaled to have each variable’s 𝑆𝐷 =  1 over the 110,542 cases. The resulting 𝐻𝑝×𝑑
+  learned offline 

is made of: 

 

 𝑙1 is a measure strength and speed (𝑠𝑡𝑟𝑒𝑛𝐿𝑖𝑏𝑒𝑟𝑡 × 0.52, 𝑠𝑝𝑒𝑒𝑑𝑅𝑜𝑤𝑠34 × 0.45) with a smaller 

amount of territory (𝑡𝑒𝑟𝑟𝑖𝐼𝑛𝑆𝑖𝑑𝑒 × 0.21, 𝑡𝑒𝑟𝑟𝑖𝐶𝑜𝑟𝑛𝑒𝑟 × 0.21) and speed towards the center 

(𝑠𝑝𝑒𝑒𝑑𝐻𝑖𝑔𝑒𝑟 × 0.14). 

 𝑙2 is mainly territorial (𝑡𝑒𝑟𝑟𝑖𝐶𝑜𝑟𝑛𝑒𝑟 × 0.66, 𝑡𝑒𝑟𝑟𝑖𝐼𝑛𝑆𝑖𝑑𝑒 × 0.54) with semeai fights 

(𝑠𝑡𝑟𝑒𝑛𝐴𝑑𝑗𝐿𝑖𝑏 × 0.27) and less of others (𝑠𝑡𝑟𝑒𝑛𝑆𝑡𝑜𝑛𝑒𝑠 × 0.05, 𝑠𝑝𝑒𝑒𝑑𝑅𝑜𝑤𝑠34 × 0.04). 

 

The intention of online learning is to bias the initial non-informative 𝐿′𝑑×1 = (1/√2, 1/√2). 𝐿′𝑑×1  is a 

unary vector in ℝ2 (i.e., a direction) making the weight of 𝑙1 heavier (influence based style) or lighter (territory 

based style) than that of 𝑙2. The underlying hypothesis is: The direction performing best in the previous moves 

of the same game is better than any constant (game independent) 𝐿′𝑑×1 value. The online learning algorithm is 

only applied at root. All moves 𝑖 at root for which the M-eval search returned an evaluation are stored together 

with their (𝑙𝑖1, 𝑙𝑖2) encoding. After the MCTS search, the win rates 𝑤𝑖  of these moves computed by the main 

algorithm are used to compare the performance achieved by 3 candidates: 

 

  

 𝐿′𝑑×1 (the current value, initially (1/√2, 1/√2)) 

 𝐿𝑑×1
′1 = 𝑢𝑛𝑎𝑟𝑦(𝐿′

𝑑×1 +  𝛿, 0 )  

 𝐿𝑑×1
′2 = 𝑢𝑛𝑎𝑟𝑦(𝐿′

𝑑×1 +  0, 𝛿 )  
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 (𝑢𝑛𝑎𝑟𝑦(·) is a function that scales a vector so that  𝑢𝑛𝑎𝑟𝑦(·) = 1, 𝛿 is a small step in the direction of 

either 𝑙1 or 𝑙2.) 

 

The final decision is made by a simple greedy algorithm: The 𝑣𝑖𝑗  values produced by each candidate 𝑗 for 

move 𝑖 are sorted in decreasing order with their corresponding win rates 𝑤𝑖 . Once built, the list is traversed in 

𝑖. Each time the win rate of one of the candidates is better than those of the other two, a point for that candidate 

is counted. If the winning candidate has 2 points more than the current 𝐿′𝑑×1, it becomes the next 𝐿′𝑑×1 else 

the current 𝐿′𝑑×1  does not change. 

  

3.4.8 Results: Positional evaluation 

 

Before analyzing the impact of M-eval as a full board evaluation in playing strength (see 3.4.10), the 

achievements of the qualities by themselves deserve some attention. In this section we describe some results on 

the possibility of using the qualities to statistically discriminate between professional and high level amateur 

games. 

 

The games in our database are from three different sources:  

 

a. Games from the KGS archives filtered by rank of both (dan level) players, non-handicap and non-

blitz.  

b. Games played by professional players in tournaments found in different go software collections. 

c. Games played by professional players stored in high a quality collection revised by professional 

go teachers.  

 

We wanted to verify if version 1 qualities could be used to identify the level of play between the different 

collections. To our knowledge, statistical analysis of human go games using functions computed from board 

positions has never been done before. 
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Figure 3.3. Comparison of territory and influence achieved by player level. 

 

Each set of variables (described in the figure) identifies the difference between KGS dan level and pro 

level using MANOVA analysis. Results in figure 3.3 are not surprising: Professionals achieve simultaneously 

more territory, more influence and more strength than KGS amateurs. It is also interesting to note that the trend 

is inverted in semeai races (see figure 3.4 to the right). Professional players fight semeai races by a smaller 

margin than KGS amateur dan players. This is consistent with the superior accuracy of their judgment. 

 

 

Figure 3.4. Comparison of strength and semeai difference by player level. 
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Figure 3.4 (to the left) shows that the different measures of strength did not work equally well to 

differentiate by player strength in version 1. In both figures the Y axis measures the standardized values for the 

variables in each category over the 110,542 cases with the vertical bars denoting 95% confidence intervals. 

The standardization was only necessary to show different variables (with different scales) in the same graph 

but it does not influence significance. 

 

3.4.9 Results: Territory estimation 

 

The new territory evaluation functions use a database keeping average estimated territory, its standard 

deviation and the number of games in which the pattern was seen for a total of 20,201 big corner patterns, 

46,979 small corner patterns and 27,881 big side patterns learned from the database of master games. These 

patterns are multiplied by symmetry, rotation and color alternation. The standard error of the mean is 

subtracted from the estimation, so returned values can be considered lower bounds for the expected territory in 

that place found at the end of a master level game when the pattern is seen during the opening. 

 

 

Figure 3.5. Some "top 20" big corner patterns.. 
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Figure 3.5 illustrates some patterns form the list of "top 20" with highest territory estimate. The values 

given are: territory estimated in cells for each pattern from a total of 66 cells in the corner ± SD. Not 

surprisingly, (top left) the shimari is top 1 worth 45.9 ± 7.46. This means: The black ownership over all 

evaluated games in which the pattern was found was of 45.9±7.46 points from a total of 66 possible points 

with the colors shown in the figure. The big shimari with the stones in ogeima (stone p3 at o3) is worth 

43.4 ± 7.73. Top right stones in ikken tobi are worth 45.0 ± 7.19. Bottom left, despite the two white stones, 

the corner makes 45.1 ± 7.74. Not just simple shapes are evaluated. The database includes many complex 

patterns seen in joseki. Bottom right, the joseki pattern was seen 34 times in the database and its value is 

44.5 ± 9.6. (Note: The numbers on the stones are just the move numbers at which the stones were played in 

the example. The pattern itself is independent from the order in which the stones are placed.) 

  

From the 87 cells in the "big sides", figure 3.6 shows some of the simpler patterns among the "top 20" 

with highest territory estimate. The left pattern has a value of 55.9 ± 9.69 and was seen 39 times. The center 

pattern 55.9 ± 8.60 was seen 81 times and the right pattern 55.18 ± 9.85 was seen 264 times. 

  

 

Figure 3.6. Some "top 20" side patterns. 

 

Finally, figure 3.7 shows the "top 5" patterns in the side in order. Note that the Chinese fuseki (the very 

common pattern shown on the left of figure 3.6) is the 4
th
 best pattern overall, but all patterns achieving more 

territory also contain more stones. This should not be considered evidence that the Chinese fuseki is the best 3-
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stone pattern because the result is biased by the fact that it is played frequently by high level players. It is also 

worth noting that the 2
nd

 best pattern (for black) includes a white stone. We conjecture that this is because the 

pattern is seen frequently and the three adjacent black stones enclose a rather safe territory. Black is probably 

not willing to trade it, given his investment (3 stones), while other less concentrated patterns are subject to a 

wider range of possible outcomes.  

 

 

Figure 3.7. "Top 5" side patterns in order. 

 

It is also worth mentioning how we finally changed territory evaluation to estimation by regression. Once 

we have identified the frequently seen patterns, we can look for the outcome of all games including each 

pattern. And since we have evaluated each game outcome in terms of territory for each color, we have a good 

estimate of what each pattern may result when played by strong players, in any case, stronger than the engine. 

We could also think that the parts of the board not containing known patterns are a problem, but since the 

moves studied in the evaluation are generated by the patterns, they frequently result in another known pattern 

whose territory is also estimated. What M-eval does is analyzing these changes in known estimated territory 

rather than trying to estimate the absolute value.  
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3.4.10 Results: Overall program strength 

 

Version 1 M-eval was tested with 220 non-handicap 19x19 games (110 with M-eval as black, 110 as 

white) with komi = 7.5. These games were played up to move 50 using the GoKnot/QYZ engine. At that time 

the program strength in 19x19 was around 15 kyu KGS [62]. The games used single core search based on fixed 

number of iterations rather than time settings. The M-eval program scheduled 4 × 2500 iterations for M-Eval 

search followed by 15,000 iterations of MCTS (25,000 in all) while its non-M-eval opponent played 25,000 

simulations MCTS. The final positions were evaluated using the public MoGo binary [42]. MoGo is a top 

MCTS engine and the first program to defeat a professional player in 9x9 go. MoGo evaluated each position 

five times, with the initial komi and with a (4, 8, 12, 16) extra points advantage for the non-M-eval version. 

Since M-eval was only used in the first 50 moves at the time, the intention was to measure the expected 

positional advance achieved at move 50 rather than its influence on the final outcome of the game. We also 

considered that the judgment by the best available independent program at the moment of the study (2009) is a 

more accurate measure of the performance of M-eval than playing the game to the end. Additionally, this 

evaluation can be repeated with different komi values and picture the territorial advantage. 

 

Table 3.3. Results of version 1 evaluated by MoGo in 2009 

Komi (7.5 for white  
+ value against M-eval) 

Number of wins 
(from 220) 

% of wins 95% CI  

7.5 + 0 176 80.0% 74.21% — 84.74% 
7.5 + 4 164 74.5% 68.39% — 79.84% 
7.5 + 8 144 65.5% 58.94% — 71.42% 
7.5 + 12 128 58.2% 51.57% — 64.51% 
7.5 + 16 112 50.9% 44.34% — 57.45% 

 

Note: Results of self play M-eval vs. non-M-eval played until move 50. The resulting boards were evaluated by MoGo. Also, 
additional komi was assigned against the M-eval version to measure the advantage in terms of territory as well as in terms 

of winning percentage. 
 

 
The 80% winning percentage at even komi shown in table 3.3 corresponds with a difference of 240 Elo 

points. The territorial advantage (komi difference against M-eval that reestablishes a 50% winning percentage) 

is about 16 points in 50 moves. 

 

Since the version 1 experiments, our MCTS implementation increased its strength, mainly by the 

implementation of RAVE, progressive widening, proximity heuristics and fine tuning. The engine, at the time 

M-eval version 2 experiments were done, was already reliable allowing multithreading in long (several days) 

experiments with no significant interlocking time loss. It still had progress to be made in playout policies (done 
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in 2012 as described in 4.7) to reach the strength of top MCTS engines with few simulations. But, because of 

the wide exploration of its playout policy, it was not prune to systematic misevaluation of shapes observed 

sometimes in other programs. The main drawback was playing strength (75% winning rate against gnugo 3.7 

level 10) required many simulations (≈ 200,000) unlike other engines that reach a similar level with 1/10 of 

the simulations or less. 

 

In January 2011 we performed a series of experiments with our most recent isGO including the most 

recent M-eval implementation on complete games with a fixed number of simulations per move. 250 games 

with 4 × 5000 (i.e., 4 threads running 5000 simulations each), 250 games with 4 × 20,000 and 250 games 

with 4 × 50,000 simulations. The last setting was about 4 kyu KGS. Games were played alternating black and 

white. 

 

We did not introduce any penalty for the computational cost of using M-eval. Nevertheless, the absolute 

times measured in the worst case (when deploying the root node, since moves are generated for the full board 

and search is deeper) are typically between 20 and 40 milliseconds. After that, M-eval is much faster as it only 

generates local moves and search is less deep. Deeper than 4, it is not used at all. The total time per move 

varies from about 2.5 seconds (at 4 × 5,000) to about 25 (4 × 50,000) at the stage when M-eval is used. Later, 

MCTS gets faster as playouts get shorter. M-eval accounts for not more than 1% of the computing time in the 

worst scenario 4 × 5,000 and even less in 4 × 50,000. 

 

Table 3.4. Results of version 2 playing complete games in 2011 

Setting Wins / losses % of wins Elo increase 95% CI for Elo 

4x5,000 138 / 112 55% 36.26 -7.26 — 79.80 
4x20,000 157 / 93 63% 90.97 46.19 — 135.79 
4x50,000 153 / 97 61% 79.17 34.76 — 123.62 

 

Note: Results of games M-eval vs. non-M-eval, 250 games for each number of simulations (4 cores with 5K, 20K and 50K 
sims/core). Wins are wins for the M-eval version. 

 

 
Results of version 2 experiments are shown in table 3.4. The 240 Elo point increase of version 1 was not 

maintained. Nevertheless, those values cannot be compared directly: Version 1 counted > 50% evaluation by 

an independent program at move 50, while version 2 counts won games played to the end. A smaller increase 

is expected in the latter case since the final outcome of the game includes another stochastic process, the fight 

for the rest of the game. A superior position after the opening is not always game deciding. In the latest version 

Elo increase is around 80 points which is a significant increase, especially for an algorithm that does not apply 

during the whole game, but only in the opening. We consider M-eval an essential component of our program 
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for both computer vs. computer and computer vs. human games and a noteworthy improvement in both style 

and strength. 
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Chapter 4. Applying knowledge in the evaluation function 

 

4.1 Evaluation using simulations 

 

MCTS is a tree search and, just like in all tree search algorithms including α—β [82], A* [83] or Df—Pn 

[84], domain-specific knowledge or generic heuristics suggesting exploration priorities dramatically influence 

efficiency. This has been analyzed in the previous chapter. Unlike other tree search algorithms, MCTS has a 

stochastic evaluation function on top of the tree search which plays a key role. At least, when applying MCTS 

in complicated domains like go, uniform random distribution among the legal moves is known to be wrong, 

both because it misevaluates life and death more than 50% of the time in many simple cases and because it 

kills living groups without some appropriate rules for handling eye shape and seki. This chapter provides 

insight on the problem of evaluating using stochastic functions and provides a state of the art policy as 

implemented in a strong computer go program. 

 

4.1.1 Stochastic considerations 

 

The first conflict arising when we apply MCTS to a non-randomized, finite, zero-sum, two person, 

complete information game like go is: the value of the game is either a win or a loss, something that cannot be 

determined for sure (assuming we are not talking about near final positions nor of trivial board sizes). 

Nevertheless, we are representing it by a "probability of winning" from a leaf node l, 𝑝𝑙  without usually 

emphasizing it is the probability that "some randomized playout policy" applied to both players wins from the 
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current position 𝑙. Furthermore, we are estimating this "true value" of 𝑝𝑙  by the estimator 𝑝𝑙  observed on a 

random sample. To simplify the analysis, let's assume the playout policy, unlike the policy described below in 

4.7, does not learn online. The probability of winning after a leaf node 𝑙, 𝑝𝑙  is a constant for each leaf node 𝑙 

and the repetition of wins/losses follows a binomial distribution. Therefore, the proportion of wins following a 

leaf node 𝑙 with probability of winning 𝑝𝑙  after 𝑛 random playouts will have the mean 𝐸𝑙[𝑝 ], variance 𝑉𝑙[𝑝 ] 

and skewness 𝛾𝑙 [𝑝 ] following the binomial distribution: 

 

 𝐸𝑙[𝑝 ] = 𝑛 · 𝑝𝑙   (4.21) 
 

 𝑉𝑙[𝑝 ] = 𝑛 · 𝑝𝑙 · (1 − 𝑝𝑙)  (4.22) 
 

 𝛾𝑙[𝑝 ] =
1−2·𝑝 𝑙

 𝑛 ·𝑝 𝑙·(1−𝑝 𝑙)
  (4.23) 

 

The probability of winning being something other than 0 or 1 implies: it is the sum of most-of-the-time 

suboptimal decisions. If all the moves in the playout were optimal (minimax-wise), the evaluation would result 

in the minimax value of the leaf node, being always either win or a loss. The "amount of suboptimality" in 

each move, as long as it is not biased towards one of the players, can be viewed as a Brownian motion process, 

whose underlying mathematical model is the one-dimensional Wiener process in discrete time 𝑡. 

 

Naming 𝑊𝑡  the difference between the minimax value of a leaf node position and the value counted at the 

end of the randomized playout, being 𝑡 the length of the playout times some constant representing expected 

suboptimality at each move, the unconditional probability density function of 𝑊𝑡  is: 

 

 

 𝑓𝑊𝑡
(𝑥) =

1

√2𝜋𝑡
𝑒−𝑥 2/2𝑡   (4.24) 

 

The expectation 𝐸[𝑊𝑡 ] is zero: 

 

 𝐸[𝑊𝑡 ] = 0  (4.25) 
 

And the variance V 𝑊𝑡   is 𝑡: 

 

 𝑉 𝑊𝑡  = 𝐸 𝑊𝑡
2 − 𝐸2 𝑊𝑡 = 𝐸 𝑊𝑡

2 − 0 = 𝑡  (4.26) 
 

 

The result of the underlying Wiener process of adding a term 𝑊𝑡  to the minimax evaluation of the leaf 

position is biasing the probability of winning 𝑝𝑙  towards 1/2, assuming it is unbiased. When absence of bias 

cannot be guaranteed, this may translate to "across" 1/2 in real applications. The variance of 𝑉𝑙[𝑝 ] does not 

depend on anything other than 𝑝𝑙  as shown in equation 4.22, but 𝑝𝑙  diverges from the true minimax value 

𝑣𝑚𝑚 ∈ {0,1} of the position by a factor that increases proportionally (its variance) to the length of the playout. 
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 𝑣𝑚𝑚 ∈ {0,1}

𝑊𝑖𝑒𝑛𝑒𝑟  𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑉 𝑊𝑡 =𝑡
            𝑝𝑖 ∈  0,1 

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑉𝑙  𝑝  =𝑛 ·𝑝 𝑙 · 1−𝑝 𝑙 
                  𝑝𝑙 ∈ [0,1]  (4.27) 

 

 

Equation 4.27 summarizes the framework. We measure 𝑝𝑙  which is an estimator of 𝑝𝑖  in which only the 

binomial distribution plays a role. But 𝑝𝑖  is itself a "wrong" estimation of the position. It is influenced by: the 

absolute value of the minimax advantage (it is more likely to misevaluate a small advantage than a big one 

when deciding in terms of win/loss), the length of the playout times some measure of the suboptimality of the 

policy and, unfortunately, bias in the sense of black/white unbalance. 

  

It is worth noting, for equation 4.25 to be applicable, that bias towards one of the players has to be 

avoided. This has been stated many times and is also one of the recommendations on playout policies 

described in [85]. Unfortunately, this is not always possible in go where the shapes on the board at root are 

kept in most of the playouts. It is the shape itself rather than its color which determines how well it is 

"understood" (i.e., correctly played out) by the policy. This is a source of systematic bias. The groups of one 

player may have shapes that are systematically over/underevaluated while the other player's groups are 

evaluated correctly. Also, reducing the impact of bias may be the reason why good heuristics (which should 

represent moves having less suboptimality) are improved even more when combined with balancing for both 

players as described below in 4.7.4 and also in Huang et al [86]. 

 

It is also important to note that maximizing the size of the wins, rather than the fact that it is a win or a 

loss, makes the program weaker as stated in the beginning of MCTS go by most authors in [19]. Weighting 

both has been done by [49] based on the argument that big wins are less error prone and also trying to favor 

"human-style". They found out that the ideal weight for the size factor should be very small (about 2%) being 

the win/loss factor (98%) the heaviest by far, confirming previous ideas. 

 

Because 𝑊𝑡  has a variance that is proportional to the length of the playouts, it is mandatory that when the 

length of the playout is zero, the position should be scored error free. In many optimization problems (like the 

Strip Packing Problem or the implementation in 5.6) that is given, but in go it is mandatory that the program 

does not destroy the final position by playing "self-destructing" moves. 
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4.1.2 Simulation of Go games 

 

From the beginning of MCTS go, some counterintuitive results have been reported, mainly that stronger 

playouts do not necessarily produce a stronger MCTS engine, even when comparison is done by equal number 

of simulations regardless of computing time. In the next section we describe what other strong programs and 

their authors have stated on simulations. The previous section we have described the underlying Wiener 

process that helps understanding simulations, two conclusions are very important: convergence to real value of 

the board when the length of the simulation tends to zero (i.e., understanding eye shape and seki) and balancing 

the number of "smart" moves made by each player as much as possible. 

 

Another key concept is deterministic or near-deterministic response. It is very difficult to understand 

when it is required. Not implementing it may result in wrong evaluation like a single 4x1 eye being considered 

dead because the attacker is allowed to play twice in a row as her first move is not answered. Implementing it 

too deterministically may make the program blind to other fights on the board, e.g., a ko fight. In a few cases, 

we can be sure that a move is always wrong (like playing in the extremity of a single 3x1 eye) and know a way 

to improve the move, but most of the cases in which the playout policy plays tactical moves, we can easily find 

counterexamples making the move wrong. There are conflicting interests between giving the move higher 

priority to "clarify" the evaluation and exploring some other move that may be "just the right move". Of 

course, unlike misunderstanding seki, these tactical weaknesses are to some extent inevitable and will be 

"ironed out" as the tree search finds the correct sequences establishing the appropriate life and death status of 

each group. But relying on tree search for correct evaluation (unless the position is already final) strongly 

reduces the efficiency of the search in terms of simulations wasted, unnecessary nodes allocated and 

propagating wrong information up the tree until the evaluation is "solved". Completely ignoring answering 

moves would make the playout so uniformly random that in many cases the correct answer would have a small 

share in the simulations while its correct evaluation depends on a sequence. This results in the correct move not 

explored enough in the tree search (when the position is not near final) to expand the search in the appropriate 

direction making the program systematically misevaluate the position for any realistic number of 

(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 𝑛𝑜𝑑𝑒𝑠). 

 

The rest of this chapter is about improving simulations with domain-dependent knowledge to reach a 

strong state of the art go engine combined with our original work on learning playouts. 
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4.2 Playout implementation in other programs 

 

This section includes playout strategies described by the authors of state of the art MCTS go engines 

sorted alphabetically. The list includes the major engines as confirmed by their ICGA tournament 

achievements, especially those described in scientific literature. 

 

4.2.1 CrazyStone 

 

ICGA tournament results: (Amsterdam 2007) 2
nd

 19x19, 3
rd

 9x9 

 

Rémi Coulom, author of CrazyStone describes his simulation policy in [24]. This paragraph summarizes 

his implementation: 

 

"The pattern system described in this paper produces a probability distribution over legal moves, so it is a 

perfect candidate for random move selection in Monte-Carlo simulations. Monte-Carlo simulations have to be 

very fast, so the full set of features that was described before is much too slow. Only light-weight features are 

kept in the learning system: 3x3 shapes, extension (without ladder knowledge), capture (without ladder 

knowledge), self-atari, and contiguity to the previous move. Contiguity to the previous move is a very strong 

feature (gamma = 23), and tends to produce sequences of contiguous moves like in Mogo." 

  

Basically, CrazyStone uses a Bradley-Terry model representing a distribution over the legal moves with 

each applicable pattern 𝑖 represented by some value 𝛾𝑖 . The Bradley-Terry model defines how these values are 

combined when many apply simultaneously to the same move. The 𝛾𝑖  values are offline constants learned from 

game records with a supervised Bayesian technique. A similar approach, but using local contexts (see 4.3.2) 

was unsuccessfully implemented in the first MCTS version on the GoKnot engine named QYZ as described in 

6.1.3. 

 

4.2.2 Erica 

 

ICGA tournament results: (Kanazawa 2010) 1st 19x19, 3rd 9x9 
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The program's author Shih-Chieh (Aja) Huang stated "Erica uses probabilistic simulation completely.". 

This is similar to CrazyStone but with different features and also offline learning algorithm. Huang's original 

work [86] is about the change from "learning pattern weights with the minorization-maximization algorithm" 

to using "simulation balancing". The same paper describes the features: 

 

1. "Contiguous to the previous move. Active if the candidate move is among the 8 neighboring points 

of the previous move. Also active for all features 2-7." 

2. "Save the string in new atari by capturing. The candidate move that is able to save the string in 

new atari by capturing has this feature." 

3. "Same as Feature 2, which is also self-atari. If the candidate move has Feature 2 but is also a 

self-atari, then instead it has Feature 3." 

4. "Save the string in new atari by extension. The candidate move that is able to save the string in 

new atari by extension has this feature." 

5. "Same as Feature 4, which is also self-atari." 

6. "Solve a new ko by capturing. If there is a new ko, then the candidate move that is able to solve 

the ko by capturing any one of the neighboring strings has this feature." 

7. "2-point semeai. If the previous move reduces the liberties of a string to only two, then the 

candidate move that is able to kill its neighboring string by giving atari has this feature. This 

feature deals with the most basic type of semeai." 

 

4.2.3 Fuego 

 

ICGA tournament results: (Pamplona 2009) 2nd 19x19, 1st 9x9, (Kanazawa 2010) 2nd 9x9, (Tilburg 2011) 3rd 9x9 

 

The policy of Fuego is based on rules that apply following a fixed priority as in the original MoGo work 

which has influenced many modern programs including our own. This quote describing Fuego's 

implementation is taken from [49]: 

 

"The playout policy is similar to the one originally used by MoGo. Capture moves or atari-defense moves, 

or moves that match a small set of hand-selected 3×3 patterns, are selected if they are adjacent to the last 

move played on the board. Fuego-specific enhancements include a move generator for 2-liberty blocks. If no 

move is selected so far, a global capture move is selected. If no global capture move exists either, a move is 

selected randomly from all legal moves on the board. A replacement policy attempts to move tactically bad 
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moves to an adjacent point. Moves are never selected if all adjacent points are occupied by stones of the color 

to move, unless one of them is in atari. A pass in the playout phase is generated only if no other moves were 

produced." 

 

In [87] the policy is detailed as: 

 

"Outside the UCT tree, the play-out phase tries to generate play-out moves based on the play-out policy. 

The play-out move is generated until a NULL move is generated (i.e., after a pass move was played). The play-

out policy generates a move in the following order (from highest to lowest priority): 

 

1. Nakade heuristic move 

2. Atari capture move 

3. Atari defense move 

4. Low liberty move 

5. Pattern move 

6. Capture move 

7. Random move 

8. Pass move 

9. NULL move" 

 

4.2.4 Many Faces of Go  

 

ICGA tournament results: (Beijing 2008) 1st 19x19, 1st 9x9, (Kanazawa 2010) 3rd 19x19 

 

Unfortunately, there is no detailed publication on the internals of Many Faces of Go (MFOG) since the 

engine is based on MCTS. David Fotland, the author of Many Faces has been an outstanding computer go 

author for over two decades. His "classical" engine was described in [60]. 

 

In December 2010 he outlined some details about his MCTS engine's playouts in [19]: 

 

"The playouts are pretty heavy, with local responses, hand tuned 3x3 patterns, and moves played with a 

probability distribution similar to Crazy Stones gamma values, but without the automatic learning.  Gamma 

values are hand tuned.  There are rules for not filling eyes, not making self Atari (unless it is a good self Atari), 
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and avoiding other kinds of bad moves. The eye and self Atari rules are a little different from published 

methods. There is no tactical look-ahead in the playouts." 

 

4.2.5 Mogo 

 

ICGA tournament results: (Amsterdam 2007) 1
st

 19x19, 2
nd

 9x9, (Beijing 2008) 2
nd

 19x19, 3
rd

 9x9, (Pamplona 2009) 

3rd 19x19, 2nd 9x9 

 

The original MoGo team, Sylvain Gelly and Yizao Wang, pioneered the field of "heavy playouts". The 

latter being also a strong go player designed the shapes of the 3x3 pattern described in 4.4.2 and informally 

known as "Mogo patterns" in the computer go community. In the beginning (around 2006), these ideas 

appeared counterintuitive also because stronger policies were also tried without success. Quoting [43]: 

 

"Essentially, we use patterns to create meaningful sequences in simulations by finding local answers. The 

moves played are not necessarily globally better moves. It is not obvious that is more important to get better 

sequences rather that better moves to make the Monte-Carlo evaluation more accurate. However our 

experiments showed that the main improvement came from the use of local answers. If the same patterns are 

used to find interesting moves everywhere in the board instead of near the previous moves, the accuracy 

decreases. We believe that this claim is not obvious, and one of the main contribution of MoGo." 

 

The complete MoGo policy is further described in [22]: 

 

"Then, since we were not satisfied by the pure random simulations which gave meaningless games most of 

the time, local patterns are introduced in order to have some more reasonable moves during random 

simulations. Our patterns are defined as 3×3 intersections, centered on one free intersection, where one move 

is supposed to be played. Our patterns consist of several functions, testing if one move in such a local situation 

(3 × 3) is interesting. More precisely, we test if one move satisfies some classical forms in Go games, for 

example cut move, Hane move, etc. 

 

Moreover, we look for interesting moves only around the last played move on the Go board. This is 

because that local interesting moves look more likely to be the answer moves of the last moves, and thus local 

sequence appears when several local interesting moves are tested and then played continuously in random 

simulations. 
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We describe briefly how the improved random mode generates moves. It first verifies whether the last 

played move is an Atari; if yes, and if the stones under Atari can be saved, it chooses one saving move 

randomly; otherwise it looks for interesting moves in the 8 positions around the last played move and plays 

one randomly if there is any; otherwise it looks for the moves eating stones on the Go board, plays one if there 

is any. At last, if still no move is found, it plays one move randomly on the Go board. Surely, the code of MoGo 

is actually complicated in details, with many small functions equipped with hand-coded Go knowledge. 

However, we believe the main frame given here is the most essential to have sequence-like simulations." 

 

4.2.6 Steenvreter 

 

ICGA tournament results: (Amsterdam 2007) 1st 9x9, (Tilburg 2011) 2nd 19x19 

 

Unfortunately, we have no knowledge of a publication detailing Steenvreter's playout policies. Its author, 

Erik van der Werf, author of the textbook on computer go [15], mentioned in [19]: 

 

"The playouts just happened to be something for which I already had my own code. Perhaps it was more 

important that I had a bit different philosophy on what the playouts were supposed to do than most other 

people at that time. I wanted my playouts to evaluate positions well (and not necessarily play strong moves). 

So that's what I optimized them for, focusing especially on errors in human final positions, which was easy 

because I already had a large collection of scored 9x9 games from my time in Maastricht. As a consequence 

Steenvreter got most of the nakade and seki issues right long before others figured those things out . . ." 

 

4.2.7 Zen 

 

ICGA tournament results: (Pamplona 2009) 1
st 

19x19, (Kanazawa 2010) 2
nd 

19x19, (Tilburg 2011) 1
st 

19x19, 1
st 

9x9 

 

Unfortunately, Zen's author Yoji Ojima, known as Yamato, has revealed Zen's internals only scarcely, 

although he generously contributed the first collection of test problems designed for MCTS, on which many 

test collections, including ours, is based. In one of his few contributions in [19] he stated: 
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"Zen uses sequence-like AND probabilistic simulation. Basically it plays around the previous move 

randomly like MoGo, and these moves are biased by gamma values like Crazy Stone. I am also trying to use 

probabilistic simulation on the whole board, but it does not yet succeed. The main problem is how to combine 

the semeai, seki and useless-move detection with it." 

  

4.3 Board implementation details related with playouts 

 

This section includes some definitions and board implementations details that are used in both the base 

playout policy and the learning playout policy described below in 4.6 and 4.7. A description of the board 

system can be found in 6.1.1. 

 

4.3.1 Legality of moves 

 

The board system keeps track of the legality of playing at each empty intersection of the board. It does 

this by adding or removing the move from the list of legal moves kept in an object that can also return a 

uniform random move from it. The board system manages move illegality following standard go rules (suicide 

not allowed and immediate ko recapture not allowed). Optionally, the board system implements superko but 

limited to the last 8 positions if the board thread is available (only in tree search). This covers the known board 

repetitions that may come up in serious games (triple ko and double ko in seki), but not all possible cases of 

superko. Also, in playout mode, the system will consider single point one eye filling moves illegal. This rule is 

a necessary endpoint for the playouts. The standard one point eye shape definition is an empty intersection 

with all four immediate neighbors either of the own color or off the board. When intersections at distances (±1, 

±1) are cut twice or more by opponent stones or once if some neighbors are off board, the resulting shape is not 

an eye. When these intersections contain stones of the own color (except at most one), the resulting intersection 

is always an eye. When at least one of the intersections is empty, the board system supports two versions of the 

rule: the first one (EyePotential enabled) considers empty as potentially of the same color and therefore the 

shape is considered a one point eye. The alternative (EyePotential disabled) requires that the empty point is 

itself an eye (and therefore not playable by the opponent) to consider the eye shape complete. Otherwise, the 

point is playable since the eye is not yet formed. Empirical testing showed the former to be stronger in self play 

and it has become the default policy. 
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Figure 4.1. Example of EyePotential option. 

 

Figure 4.1 summarizes the idea of EyePotential with an example.  

 

4.3.2 Local context of a move 

 

A local context is a bitmap around each intersection with 4 possible states (empty, own color, opponent 

color, off board). In the mode used in the playouts, the board system keeps a Zobrist hash of the pattern for 

each empty intersection (legal or not). The size of the pattern is configurable only at compilation time since 

each size uses its own set of automatically generated assembly language pattern management routines. The 

options available are 4, 8, 12, 20, 24, 28, 36 and 40, as show in figure 4.2. To enable the use of Mogo-style 

urgent answer patterns the size must be at least 8. The Zobrist hashes computed by the board system are 32 bit 

unsigned hashes. Due to the large number of intersections considered per second, hash collisions are not 

"almost impossible" as in other applications, but only limited to some controllable probability of happening. In 

fact, for practical reasons the implementation only considers a number of bits (12 to 20) from the whole hash 

value. The whole evaluation by simulation idea is stochastic and accepting the probability of a hash collision 

around 1/4,096 to 1/ 1,048,576 is not unreasonable. 

 

Figure 4.2 shows the layouts of the bitmaps. Each board size 𝑠 contains all intersections numbered with 

integers ≤ 𝑠 in the picture. 
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Figure 4.2. All different local context sizes supported by the board system. 

 

Experimental tests showed that larger board sizes are stronger in self play. 24 is stronger than 8, but 

improvement of 40 vs. 24 was not found statistically significant for 500 games. Besides efficient 

implementation, larger sizes result in longer computing times around 4% between 24 and 40. The pattern size 

24 was used for all the experiments in 4.8 considering proven speed increase is more important than potential 

but unproven performance increase of larger patterns. 

 

In the following, the local context of a move usually refers to the hash value of the pattern (more precisely 

to some bits in the hash value) rather than the pattern itself. 

 

4.3.3 Self-atari and seki handling 

 

As mentioned in 4.3.1, the board system keeps an object containing the list of legal moves and updates 

legality of each intersection (as stones are placed making adjacent intersections legal/illegal, being created by 

the capture of groups, etc.) it will notify these changes to the object keeping the list. This object also supports 

moves being temporarily made illegal. Each time a move is generated (all moves without exception no matter 

what part of the policy generated it) it is checked to violate some self-atari policy 𝑝𝑠𝑒𝑙𝑓𝑎𝑡𝑎𝑟𝑖 . If this is the case, 

the move is temporarily made illegal and the policy is forced to generate another move which will also be 

tested for the self-atari policy and either played or made illegal temporarily. Before a move is played, all 
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temporarily illegal moves are made legal again to keep the board up to date. Different self-atari policies are 

supported, from worst to best: 

  

 𝑝𝑖𝑔𝑛𝑜𝑟𝑒   No restrictions. Don't study self-atari at all. 

 𝑝𝑛𝑒𝑣𝑒𝑟     Never play a move that is self-atari. 

 𝑝𝑟𝑒𝑠𝑢𝑙𝑡 3 Don't play self-atari when the resulting group (including the played stone) has 3 stones or 

more. 

 𝑝𝑛𝑎𝑘𝑎𝑑𝑒  Don't play self-atari moves when the resulting shape is not a known dead nakade shape 

like: 1-stone, 2-stone, straight 3, bent 3 (see remark under figure 4.3), squared 4, pyramid 4, 

crossed 5 or bulky 5. 

 

 

Figure 4.3. A simple rule on self-atari moves preserving seki. 

 

Figure 4.3 shows the rationale behind the policy 𝑝𝑟𝑒𝑠𝑢𝑙𝑡 3: One stone self-atari moves like A are frequently 

good to remove eyes. Also adding a second stone as in B is correct. But adding a third one as in C is not, since 

the opponent can still make the eye. Also, typical seki shapes like the bottom right are covered by this rule. 

Note that the wrong moves at either s2 or t1 are only avoided in the 𝑝𝑛𝑎𝑘𝑎𝑑𝑒  policy because of a trick: The 

"bent 3" shape only applies if the last stone is one of the extreme stones in the bent 3. 
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It is also worth noting that not all seki destroying moves are self-atari moves. At least, when this happens, 

the growth of the tree should fix the problem making clear what moves are good and bad if the seki decides the 

game. Relying on tree search to fix deficiencies of the playouts has the drawbacks already mentioned in 4.1.2. 

We will illustrate this with an example: 

 

 

Figure 4.4. Moves destroying seki need not be self-atari moves. 

 

Because seki cannot be identified by static analysis only [88], simple rules will not be able to avoid moves 

destroying seki like white playing (b) in position in the center of figure 4.4. Therefore, the tree search is 

necessary to determine the correct life and death status of the white group. To the right, the position is settled, 

any player playing at (c), which is self-atari, kills its own group and that will be avoided by the policy 100% of 

the time. Before that, playing at (b) is only wrong for white because it kills its own group, but it has no penalty 

for black other than playing a useless move. Unfortunately, there is no simple rule to avoid white from playing 

at (b) and that will result in the position being overvalued for black since it ends up sometimes in seki, 

sometimes black kills. Nevertheless, when the tree search reaches (b) the result is correct: white playing is 

wrong, black playing is seki and black not playing is better than black playing. Note that the latter is due to an 

evaluation error (not playing being overestimated for black by the possibility of white playing (b) by mistake) 

and even if, in this case, it induces correct behavior, it should ideally be avoided. But, again, there is no simple 

rule to avoid it to our knowledge. Before that, left of figure 4.4, playing (a) is possible for both. If black plays 

first it is always seki and will be flawlessly played by the simple policy. If white plays first, all (a) moves result 

in an equivalent to the center position. 
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4.4 Successful ideas for simulations 

 

In the previous section we introduced some definitions and board-related details. The "basic toolkit" of 

go-specific simulation heuristics implemented in all strong programs includes besides eye shape legality and 

seki (at least) three more ideas. These ideas are described here as they are implemented in our program. The 

precise way to implement the features varies from one program to another. Also, a fourth heuristic is 

mentioned in 4.4.4 although it is not currently implemented since it is an elegant idea that has the potential to 

better define the influence area of groups even if it comes at the cost of more extensive computation. 

 

4.4.1 Atari related tactics 

 

The board system tracks each time a move sets groups in atari. It also tracks when groups already in atari 

have increased their size. Both things may happen simultaneously. Additionally, a counter is increased each 

time any of these events is true and cleared when neither is true. This counter is the "t" described in the base 

policy used in 𝑝𝐴𝑇[𝑡]. This helps giving different priorities to ladder related events. It is usual in go to play 

some moves from a losing ladder for a good reason, usually improving the shape of an adjacent group or 

destroying opponent's eye shape, but it does not make sense to play a losing ladder to the bitter end. Keeping 

track of the number of consecutive "atari tactical" moves allows considering playing some moves without 

playing the whole sequence. But when enough moves have been played, the ladder must be played out all the 

times to the end as it must be good for one player and bad for the other. Another way to produce this behavior 

is to make priority a function of the group size which is the way some programs do it. 

 

The move generation works as follows: 

 

 

Figure 4.5. Atari related tactics in pseudo-code. 
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 Note that even if the function supports setting multiple groups in atari with one move and both atari and 

extend happening simultaneously, this policy will most of the times return only one move continuing ladders 

and forcing captures against the corners. Also, when a group can extend making 3 liberties, this policy will not 

return any answering move since no single move sets the group in atari again.  

 

Candidate values for parameters 𝑝𝐴𝑇[𝑡] that have been tested always contain some initial probability e.g., 

𝑝𝐴𝑇[1] = 0.25 increased linearly to 1 in 4 to 8 moves being 1 for all moves above that, resulting in only two 

degrees of liberty: the initial probability and the number of moves required to reach 1. 

 

CLOP optimization [61] returned 𝑝𝐴𝑇[1] = 0.3405 and 𝑝𝐴𝑇 𝑡 = 1  ∀ 𝑡 ≥ 8  when the base policy was 

tuned. These are the values used in the experiments in both the base and learning policies. 

 

4.4.2 Urgent answer to patterns 

 

These patterns, informally known as Mogo-style patterns, are the original ones created by Yizao Wang for 

[22]. The 8 neighbors of the last move are checked to see if they can be classified in any of the patterns shown 

in figure 4.7. The moves are generated as follows: 

 

 

Figure 4.6. Urgent answer tactics in pseudo-code. 

 

The set of all "Mogo-style" patterns is generated using the wildcards described in figure 4.7 and linked to the 

patterns of 8 neighbors updated by the board system. 
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Figure 4.7. All Mogo-style patterns supported by isGO. 

 

 

CLOP optimization returned 𝑝𝑀𝑃 = 0.4812 when the base policy was tuned and that value is used in the 

experiments in both the base and learning policies. 

 

4.4.3 Eye shape improvement heuristic 

 

Each time a random move is generated, the candidate position is tested for the number of adjacent empty 

intersections in their 4 immediate neighbors. When the move has only one empty adjacent intersection, that 

intersection is played instead if it is legal and has more than one free adjacent intersections. 

 

In all the cases shown in figure 4.8, a move at A dominates a move at B. For white, the move at A fixes 

the shape and makes the moves at B one point eyes and therefore, not playable while the move at B destroys 

the shape. For black the move at B achieves nothing losing one opportunity to destroy the eye shape while the 

move at A destroys the shape. 
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Figure 4.8. Cases for the eye shape improvement heuristic. 

 

The playouts do not understand the urgency of playing A, because that would require a long analysis 

about what other possible ways of living the group. If the move is urgent or not has to be decided in the tree, 

but at least, B is always wrong and A dominates B. After A, B will never be played since it becomes an own 

eye filling move. 

 

4.4.4 Common fate graph distance 

 

It is worth noting that, except for the "atari tactics" policy which finds the appropriate atari setting, atari 

extending or capturing move(s) wherever they are, all other heuristics rely on the notion of proximity to the last 

move. This also applies to other move heuristics used by the learning policy. This proximity is usually the 

nearest 8 intersections, but when increasing size is considered, making the proximity notion match the 

proximity of groups (at least as they are in the root board) may be a good idea. This can be applied also in the 

tree search. The MoGo team mentions the idea in [22]: 
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"We have implemented Common Fate Graph (CFG) [citation] in our program to help the calculation of 

groups. The method starts from one string and recursively adds close empty intersections and strings close to 

these empty intersections until no more close strings are found within a distance controlled by a parameter." 

 

They cite [89] which is not easily available. CFG is also described in [90] and above in 3.3.4. 

 

Most authors mentioning CFG use it in the tree search rather than the playouts, but some ideas have been 

shared in [19] about its use in playouts. The method is computationally expensive (for a playout policy) when 

computed for each intermediate board, but it can also be used based on pre-computed distances for each two 

intersections as the chains are in the root board. This version, although generally incorrect, may represent the 

real influence of the critical groups in root accurately while still being computationally bearable. No 

implementation of CGF distance has been done so far by our group. 

 

4.5 WLS: Win/loss states 

 

The ideas described in this section have been developed to produce the most efficient possible 

implementation for our learning playout policy described in 4.7 but are applicable in many fields and no 

knowledge about the game of go is required to understand the entire section. Our original work was first 

published in [3].   

 

4.5.1 Introduction to WLS 

 

Online learning usually implies storing success rates as a number of wins and visits for a huge number of 

local conditions, possibly millions. Besides storage requirements, comparing proportions of competing patterns 

can only be done using sound statistical methods, since the number of visits can be anything from zero to huge 

numbers. There is strong motivation to find a binary representation of a proportion signifying improvement in 

both storage and speed. Simple ideas have difficulties since the method has to work around some problems 

such as saturation. Win/Loss States (WLS) are an original, ready to use, open source solution, for representing 

proportions by an integer state. The open source implementation can be found at [91].  
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4.5.2 Definitions 

 

Formally, a WLS with end of scale 𝑒 is the set 𝑆 of all proportions 𝑠 =  𝑛/𝑚 where 𝑛, 𝑚 ∈ ℕ, 0 ≤  𝑛 ≤

 𝑚 and 0 ≤  𝑚 ≤  𝑒 over which three functions are defined: 𝑣(𝑠) → ℝ , 𝑊(𝑠) →  𝑆  and  𝐿(𝑠) →  𝑆. 

 

The function 𝑣(𝑠) is defined over all elements other than 0/0 and is a real value measuring the evidence 

that the proportion is above or below a given threshold value. It defines a total order over the set. The functions 

𝑊(𝑠) and 𝐿(𝑠) represent the next state after a win and a loss respectively. 

 

Many choices for the functions 𝑣(𝑠), 𝑊(𝑠) and 𝐿(𝑠) are possible, but we will only consider those fitting 

the following conditions: 

 

Condition 1: 𝑣(𝑠) represents the confidence that a proportion 𝑠 is above or below some reference 

proportion 𝑠0 (by default, 𝑠0 = 1/2). For this, we use the confidence interval for a binomial proportion using 

the lower bound (LB) 𝐿𝐵 = 𝑝 −  𝐶𝐼 when the 𝑠 ≥ 𝑠0 and the upper bound (UB) 𝑈𝐵 = 𝑝 +  𝐶𝐼 when 𝑠 < 𝑠0. 

UB values are shifted by a constant to avoid overlapping between the LB and UB values. 𝑣(𝑠) is used only for 

sorting the set 𝑆 and therefore, any value avoiding overlapping can be used. We chose the Agresti-Coull 

interval [92, 93] because its continuity correction provides robust behavior when 𝑚 is small. Since evidence 

increases as the number of visits increases: 𝑣(3/4) < 𝑣(6/8) < ⋯  and  𝑣(1/4)  >  𝑣(2/8)  >  ⋯  
 

 𝐶𝐼 = 𝑧1−𝛼/2 𝑝  (1 − 𝑝 )/𝑚   (4.28) 
 

 𝑝  = (𝑛 + 1/2 · (𝑧1−𝛼/2)2)/𝑚   (4.29) 
 

 𝑚 = 𝑚 +  (𝑧1−𝛼/2)2  (4.30) 

 

𝑧1−𝛼/2 is the 1 − 𝛼/2 percentile of the normal distribution for given significance level α. 

 

Condition 2: Updating 𝑠 after a win always results in an increase of 𝑠 except when 𝑠 is already the 

supremum of 𝑆 and the opposite applies to a loss. Formally: 

 

𝑊(𝑠) ≥ 𝑠   ∀𝑠 ∈ 𝑆 and 𝑊(𝑠) = 𝑠 ⇔  𝑠 = 𝑠𝑢𝑝(𝑆) 

𝐿(𝑠) ≤ 𝑠   ∀𝑠 ∈ 𝑆  and  𝐿(𝑠) = 𝑠 ⇔  𝑠 = 𝑖𝑛𝑓(𝑆) 

(not including 0/0) 

 

Condition 3: Let 𝑢(𝑠) =  (𝑛 + 1)/(𝑚 + 1) and 𝑑(𝑠) =  𝑛/(𝑚 + 1): 
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𝑢(𝑠) 𝜖 𝑆 ⟹ 𝑢(𝑠) = 𝑊(𝑠) and  𝑑(𝑠) 𝜖 𝑆 ⟹ 𝑑(𝑠) = 𝐿(𝑠) 

 

In other words, if the proportion resulting of adding one win or one loss to 𝑠 is in 𝑆, the functions 𝑊(𝑠) 

and 𝐿(𝑠) will return that proportion. In other words, only the proportions with 𝑚 = 𝑒 require some special 

attention. These proportions, called saturated, are studied below. 

 

Figure 4.9. Simple WLS with end of scale e = 3. 

 

Figure 4.9 shows a simple WLS with e = 3. Integers in the circles represent the binary value of each state 

following the order defined by 𝑣(𝑠). Green arrows point to the next state after a win and red arrows point to 

the next state after a loss. Note that the proportions in the last column point backwards following the JPS 

heuristic. 

 

4.5.3 Implementation in a program 

 

A WLS is an integer that keeps track of the success rate of (state, action)  pairs. The action is the move 

played and examples of items defining the state include: the color to move, the last move, the previous move, 
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the number of liberties of adjacent groups, classified patterns formed by surrounding stones, etc. The possible 

combinations of input states can be very large. For example, on a 19x19 board, when the state includes 2 

moves, the color to move and a local pattern identified in a collection of 100 classes, the resulting number of 

combinations exceeds 26 million. The amount of information updated is very large as well. If the 

implementation achieves 15K playouts/sec (a typical performance for an 8 core desktop), estimating 150 

moves per playout on average and 30 minutes computing time for the whole game, 4 billion moves are 

generated during the whole game, each one updating a win or a loss to its combination of states. Therefore, 

compact representation and efficient integer operation are very important. Any WLS with end of scale 𝑒 ≤ 21 

can be stored in 8 bits. 

 

During the operation of the program, WLS management requires three basic operations:  initializing, 

updating the state after a win or a loss and checking if the success rate is above some threshold. If it is, the 

corresponding move is played, possibly with a random choice when more than one candidates are found. 

 

The WLS combination for all possible (state, action) pairs is stored as an array 𝑠[·] and 𝑖staction  is the 

index in the array identifying each pair. 

 

Initializing is done by just clearing the array 𝑠[·]. Zero represents the 0/0 state, i.e., the (state, action) has 

not been observed previously. 

 

Updating the WLS after a win or a loss is done via a Look-Up Table (LUT) update. Appropriate LUTs are 

created during the setup process and stored in some object 𝑤𝑡. That class can be found in the source code [91]. 

After a win corresponding to the state 𝑖staction , updating is just 𝑠 𝑖staction  ← 𝑤𝑡. 𝑊𝐼𝑁[𝑠[𝑖staction ]] and after a 

loss 𝑠 𝑖staction  ← 𝑤𝑡. 𝐿𝑂𝑆𝑆[𝑠[𝑖staction ]].  

 

Checking if a WLS is above some threshold is just comparing two integer values, since thresholds are 

converted to integer values in the setup procedure. A typical application will use the binary value 

corresponding to 1/2 plus some configurable threshold. In the open source application the binary value 

corresponding to 1/2 is stored in the field wt.wls_binThresh_1div2. 
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4.5.4 The setup procedure 

 

The following pseudocode describes the setup procedure building the LUT tables as implemented in the 

open source code: 

 

1. Create a table 𝑇 with all proportions 𝑛/𝑚 where 0 ≤  𝑛 ≤  𝑚 ≤ 𝑒. Each item 𝑡 in 𝑇 has four 

fields (𝑛, 𝑚, 𝑣, 𝑖) only 𝑛 and 𝑚 are initialized in this step. 

2. For each 𝑡 in 𝑇 evaluate 𝑣 ← 𝑣 𝑛, 𝑚  

3. Assign a value smaller than the smallest 𝑣 to 𝑣(0,0) and sort 𝑇 in increasing 𝑣. 

4. Assign an integer number 𝑖 to each element in 𝑇 starting with 𝑖(0,0) ← 0 and increasing by 1. 

5. For each element  𝑡 𝑛, 𝑚, 𝑣, 𝑖  

  if 𝑢(𝑛 + 1, 𝑚 + 1, 𝑣𝑢 , 𝑖𝑢)  𝜖 𝑇  

   then 𝑊𝐼𝑁[𝑖] ← 𝑖𝑢  

   else 𝑊𝐼𝑁[𝑖] ← 𝐽𝑃𝑆(𝑊𝑜𝑛, 𝑛, 𝑚)  // Function JPS() is described in 4.5.6. 
  if 𝑑(𝑛, 𝑚 + 1, 𝑣𝑑 , 𝑖𝑑)  ϵ T  

   then LOSS[i]← 𝑖𝑑   

   else LOSS[i]←JPS(Lost,n,m)   // Function JPS() is described in 4.5.6. 

6. Find the 𝑡(𝑛𝑡 , 𝑚𝑡 , 𝑣, 𝑖𝑡) corresponding to the threshold 𝑛𝑡/𝑚𝑡 and note its integer value 𝑖𝑡  for its 

later use by the program. 

 

4.5.5 The saturation problem 

 

A simple idea for updating a saturated proportion 𝑛/𝑒 could be: 

 

 𝑊𝐼𝑁 [𝑛/𝑒] = 𝑠(𝑚𝑖𝑛(𝑒, 𝑛 + 1)/𝑒)  (4.31) 

  𝐿𝑂𝑆𝑆 [𝑛/𝑒] = 𝑠(𝑚𝑎𝑥(0, 𝑛 − 1)/𝑒)   

 

After the number of updated results is larger than e, the WLS behaves just like a counter increasing after a 

win and decreasing after a loss. This behavior is strongly biased towards 0 and 1. Bear in mind that any 

proportion above 1/2 produces more increase than decrease resulting in a state that will be near the top most of 

the time. And the same applies symmetrically.  

 

To assess how well saturated WLS represent a proportion, we used the following setup: We took a set of 

21 WLS measuring the output of 21 Random Number Generators (RNG) generating wins with a probability 𝑝𝑖  

of winning in equally spaced steps 𝑝𝑖 = {0, 0.05, 0.1, … 1}. 
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WLS are initialized at 𝑠(0/0) and updated a number 𝑐 of cycles with wins and losses depending on each 

RNG. The final state was converted back to a proportion 𝑝 𝑖  using the table 𝑇 described in 4.5.4. 𝑝 𝑖  is an 

estimate of 𝑝𝑖 . 

 

We used two measures to assess the quality of  𝑝 𝑖:  

 

𝑆𝐷𝑟 =  1/(𝑛 − 1) · 𝛴𝑖( 𝑝𝑖 − 𝑝 𝑖)
2 the standard deviation of the residuals and 𝑆𝑟𝑐  the Spearman rank 

correlation [94] between the set of  𝑝𝑖  values and the set of 𝑝 𝑖  values, i.e., how well the order of the 𝑝 𝑖  values 

obtained experimentally represents the order of the original 𝑝𝑖  values. We chose two measures, one focused in 

measuring absolute difference and the other focused in order, since in MCTS order is the most important. A 

better decision should ideally get higher evaluation than inferior decisions, which makes it explored before 

them; the value is not relevant. 

 

Each complete experiment, consisting in updating the 21 WLS 𝑐 times, was repeated 25000 times and the 

statistics were computed each time. We describe the distribution of 𝑆𝐷𝑟  and 𝑆𝑟𝑐  as 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 (standard 

deviation). 

Table 4.5. Saturation without JPS heuristic 

Number of updates c 𝑺𝑫𝒓 𝑺𝒓𝒄 

c=20 (not saturated) 0.0899±0.0155 0.9624±0.0157 
c=200 (saturated) 0.2316±0.0175 0.9170±0.0272 

 

Note: 𝑆𝐷𝑟  is the standard deviation of the residuals, 𝑆𝑟𝑐  is the Spearman rank correlation. Results are obtained for 

N=25000 experiments shown as mean±SD. 
 

 
A nonsaturated WLS of 𝑒 = 21 with  𝑐 = 20 random updates is used as a control reference. Since 𝑐 < 𝑒, 

it does not produce any saturation. Residuals are just those expected by the randomness when 𝑝 𝑖  represents the 

count of observed wins and losses. 

 

The increased error and the reduction in the Spearman rank correlation shown in table 4.5 both reveal that 

this idea has a problem with saturation. 
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4.5.6 Jump-to Past State (JPS) heuristic 

 

The saturation problem is produced because the policy in equation 4.31 makes extreme states 21/21 or 

0/21 easy to reach by probabilities that are just above or below 1/2, just because a counter that increases with 

a win and decreases with a loss will reach any arbitrary number when 𝑝 >  1/2 given enough time. A solution 

to this is moving the next state to the past to make confirmation necessary before reaching the extreme state 

again. E.g., if a loss at the state 21/21 goes to the state, 10/10 (note that 𝑣(10/10)  <  𝑣(21/21)) the WLS 

needs another 11 consecutive win updates to reach the state 21/21 again. Also, a win at state 20/21 should go 

back to force confirmation with a sequence of consecutive wins before state 21/21 is reached. 

 

This jump to the past must be longer for the extreme values than for values around 1/2. For the sake of 

simplicity, we tried a linear model that jumps more as the absolute difference to 1/2 increases. The maximum 

jump is defined by an empirically tuned constant 𝐾. 

 

In pseudocode, the function JPS() used in 4.5.4 is shown in figure 4.10: 

 

 

Figure 4.10. Pseudo-code of the JPS heuristic. 
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We tuned 𝐾 with the same experiment described in 4.5.5, but with the length of the saturated run 

randomized to avoid possible fitting to a specific number of times the end of scale is reached. Instead of using 

a constant 𝑐 = 200, we used a uniform random 𝑐 ↝ 𝑈(150,250). The problem starts to disappear as 𝐾 

approaches 1, i.e., the extreme states jump back to 𝑒/2. The best value found is 𝐾 = 1.3. 

 

Table 4.6. Quality measures of saturated WLS with JPS heuristic 

𝑲 𝑺𝑫𝒓 𝑺𝒓𝒄 

0.9 0.1084±0.0147 0.9742±0.0105 
1.0 0.0964±0.0141 0.9761±0.0098 
1.1 0.0970±0.0140 0.9753±0.0095 
1.2 0.0881±0.0132 0.9759±0.0095 
1.3 0.0817±0.0125 0.9759±0.0097 
1.4 0.0838±0.0129 0.9746±0.0102 

 

Note: 𝐾 is the constant in the JPS heuristic, 𝑆𝐷𝑟  is the standard deviation of the residuals, 𝑆𝑟𝑐  is the Spearman rank 

correlation. Results are obtained for N=25000 saturated experiments with a number of updates 𝑐 ↝ 𝑈(150,250) and 
different values of 𝐾 shown as mean±SD. Highlighted values show elements behaving better than a non-saturated WLS with 

𝑐 = 20. 
 

 
Note that all results shown in table 4.6 and highlighted are better than the results obtained by the reference 

WLS with 𝑐 = 20 which is free of the saturation problem. This is consistent with the fact that 𝑝 𝑖  values 

estimated from approximately 200 RNG draws have smaller variance than those estimated from 20 RNG 

draws. For validation, identical results within 3 decimal digits were obtained by changing RNG seeds. The 

change from 𝑐 ↝ 𝑈(150,250) to 𝑐 ↝ 𝑈(1500,2500) also returned 𝐾 =  1.3 as the optimal value with 

slightly smaller values of 𝑆𝐷𝑟 .  

 

These results reveal that the JPS heuristic works out the saturation problem. 

  

4.5.7 Step response 

 

It is important to note that WLS have the feature of forgetting the past history of the success rates they 

measure when the probability of a win changes over time. For instance, when we are using results of past 

moves in a game, before we make a move, the playout policy learns a set of states. Then, a move is made and 

answered by the opponent. After that, the success rates of all other moves change, but most of the bad moves 

are still bad moves and most of the good moves are still good moves. Having approximate information may be 

better than having none. It is a decision of the program author whether to clear past information and start 

acquiring new more precise but less abundant information, or to keep the old information having more but less 
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accurate knowledge. Using WLS we have a third possibility: merging past information with new information 

weighting the most recent events in a controllable way. 

 

From a signal-processing point of view we can consider a WLS as a low pass filter and analyze its step 

response. Our study is just exploratory and a general procedure for computing the expected bias in 𝑝 𝑖  resulting 

from temporal changes in 𝑝𝑖  is beyond the scope of this study. But, we did empirically establish an interesting 

result: The settling time is a linear function of the end of scale 𝑒. This result reveals 𝑒 as a tunable parameter 

that may have interesting applications, i.e., instead of always creating WLS with the maximum number of 

states for a given number of bits of storage, WLS with smaller 𝑒 may benefit from smaller settling times in 

applications where that may be an advantage. 

 

In our exploratory study, we only measured the settling time required by a WLS that has been measuring a 

probability 𝑝 =  1/4 for a long time to reach 𝑝  =  3/4 within ±2.5% accuracy when 𝑝 suddenly changes to 

𝑝 =  3/4. 

 

Figure 4.11. End of scale vs. settling time. 

 

We initialized the WLS at the state 1/4 and generated a number of RNG draws with 𝑝 =  1/4 to 

randomize the starting point. Then, we counted the number of updates required to measure 𝑝  =  3/4 within 

±2.5% accuracy when generating updates with 𝑝 =  3/4. The experiment was created for a series of WLS of 
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different end of scale values 𝑒 between 25 and 1000 in steps of 25. Each measure was obtained 25 times. A 

linear regression analysis between the average of the 25 measures and the 𝑒 values shows a near perfect fit, 

with adjusted 𝑅2 = 0.99968 and p-value 𝑝 <  10−5 . The scatterplot is shown in figure 4.11 and reveals a 

near perfect linear fit between the end of scale values and the mean of the empirical settling times measured 

from 25 repetitions. 

 

4.5.8 Conclusions on WLS 

 

Efficiency is the key for producing competitive game playing programs. Representing success rates by 8 

bit integers instead of complete (win, visits) records which result in at least 8 times more space is an 

improvement when applications may need to store success rates for many millions of possible (state, action) 

pairs. Besides storage, at CPU speed WLS-based implementations outperform (wins, visits)-based ones. 

Updating a WLS is almost as fast as incrementing an integer variable; performing update via a LUT (which 

can be coded in a single XLAT CPU instruction) is one of the fastest possible operations. If the LUT is in CPU 

cache memory, which will happen when it is frequently used, the time is similar to updating one or two (wins, 

visits) counters. Furthermore, updating will not happen as frequently as finding new candidate moves. (Even in 

the minimal case in which only eight neighbors to the last move were considered as candidates, the number of 

comparisons vs. updates would be 8 to 1.) The latter requires checking if a proportion is above some threshold. 

Checking that a WLS is above some threshold is just an integer arithmetic instruction, while comparing (wins, 

visits)-based proportions requires computing a floating point confidence interval at the cost of many 

instructions. If that is not done for the sake of speed, the program will contain inherent flaws derived from 

unsound direct comparison between proportions based on much evidence and proportions based on just a few 

observations. 

 

Since WLS is just a brick for building online learning simulation-based applications, prejudice about the 

lack of importance of doing things "just more efficiently" should be avoided. After all, MCTS is itself a 

success story about how hardware improvement enabled the possibility to explore ideas that would have been 

unfeasible one decade before they were implemented. Improvement in both storage and speed pushes the 

horizon of the "unfeasible" a little further away for new ideas to come. Also, WLS is not go specific and can be 

used in many other machine learning fields. 
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4.6 The base playout policy 

 

The base playout policy generates moves for the playouts restricted by the rules explained above in 4.3.1 

and 4.3.3 following the policy in figure 4.12 (1 is the highest priority, 4 the lowest) 

 

 

Figure 4.12. "Base" playout policy in pseudo-code. 

 

The simulation ends after two consecutive passes and all stones are considered alive. The parameters 

𝑝𝐴𝑇[𝑡] and 𝑝𝑀𝑃  were tuned by self play with the base policy against a fixed reference using CLOP 

optimization [61]. Both policies (base and learning) use identical values for these parameters although 

additional improvement of the learning policy could result from using different values. 

 

As an indication of the number of moves generated at each step during the tuning of a base policy in 

which 6.6 × 1010  moves were generated. The atari tactics generated 8.2% of the moves, the Mogo-style 

patterns 28.1%, 9.4% of the moves were skipped by the random draws selecting not to play the moves 

although belonging to one of the previous categories, 47.2% of the moves were played at random 3.9% were 

improved from random moves by the shape improvement heuristic and the resulting 3.1% were pass moves. 

These values should the considered as just an example taken from tests with board size 13 × 13 and they may 

depend on the values of parameters. More such results are shown below in 4.8.2. 
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4.7 The learning playout policy 

 

This section describes a playout policy representing an improvement over the previous policy known as 

the "base" policy. The base policy already includes all necessary elements of a strong program, at least stronger 

than the seminal policy implemented in MoGo which has influenced most strong programs. 

 

4.7.1 The "loose tree" analogy 

 

Rationale: One of the weaknesses of Monte-Carlo methods without a tree, that becomes strength in 

MCTS, is handling answers to moves i.e., understanding the difference between the board states in which a 

move is good and the board states in which the same move is bad. MCTS is known to converge to perfect play 

given some obvious conditions like the policy returning correct results for final positions and the tree not being 

pruned. Unfortunately, the playouts after a leaf is reached are not getting any benefit from the knowledge in the 

tree. Ideally, we would like the playout being driven by some of that knowledge at least for some local context 

as defined in 4.3.2. 

 

The following ideas emerge naturally:  

 

1. Keeping statistics of wins/losses for each move classified by a local context. 

2. Keeping statistics of wins/losses for all answers to each possible previous move classified by the 

local contexts in both the previous and the next move. 

 

Of course, the MCTS tree is based on a sound logic where each node represents a completely defined 

game state and the "loose tree" idea only aims at stochastically getting things "more times right than wrong".  

Hopefully, although the idea is a "good intention" and we will not always find moves, that knowledge may 

drive the playout like the tree does in MCTS, at least using online learned information during the whole 

playout.  

 

In the worst case, a class in a local context may be the combination of states where the move is good and 

bad. E.g., a semeai with the same local pattern may be decided by the number of liberties at some distant 

location making the pattern useless. But in other cases, the pattern will decide the difference between good and 

bad. 
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Following this "loose tree" metaphor, we name the moves generated by the idea 1 node moves because a 

move associated with a local context from which we keep WLS counters acts like a node in the tree. It is worth 

noting that the tree node keeps the value of a move associated with a game state and the "loose node" keeps the 

value of a move associated with a local context that may or may not contain deciding information. The moves 

generated following the idea 2 are similarly named edge moves. Acting like an edge of the tree (an answer to a 

previous move) with the same differences as in the previous case. 

 

Additionally, since the aim is reducing the number of moves played at random by playing moves that have 

higher chances of being good, the learning policy is combined with the heuristics already in the base policy. 

 

4.7.2 Node moves: Keeping success of moves by local context 

 

Figure 4.13 shows the basic idea how node moves are played. The empty intersections around the last 

move are checked (if legal) in the local context as the board stands before the move is played. The move with 

the highest WLS is played if the value is above threshold. 

 

Figure 4.13. "Node move" example. 

 

The knowledge stored for the node moves is a continuous array of WLS states 𝑛𝑜𝑑𝑒_𝑊𝐿𝑆[] that can be 

thought of as a three dimensional array of 3 indices (𝑖𝑐 , 𝑖𝑚 , 𝑖𝑙): black or white, next move, context (an integer 

in {0, . . 2𝑛 − 1}) which is, as mentioned, the lower 𝑛 bits of the local context of the (candidate) next move. 
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The threshold is 𝑡𝑛  ± 𝑏𝑛  the base threshold for node moves 𝑡𝑛  plus/minus an offset as described in 4.7.4. 

The move played (if any) is the legal move satisfying 𝑛𝑜𝑑𝑒_𝑊𝐿𝑆[𝑖𝑐 , 𝑖𝑚 , 𝑖𝑙]  ≥  𝑡𝑛  ± 𝑏𝑛  with the highest 

𝑛𝑜𝑑𝑒_𝑊𝐿𝑆[𝑖𝑐 , 𝑖𝑚 , 𝑖𝑙].  

 

The number of neighbors (8 or 20) is configurable and was adjusted in final experiments considering both 

improvement and speed. It was finally set to 20. 

 

4.7.3 Edge moves: Keeping success of move answers by local context 

 

Figure 4.14 shows and example of edge move generation. 

 

Figure 4.14. "Edge move" example. 

 

The list of "best k" moves in the local context of the previous move and color of the previous player are 

used to see what the possible answers are and in what context are they expected. If the moves are legal on 
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current board position and their local context matches the expected local context, the move with the highest 

WLS is played if its value is above threshold. 

 

The knowledge stored for edge moves is a continuous array of WLS states 𝑒𝑑𝑔𝑒_𝑊𝐿𝑆[] that can be 

thought of as a four dimensional array of 4 indices (𝑖𝑐 , 𝑖𝑝𝑚 , 𝑖𝑛𝑚 , 𝑖𝑙): black or white (obviously, the previous 

move will be of the opposite color), previous move, next move, context (an integer in {0, . . 2𝑚 − 1}) which is, 

as mentioned, the lower 𝑚 bits of the local context of the next move XOR the local context of the previous 

move.  

 

It would be very slow to search all possible legal moves as answers to the previous move. Since playout 

policies have to be fast, keeping a list of "best k" answers to each move in each local context (of the previous 

move) is a solution to this problem. In this case, only the "best k" answers kept of the previous (move, context) 

are going to be considered. These answers may even be illegal and may probably not fit the local context 

currently on the board for the next move. It will happen that the "best k" answers do not provide a move even if 

"somewhere in the edge_WLS[]" a move could be found, but that is compromise accepted for the higher speed 

of just considering the "best k". Possible values of 𝑘 range from 4 to 16 and the optimal value was obtained 

from experimental testing. The value used in the experiments is 16 to favor a higher number of edge moves 

being played.  

 

The "best k" lists are stored in a continuous array of records 𝑒𝑑𝑔𝑒_𝑏𝑒𝑠𝑡𝑘 [] that can be thought of as a 

three dimensional array of 3 indices (𝑖𝑐 , 𝑖𝑝𝑚 , 𝑖𝑙𝑝𝑚 ): black or white (color of previous move), previous move, 

local context of previous move (an integer in {0, . . 2𝑚 − 1}) which is the lower 𝑚 bits of the local context on 

the previous board before the previous move was played. 

 

Precise values of 𝑛 (number of hash bits used in node moves) and 𝑚 (number of hash bits used in edge 

moves) are computed by the program to fit the allocated memory for the knowledge. They depend on the board 

size 𝑠 and the assigned size which is a configurable parameter. Note that the array of node-knowledge WLS 

states will allocate 2 × 𝑠2 × 2𝑛  bytes times the size of a WLS state (one byte in this case). And the array of 

edge-knowledge WLS states will require 2 × 𝑠4 × 2𝑚  bytes times the size of each WLS (also one byte) plus 

the size required to allocate the "best k" list for each move which is 2 × 𝑠2 × 2𝑚 × 𝑠𝑖𝑧𝑒𝑜𝑓(𝑡𝑜𝑝𝑁𝑙𝑖𝑠𝑡). 

 

"Best k" records store a list of size 𝑘 of best moves each containing: the answer move, the next hash and a 

counter tracking the illegality of each move to purge the list. 
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The procedure for generating edge moves is described in figure 4.15. 

 

 

Figure 4.15. Playing "edge moves" in pseudo-code. 

 

This includes how the illegality counter of the move is updated during move generation. This counter is 

used for purging the tables from outdated moves. Further details are given below in 4.7.7.  

 

4.7.4 Auto balance B and W move numbers 

 

It was hypothesized that when applied to board positions where one player is clearly ahead, generating 

moves using a fixed WLS threshold level would produce more moves for one player than for the other 

introducing bias in the evaluation. Since the learning playout policy generates moves that are on average better 

than random moves, this would introduce a bias because the system would be "helping the winner". Also, 

when the winner is getting 75% wins in the simulation, it may consider moves winning over 50% of the times 

as far from optimal. For the losing player who is winning 25% of the times, moves winning over 50% will be 

very rare and may be false positives. This player would consider moves winning 30% of the times interesting. 

The impact of balancing has been established already [86, 95] and we considered using different thresholds for 

black and white. Also, we use different configurable levels for generating node moves and for generating edge 

moves. 

  

The condition for playing a node move with index 𝑖 as black requires 𝑊𝐿𝑆[𝑖]  ≥  𝑡𝑛 + 𝑏𝑛   as white with 

index 𝑗 it requires 𝑊𝐿𝑆 𝑗 ≥  𝑡𝑛 − 𝑏𝑛 . Where 𝑡𝑛  is the threshold for all node moves and  𝑏𝑛  is the "unbalance" 

against black, initially zero. The program counts the number of moves each policy generates for black and 

white. Every 50 simulations adjusting 𝑏𝑛  is done the following way: 
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When the difference in these numbers is bigger than twice the standard error of the mean (the SD is 

estimated from the binomial distribution) a small correction in ±1 steps is considered to adjust 𝑏𝑛  towards the 

appropriate direction (increased when the policy is creating too many black moves and decreased when it is 

creating too few). If one number of moves exceeds the double of the other, a bigger step is considered (4 or 8) 

to make the initial correction faster. Results logged out by the program show that this simple procedure 

balances the move numbers well enough resulting in no correction being issued most of the times and 

corrections being done in ±1 steps when done. Similar parameters 𝑡𝑒  and 𝑏𝑒  exist for edge moves adjusted by 

the same procedure. 

 

The feature can be selected or disabled and it was proven experimentally that it results in stronger play in 

self play experiments. For that reason this heuristic is used in the learning playouts of the experiments. 

 

4.7.5 Definition of the learning playout policy 

 

The learning playout policy is just adding two steps more to the base playout policy.  

 

 

Figure 4.16. "Learning" playout policy in pseudo-code 
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The legality of moves, seki, atari tactics, Mogo-style patterns everything described for the base policy 

(even the values of the parameters) applies as described above. 

 

This is the simplest form of learning policy using the heuristics that have been proven to increase strength 

in preliminary experiments. The thresholds include the balancing mechanism just described. Both edge and 

node move generators have been tested separately and combined (i.e., disabling step 2, disabling step 4 and 

both enabled). Both have positive contribution to program strength being the combination of both the best 

option just as describe in figure 4.16. 

 

Note that, unlike in the base policy where the choice between multiple moves selected by the same 

condition is randomized, in the learning playouts the choice is the one with the highest WLS state. As the WLS 

states are stochastic functions that correlate with the true value of moves, we consider that it should contain 

enough randomization to avoid deterministic behavior and benefit from choosing the best move more often, 

although this is not backed up by experimental evidence. 

 

4.7.6 Updating node move knowledge 

 

At the end of each playout, after the board has been evaluated which player won the playout is known. 

The first 𝑛𝑢𝑝𝑑  moves played in the playout (or the entire playout whatever is smaller) are updated by adding a 

win to all the moves of the winning player in the context that was on the board before the move was played and 

a loss to all the moves of the opponent. The parameter 𝑛𝑢𝑝𝑑  is based on the assumption that the first moves in 

the playout have more influence in the outcome of the game than the final moves. It depends on the length of 

the playout (which depends on the board size and the current move number). Larger values should produce 

more information updated, smaller values should produce higher quality of that information. It may also make 

sense to test values that depend on the board size and the move number at root as a rough estimation of the 

expected length of the playout. We did not intensively test this parameter. It was set to 80 by CLOP 

optimization from a categorical variable with 4 possible values: 48, 64, 80 and 96. 

 

The entire array 𝑛𝑜𝑑𝑒_𝑊𝐿𝑆[] has to be cleared at least when a new board is defined. We decided to keep 

the values from one move to the next without actually testing which of the two options is best: Clearing it at 

each new move to keep most up to date information or keeping the previous states to have more information. 

Since the difference is not expected to be big, testing this experimentally may require many resources that were 

used for more extensive parameter tuning and the experiments described below. 
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4.7.7 Updating edge move knowledge 

 

The procedure updating edge move knowledge is similar to the procedure updating node knowledge but it 

is done in move pairs from which neither is a pass. The winner is considered as the answering color, not the 

previous move color. I.e., if the playout was won by B, the pair of WB will be updated as wins and the pairs of 

BW as losses. The same 𝑛𝑢𝑝𝑑  parameter used for updating node moves applies to this case. 

 

For each BW and WB pair of moves not including pass moves: 

 

The "best k" list is purged. If any element has an illegality counter above the parameter 𝑡𝑖𝑙𝑙 , the entry is 

purged. This is intended to allocate room on the list that may be used by old moves that are no longer legal 

(because maybe a solid group was formed at that spot). After the purge, the lowest WLS in the list is noted to 

determine the level in which new elements can "reach the top k list".  

 

The array 𝑒𝑑𝑔𝑒_𝑊𝐿𝑆[] is updated like in the case of nodes (but with 4 indices) and the resulting states are 

checked if above the threshold for entering the "top k" list. If above, the new element enters the top list 

replacing the previously lowest WLS found. A new lowest element and threshold is identified. 

 

4.8 Experiments with learning playouts 

 

All experiments in this section compare the performance between isGO (see 6.1.4) using the base playout 

policy described in 4.6 and the learning playout policy described in 4.7. In all cases, all other program 

settings are identical and the engine always does a fixed number of playouts per move. Since the learning 

playout policy is somewhat slower, we also estimate what improvement should be expected if identical CPU 

allocation had been used instead of same number of simulations.  

 

It is standard and recommended practice in computer go to make comparisons with equal number of 

simulations. Mainly, because it prevents noise induced by different workloads and other CPU consuming 

processes running during the experiments and because it emphasizes priority on the science (finding out what 

works) rather than on the technology (finding the fastest possible way to implement it). Nevertheless, speed 
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considerations should never be disregarded and, whenever possible, results for equal CPU assignment should 

be estimated. The method is described below. 

 

Other possible objections regarding the experimental setup typically include: 

 

a. Self-play is not a good measure of improvement. 

b. Improvements do no scale as the program gets stronger. 

c. The number of games is not enough to draw conclusions. 

 

Regarding objection a, we have included experiments against a fixed reference program, Fuego [49] as it 

is the strongest reliable free independent program. We also evaluated Pachi [50], but it was not stronger for 

small numbers of simulations (E.g., 1000), was more memory consuming and we were unable to fix stability 

issues of its Windows version. Since these games are slower and the experiment requires twice as many games, 

we conducted them only for board size 13x13 (as a compromise in game duration between the fastest 9x9 and 

the slowest 19x19) and for just one number of simulations resulting in not too much advantage for Fuego. We 

conducted 300 games between Fuego and isGO(base) and 300 games between Fuego and isGO(learning). 

Neither program has an opening book for board size 13x13. 

 

To avoid objection b, we did two extra experiments with 4x8,000 and 4x32,000 simulations in board size 

9x9 in addition to the 4x2,000 experiments in all sizes. With this board size and number of simulations, the 

engine is high dan level. On stronger hardware, Fuego has won exhibition games against Taiwanese pro 

players. (These were mostly handicap 19x19 games, but also won one even 9x9 game and lost one even 9x9 

game against the Taiwanese professional player Chun-Hsun Chou 9p in 2009 [96].) We do not have 

information about the number of simulations used in those games. In our experiments, Fuego is stronger than 

isGO and the number of simulations used by Fuego was 4x1000 against 4x4000 for isGO. Since, isGO's 

implementation is somewhat faster than Fuego's, even for learning playouts, in terms of CPU allocation (for 

the experiments in learning playouts), Fuego's games took 30.3±9.9 seconds versus isGO's games taking 

110±23.5 seconds, resulting in a x3.6 factor more CPU allocation to isGO. Also, assuming a 70 Elo point 

improvement per doubling and the 85 Elo point advantage for Fuego in the experiments, this engine should be 

around 220 Elo points from the Fuego version winning against the Taiwanese pro on same hardware and same 

time settings.  We performed 200 for 4x8,000 and 200 for 4x32,000 self-play isGO(base) vs. isGO(learning) 

games in 9x9 to verify that the superiority of learning playouts over the base policy is confirmed (and even 

increases) at stronger levels. Also, it is worth noting that isGO does not have a 9x9 opening book, this may be 
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a drawback against other programs, especially with few simulations, but it is desirable for experiments on 

playouts where using an opening book would be objectionable. 

 

And to assess statistical soundness (objection c), we performed 3 times (board sizes 9x9, 13x13 and 

19x19) 1,000 games (600 for 19x19) at 4x2000 simulations to base our claims on narrow confidence intervals. 

For all results we include winning percentage including 95% confidence intervals, Elo increase including 95% 

confidence intervals and the Elo increase expected with equal CPU allocation rather than same number of 

simulations.  

 

This estimation is based on a separate experiment for measuring the improvement of the base policy when 

the number of simulations doubles. The argument is simple: If the base policy had been assigned the same time 

used by the learning policy, rather than the same number of simulations, it would have done more simulations. 

The number of extra simulations is taken from the times used. It ranges from 37% more (in the Fuego 

experiments) to 59% more (in the slowest 9x9, 4x32000). Each experiment is assigned its individual time 

factor. It has been established [97] that, at least for a wide range of simulation numbers, program strength 

increases almost linearly for each additional doubling. We measured this improvement in an independent 

11x11 experiment (rounded average of the board sizes used) with 600 games played by the base policy against 

itself doubled from 4x1000 to 4x2000 resulting in a 480 to 320 win for the doubled version. This is a 70.44 Elo 

improvement (95% CI is 45.83—95.05). We used this 70 Elo point per doubling improvement for estimating 

the equal CPU allocation improvement in all experiments by subtracting the resulting improvement expected 

from the extra time used. E.g., for a 38% extra time, 70 · log 1.38 /log(2) = 32.5 Elo points were subtracted. 

This is overcompensation since it is known that self play overestimates the improvement gained form doubling 

the number of playouts. As confirmed by the isGO vs. Fuego experiments, playing the base policy vs. the 

learning policy does not count as self play since both policies are really different, but estimating the 

improvement of the base policy based on self play is, as mentioned, an overcompensation. 

 

4.8.1 Parameter values used in the experiments 

 

Table 4.7 shows the values of the parameters described above used in the experiments. Note that common 

parameters were tuned by testing with the base policy and should be near optimal for it. The learning playout 

policy could further improve form different settings for these parameters, but we did not test that. We focused 

on studying the improvement gained from combining the two algorithms (node moves and edge moves) with 

an existing, more or less state of the art policy. 
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Table 4.7. Values of parameters used in all experiments. 

 isGO(base) isGO(learning) Tuning method 

pAT[t] pAT[1]=0.3405 
pAT[8]=1 

(increasing linearly) 

pAT[1]=0.3405 
pAT[8]=1 

(increasing linearly) 

(1) 

k of "best k" lists n.a. 8 (2) 
threshold for edges n.a. 125/200 

(closest integer to  
this proportion) 

(4) 

pMP 0.4812 0.4812 (1) 
neighbors for nodes n.a. 20 (3) 

threshold for nodes n.a. 1/2 (4) 
neighbors for local contexts n.a. 40 (3) 
Balancing B/W n.a. ON (5) 

WLS end of scale n.a. 21 (6) 
 

Note: Tuning methods: (1) CLOP optimization of the base policy, same values used for both versions. (2) Individually tested, increasing 
further is slower and does not show measurable improvement. (3) Individually tested, the maximum showed improvement. (4) Only tuned 

individually in large steps due to the number of games required to assess the winner because of low sensitivity. (5) Tuned ON vs. OFF with 
clear superiority. (6) Not tested. This is the maximum number for an 8 bit WLS and influence was assessed in the WLS study. n.a. = not 
applicable. 

 

 

4.8.2 Number of moves generated at each step 

 

Table 4.8 shows the percentage of moves generated by the different steps in the policies taken form 60 

extra games played for the different board sizes: 9x9, 13x13 and 19x19, 20 games each. The base playout 

policy plays moves found in the previous steps and discarded by the randomization rules, before playing a 

random move (the 19.04% of moves under "previously skipped"). 

 

Table 4.8. Percentage of moves played by each part of the policy. 

 Played by isGO(base) Played by isGO(learning) learning/base 

Total number of simulations 30,251,651 30,160,835  
Total number of moves 7,626,550,755 8,172,206,119  
Atari tactics (%) 7.60 % 6.72 % 0.88 
Edge moves (%) n.a. 3.98 % n.a. 
Mogo patterns (%) 17.66 % 17.43 % 0.99 
Node moves (%) n.a. 33.41 % n.a. 
Previously skipped (%) 19.04 % 4.72 % 0.25 
Total before random 44.29 % 66.26 % 1.50 
Blind tenuki (%) 47.96 % 28.69 % 0.60 
Improved tenuki (%) 4.40 % 1.53 % 0.35 
Pass (no more) (%) 3.35 % 3.53 % 1.05 

 

Note: The complete dataset is based on 20 games in each category (self play 9x9 (4x2000), 13x13(4x2000), 19x19(4x2000)) merged in a 

single table. The proportions depend on configurable parameters: pAT[t], k of the "best k" lists, threshold for edges, pMP, the number of 
neighbors for nodes, the threshold for nodes and the number of neighbors for local contexts. The values used are those described in 4.8.1. 
The values are the total numbers and the mean of the percentages for each board size. n.a. = not applicable. 
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Even with that rule, it still plays only 44.29% of the moves from the "heuristics" with 47.96% of non 

improved random moves plus 4.4% of improved random moves. On the other hand, the learning playout policy 

plays 50% more moves from heuristics than the base policy (66.26%) and it is also worth noting that the 

number of moves played by recovering skipped moves and improving random moves decreases significantly 

(19.04% to 4.72% in the first case and 4.4% to 1.53% in the second case). We conclude this is an indicator of 

the learning playout policy identifying these moves as good and playing them as either edge moves or node 

moves. Playing less random moves (from 47.96% to 28.69%) is also consistent with the policy being stronger. 

  

4.8.3 Experiments in self play 

 

Table 4.9. Result of experiments isGO(base) vs. isGO(learning) 

 Won by learning 
n of total % 

Elo increase (95% CI) Expected Elo increase  
for equal CPU allocation 

Size 9x9 (4x2000) 663 of 1000 (66.3 %) 117.6 (94.7—140.4) (×1.38) 85.1 
Size 9x9 (4x8000) 147 of 200 (73.5 %) 177.2 (122.3—232.3) (×1.57) 131.6 
Size 9x9 (4x32000) 148 of 200 (74.0 %) 181.7 (126.5—237.2) (×1.58) 135.5 
Size 13x13(4x2000) 685 of 1000 (68.5 %) 135.0 (111.7—158.2) (×1.39) 101.7 
Size 19x19(4x2000) 382 of 600 (63.7 %) 97.4 (68.5—126.4) (×1.51) 55.8 

 

Note: The number of simulations is given for each CPU thread times the number of threads. E.g., 4x2000 = 4 CPU threads running 2000 
simulations each. The confidence interval for the Elo increase is the Agresti-Coull confidence interval with 95% significance converted into Elo 
increase. The expected Elo increase for equal CPU allocation is computed by subtracting the expected increase in the base policy by an extra 
number of simulations proportional to the increase in time (in brackets).  

 

 
Table 4.9 shows the improvement obtained by the learning playout policy for all board sizes and all CPU 

allocation times. The improvement even increases as the program becomes stronger. This is consistent with the 

online learned information becoming more accurate by larger sampling sizes. Since the learning playout policy 

is automatically learning correct answers to tactical fights like "2 liberty semeai" which are not coded in the 

base policy, a stronger base policy may result in less improvement. Also, the somewhat smaller improvement 

for board size 19x19 may be due to the number of playouts (4x2000) not feeding back enough information to 

the WLS arrays. More playouts (and maybe specific 19x19 tuning) should result in more improvement. The 

expected Elo increase for equal CPU allocation is computed as described above. 

 

Although these experiments are not strictly self-play experiments since the learning playout policy differs 

enough from the base playout policy to overcome typical shortcomings of self play experiments, we confirmed 

our findings with experiments against a reference opponent. 
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4.8.4 Experiments against a reference opponent 

 

Table 4.10. Experimental results in proportion of wins against Fuego 

 Won by isGO 
 

Elo increase (95% CI) Expected Elo increase  
for equal CPU allocation 

isGO(base) (4x4000) 68 of 300 (22.7 %) -213.2 -(166.0—260.5)  
isGO(learning) (4x4000) 114 of 300 (38.0 %) -85.0 -(44.4—125.7)  
Improvement (for learning) 15.3 %  128.2 (×1.37) 96.4 

 

Note: All results are for board size 13x13. The number of simulations is given for each CPU thread times the number of threads. E.g., 4x2000 
= 4 CPU threads running 2000 simulations each. The confidence interval for the Elo increase is the Agresti-Coull confidence interval with 95% 
significance converted into Elo increase. The expected Elo increase for equal CPU allocation is computed by subtracting the expected increase 
in the base policy by an extra number of simulations proportional to the increase in time (in brackets). 

 

 
The experiments played against Fuego confirmed the size of the improvement in a series of 13x13 games 

shown in table 4.10. The number of simulations is 4x4000 instead of the 4x2000 in the previous case to further 

approach the strength of Fuego. The resulting improvement is 128.2 Elo points for equal number of 

simulations, consistent with the confidence intervals of the 135 Elo point improvement in the previous 

experiment. The learning playout version was 37% slower than the base policy version; this has been used to 

estimate the 96.4 Elo points improvement for equal CPU allocation as described above. 

 

4.8.5 Conclusion about the experiments 

 

Besides the highly positive results obtained from a large sample of 4,260 games (3,000 games in the self 

play experiments, 600 games against a reference opponent, 600 for measuring the scaling factor and 60 for the 

descriptive statistics in table 4.8.) resulting in around 100 Elo point improvement even with an 

overcompensation for the slowdown, and improving with the number of simulations, two other indicators show 

that the whole idea is working as expected:  

 

1. The learning policy is finding the good moves automatically as shown by the reduction in the 

number of moves produced by the "avoid shape destruction" step and the lower "recycling" of 

skipped moves. Of course, playing less (35% of the number played by the base policy) "shape 

fixing" moves (named " Improved tenuki" in table 4.8) is in part a consequence of playing less 

random moves (60% of the number played by the base policy), but the reduction is much stronger 

in the former case than in the latter, the explanation being that the learning policy is learning the 

"good moves" and playing them before considering playing a random move. 
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2. The balancing of black and white moves described in 4.7.4 is contributing strongly to the strength 

of the learning playouts version. (A large number of specific experiments would be necessary to 

assess the influence of this particular feature, but the impression from the parameter tuning stage 

is that it may be responsible for around 30% of the improvement.) This is an indicator that both 

the edge and the node moves are better than random moves and producing uneven numbers of 

moves for each player when the game becomes uneven introduces bias as the leading player gets 

more help than the one in disadvantage. 

 

It is also worth noting that the policy combines well with any other policy and may be a successful 

replacement for more complicated tactical go specific heuristics. Also, since efficiently implementing (in 

automatically written assembly language as done in our program) local contexts of moves (see 4.3.2) to get as 

less as a 37% slowdown while computing 40 neighbor local contexts of all legal moves is a huge software 

development task, we have decided to make our HBS assembly language pattern management functions free 

software (described in 6.1.1) to encourage replication studies and implement learning playouts in both research 

and commercial programs. 
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Chapter 5. Application of MCTS in human genetics 

 

5.1 Genetics in a nutshell 

 

This description introduces necessary concepts required to understand the basic information flow in 

biological processes. It is required to describe the datasets and the problems defined in the further sections of 

this chapter. It is intended to provide the computer scientist with enough understanding of the whole picture to 

determine what specific mathematical models may apply. For a more biologically accurate description see [98] 

and for a longer description intended for mathematicians and computer scientists see [99]. 

 

Most Biological functions are regulated by proteins. Proteins can be depicted as molecular machines or 

parts of molecular machines that serve a specific biological function. Also, a protein may be an inhibitor 

whose presence disables operation of a molecular machine made of other proteins. In humans about 100 000 

proteins and their interactions are responsible of all biological functions and visible traits. A trait, also known 

as phenotype is a testable condition of a living being like having blue eyes or being lactose intolerant. Most 

traits are complex traits, i.e. the result of many biological functions and their interaction with the environment 

rather than a single one. The precise biochemical explanation of a process, i.e., the understanding of all 

proteins and the chemistry involved, is referred to as a biological pathway. 

 

All proteins are made in first place by linking a linear sequence of elementary "blocks" together and then 

folding that structure in space resulting in a 3-dimensional molecular machine or machine part. The elementary 

blocks are named amino acids and there are exactly 22 different amino acids. Sometimes amino acids are also 
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called peptides and the linear sequence of many is called a polypeptide. This sequence of amino acids 

forming a protein is also known as the primary structure of a protein. The secondary and tertiary structures of 

a protein define how it folds. The former applies locally and is easier to predict as it results from the shapes 

and electric charges of the molecules involved, the latter requires understanding of the whole protein as an 

articulated 3-dimensional structure. A protein usually has more than one possible folding solutions 

corresponding to local minima of its formation energy function. There is also a quaternary structure which 

defines how the protein interacts with different or identical proteins to form a complex structure. In this chapter 

we are only concerned about the primary structure of a protein. Nevertheless, the reader must bear in mind that 

folding of a protein determines its functionality and the tertiary structure often depends on the 

presence/absence of other proteins. I.e., folding may be the reason why a protein regulates the action of another 

protein. 

 

 

 

Figure 5.1. Proteins and DNA. 

 

Examples of proteins and DNA can be seen in figure 5.1. Top left shows the chemical structure of a 

peptide bond, top right a model of all the atoms in myosin, a protein that has a role in muscle contraction, 

bottom left a protein as viewed in a protein folding program. Bottom right, part of a DNA molecule.  
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The storage of information in biological systems, including the storage of information about the primary 

structure of all proteins, is encoded in DNA. DNA (deoxyribonucleic acid) is a macromolecule with a double 

helix shape. The external part, named the backbone chain, is made of sugars and phosphate groups joined by 

ester bonds and the internal part contains two long sequences of nucleotides coding information.  A nucleotide 

is a molecule that is linked on one side to the backbone chain and on the other side to its complementary 

nucleotide. There are only four nucleotides in DNA, namely A, T, G, and C (initials of adenine, thymine, 

guanine and cytosine). Current helix models support that the nucleotide A of one of the threads always pairs 

with a nucleotide T in the other thread of the double helix, and vice versa. The same is supported by C and G. 

Therefore, both threads, named strands, of a DNA molecule code the same information in a complementary 

way. The backbone does not contain other information than the sense in which the sequence of nucleotides can 

be read. The two strands containing the complementary sequences of nucleotides run in opposite directions. 

This is known as anti-parallel coding. A nucleotide is often referred to as a base or a base-pair because of the 

double nature of DNA. As bases always come in complementary pairs, one base identifies the pair. E.g., if one 

strand has the sequence AAGT the other always has TTCA coded in reverse order at the same place. 

 

A DNA molecule of 48 million to 250 million nucleotides in each of its two strands folded with an 

identifiable X shape under certain stages of the cell cycle is called a chromosome. Humans have 24 different 

chromosomes. Twenty two of them are identical in males and females and are known as autosomal. 

Autosomal chromosomes, also called autosomes, are identified by the numbers 1 to 22. The other two are the 

X and Y chromosomes. Male humans have one of each and females have two X chromosomes. Chromosomes 

are found in the nucleus of all human cells. Humans are referred to as diploids, meaning they have two copies 

of each chromosome inherited by recombination of analogous chromosomes of both parents, with the 

exception of the Y chromosome in males which is a copy of the father's Y chromosome since the mother has 

no analogous chromosome. 

 

A gene is the necessary information to code the primary structure of a protein. The process converting a 

sequence of bases in DNA into a sequence of amino acids forming a polypeptide has two phases known as: 

transcription and translation. Transcription is the process of creating a copy of part of the DNA sequence into 

RNA. The RNA is another macromolecule made of a chain of nucleic acids that are complementary of the 

original A,T,G,C named U,A,C,G (U for uracil). Transcription also involves many phases, among which, 

splicing cuts this molecule and links it again, removing some "chunks", to form the final sequence. 

Translation is the stage converting this modified sequence into the corresponding sequence of peptides. 
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Because of splicing, the sequence of a gene in the chromosome is not contiguous but is made of introns 

and exons. Introns are the parts of the sequence that will be cut off and removed by splicing and exons are the 

"chunks" of sequence that are found in mature RNA molecules that encode most of the sequence of peptides 

once translated. Because of splicing and the influence of present/absent proteins, the same gene can code 

different proteins resulting in around 23 000 genes coding around 100 000 proteins in humans. 

 

Translation reads the sequence 3 bases at a time. A group of three consecutive bases is called a codon. 

There are 64 different codons (the combination of 3 bases) to code 22 amino acids plus some control codons. 

An example of the latter being the stop codon which ends the translation. In fact, there are several stop codons, 

one of them is UAG (mnemonic: "You Are Gone"). Also, the same amino acid can be coded by different 

codons, E.g., The codons UAU and UAC both encode Tyrosine (one of the 22 amino acids). Two codons 

encoding the same amino acid are known as synonyms. 

 

 

Figure 5.2. A chromosome, splicing and translation. 

 

Figure 5.2 shows a chromosome to the left. In the top right, a DNA sequence is shown before and after the 

splicing of its introns. Bottom right a diagram shows the translation of messenger RNA and the synthesis of 

proteins. 

 

The complete genetic sequence of all bases of all chromosomes of a human individual is about 3.2 billion 

bases long and is named the genome of the individual. Except in the case of identical twins, the genome is 

unique for each individual. Comparing the genome of a large group of human individuals, most of the 3.2 
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billion of bases are identical in all of them with a small probability (around 1 in 1000) of finding differences at 

given places. A hypothetical genome sequence containing always the most frequent variant at each place is 

known as the reference genome. The variations found in individuals are several millions in the whole genome 

and are known as polymorphisms. Some of these variations are insertions and deletions of bases altering the 

length of the sequence, but most of them are just a replacement of one base by another. When that replacement 

has only two possible options, it is named a SNP (single nucleotide polymorphism) (pron. snip). 

 

The point where a SNP takes place (E.g., chromosome 17, base number 13571 of the reference genome 

UCSC Assembly Mar 2006) is known as a locus (pl. loci). To identify loci even when the reference genome 

changes, possibly resulting in base number changing due to insertions/deletions, an rs number is used as a 

unique identifier for the locus. 

 

Each of the two forms of a SNP (or more forms in other types of polymorphisms) is named an allele. 

Polymorphisms in the human genome are strongly statistically dependent on each other. This is known as 

linkage disequilibrium. As a result of this dependency, a set of 650 000 SNPs have been used to precisely 

predict the variation at around other 2 million SNPs from the whole genome [100]. Because of that, some sets 

of alleles at adjacent locations are transmitted together. I.e., some SNP variants are always seen in combination 

with always the same allele in another SNP. These associated sets of SNPs are known as haplotypes. 

 

Since, as mentioned, humans are diploids meaning they have two copies of the same chromosome at any 

given place, with the exception of the X and Y chromosomes in males and mitochondrial DNA in both sexes; 

each individual will have two alleles. These two alleles may be identical, in which case the individual will be 

called homozygous for that SNP, or different, (idem. heterozygous). Because of that, and because the focus of 

this work is on SNPs with two alleles, each individual will harbor one allele combination out of the three 

possibilities for a given locus. E.g., when the possible alleles are A or T, the possibilities will be: AA, AT and 

TT. The type TA is equivalent to AT. These combinations, or any set of them extending to other parts of the 

genome, are referred to as genotypes. Genetic polymorphisms, including SNPs, are also commonly known as 

markers especially when they are part of a model explaining a phenotype  (not the actual causal variant of the 

disease or trait) or in the field of population genetics. 

 

In case a single SNP is responsible of one trait, i.e., If all homozygous individuals with genotype AA at a 

given locus share the trait Z+ and all homozygous individuals with genotype TT share the complementary trait 

Z-, the following definitions apply: If all heterozygous individuals AT share the trait Z+, the allele A is said to 
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be dominant to the allele T and the allele T is recessive to the allele A. If the heterozygous individuals show 

an intermediate trait, the alleles A and T are said to be additive. 

 

When the parent is homozygous for a given SNP he/she can only transmit the allele that is present in 

his/her own genome. When the parent is heterozygous, he/she may transmit any of the two alleles to the 

descendants. The resulting genotype of the descendants will be constituted by the combination of the alleles 

transmitted by each parent. When a parent transmits an allele at a given locus L1, the probability that he/she 

transmits another allele at another locus L2 (in the same chromosome as L1) from the same copy of the 

chromosome used to transmit at L1 (rather than from his/her other analogous chromosome) is a decreasing 

function of the distance between the two loci d(L1, L2). This is explained by a mechanism that most commonly 

happen during division of germline cells termed as chromosomal crossover. Chromosomal crossover is a 

known cause of linkage disequilibrium. 

 

Nowadays, a large number of SNPs (e.g. one million) can be detected simultaneously for a given 

individual DNA sample using a DNA microarray (also referred to as DNA chip or SNP chip). A DNA 

microarray is merely a solid surface about 1 cm
2
 with a collection of spots, each spot containing a DNA probe, 

a small DNA chain that is complementary in sequence to a specific part of the genome and that will only give a 

positive signal if both sequences (the probe and the genome region) are fully complementary. The probe also 

contains a fluorophore, which is a covalently bonded molecule visible using microscopic fluorescent imaging. 

Fully complementary matches (i.e., matches with one allele at a particular SNP) will bind strongly each other, 

while partially complementary (i.e., the probe does not match with the allele at a particular SNP) bind weakly 

and are washed off by a specific process. The specificity of this process is therefore dependent on the flanking 

sequence of the SNPs, as each of them has a unique sequence that allows them to be distinguished by the 

process. 

 

The entire microarray is scanned at high resolution and a microarray processing program generates a file 

with the genotype calls at each given SNP for all SNPs genome wide. In the process, a quality control filter 

specific of each company and model remove low-confidence calls based on pre-established thresholds. Given 

the massive number of genotypes to be obtained for each sample, and the number of samples that are 

commonly used in these studies, one has to anticipate that a number of genotypes (<5%) may be missing from 

the studies.  

 



 

 

110 

The application of MCTS in genetics described in this PhD dissertation uses the GEM (Gene Etiology 

Miner) libraries, an original work of the author described below in 6.2. These libraries use the following input 

files: 

 

A genotype file: Each row is an individual identified by a unique integer ID and containing a large 

amount of genetic data. Microarray sizes in the current market usually contain range from 10,000 to 2 million 

SNPs. The variables of the dataset are the ID followed by the reference sequence of the SNP (identified by rs 

numbers) that uniquely identify the thousands of SNPs contained in the microarray. Each of these genetic data 

is a categorical variable with four possible values: RR, RA, AA and missing. RR means the subject is 

homozygous for the reference allele, RA is heterozygous and AA is homozygous for the alternative allele. The 

value will be missing if the company’s algorithm considers it to be a low confidence call based on pre-

established thresholds. 

 

A phenotype file: Each row is an individual identified by the same ID as in the genotype file and the 

other variables are traits of the individual. In general, traits can be sets of continuous and categorical variables. 

For simplification, in our study we will only consider a single categorical trait variable. In the biomedical field, 

most studies are referred to as case-control studies of unrelated subjects. This means each individual does or 

does not have the disease under study, the former is known as a case, the latter as a control. This is a particular 

case of categorical variable in {𝑐𝑎𝑠𝑒, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙}. Our application can also use 𝑘 categories as in our World 7 

experiments shown below in 5.8. Also, more complicated traits (e.g., multivariate traits) can be categorized as 

a previous step and the genetic factor explaining each category can be looked into as a categorical trait. 

 

SNP functionality files: These files contain a list of all SNPs identified by rs numbers and contain 

information for:  

 

a. The physical position of the locus (chromosome, position and reference genome)  

b. The gene or genes overlapping or nearby that position, which can be retrieved from a gene 

definition file. 

c. Coding details, if available. Only if the SNP at that locus is part of a coding region (exon). In such 

case, the file also specifies the functional prediction of the nucleotide change because of the SNP:  

It predicts no change of amino acid (it is a synonymous change), it predicts a codon change so 

that an amino acid would be changed by another (it is a missense change), it predicts a codon 

change in a way that an amino acid is changed by a stop codon, or the other way around (it is a 

nonsense change).  
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d. Information about established linkage disequilibrium. What other SNPs not present in the 

microarray can be predicted by the knowledge of this SNP and based on which SNP combination. 

e. Information about all the genome wide association studies (GWAS) that mention association 

between the SNP or the gene and diseases explored to date.  

 

SNP functionality files are compiled from public databases and updated regularly by the GEM system. In 

the MCTS experiments described in this chapter, SNP functionality files are not used. 

 

5.2 The genetic etiology problem 

 

The word etiology is used in medicine to refer to the cause of disease. Therefore, genetic etiology is about 

predicting risk of disease based on the knowledge of the genotype of studied individuals. In this context, that 

genotype represents the genotype composition at the entire genome or most of it, i.e. at genome wide level.  

 

In general, the problem of finding the genotype explaining a given number of traits, possibly using other 

information such as gene functionality, gene expression or trait networks, is known as the genotype/phenotype 

association problem. The Genetic Etiology Problem (GEP) described in this thesis is the particular case of 

finding the set of 𝑛 SNPs that best classifies the population in 𝑘 groups. This supersedes the case where 𝑘 = 2 

and categories are in {𝑐𝑎𝑠𝑒, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙} used as a rule in medical studies. The mathematical model used for this 

classification is described below in 5.5.2. Some caveats must be pointed out first. 

 

a.  Most diseases are complex diseases. This means that they do not always have the same causing 

gene (many genes) involved and, most likely, they are not due to genetics alone. Patients are 

diagnosed with a disease when they match a consensus definition for the disease. That definition is a 

collection of measurable symptoms, not their causes. Also, genetic association may apply even in 

cases where we would not expect it (e.g. many diseases classically considered to be due to 

environmental causes such as infections). For instance, patients satisfying the consensus definition of 

chronic obstructive pulmonary disease (COPD) are most of the time smokers or ex-smokers. The 

smoking habit should not have a genetic cause. Therefore, we would not expect a genetic association 

with COPD. Searching [101] we find out that: "Alpha 1-antitrypsin deficiency is a genetic condition 

that is responsible for about 2% of cases of COPD. In this condition, the body does not make enough 

of a protein, alpha 1-antitrypsin. Alpha 1-antitrypsin protects the lungs from damage caused by 

protease enzymes, such as elastase and trypsin, that can be released as a result of an inflammatory 
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response to tobacco smoke." Except in the case of highly rare diseases, we will scarcely find a genetic 

cause or a unique gene involved in the explanation of all the cases. Instead, for complex diseases, one 

should expect to find a couple dozen or even hundreds of associated SNPs constituting risk alleles. 

Also, bear in mind that because of linkage disequilibrium, alleles associated with risk may not be 

causal, but just statistically correlated with causal alleles, 

b. Since the problem is so loosely defined, the number of candidate models is very large. E.g., there 

are around 2.7×10
53

 sets of 10 markers chosen from 1 million SNPs. The risk of overfitting the model 

and the risk of false positive associations is huge. This is even worse since, as just mentioned, a sound 

association may apply only to a small proportion of the cases. This makes standard adjustment for 

multiple tests (e.g., Bonferroni adjustment) almost useless. In this thesis, we handle this by 

considering only very simple models and cross validating the classification. 

c. Also, caveats apply when association (i.e., statistical dependency) is used for classification (risk 

prediction). Strong association does not necessarily guarantee good classification or discrimination 

ability [102, 103]. The presence of unknown associations may also play a role. [104] states: " If there 

are 200 undiscovered locus associations, more than 7% of the subjects who are estimated to have 

triple the median risk of disease actually have less than the median risk."  This discussion is 

somewhat beyond the scope of this thesis, but this problem is taken care of using a mathematical 

model that is a classification method. 

d. Underlying biological pathways involved in disease pathogenesis are expected to be very complex. 

As mentioned in the introduction, SNPs can modify or completely abrogate the functionality of a 

protein. Also, a protein may only be functional in the presence/absence of another protein. This would 

justify mathematical models including the interactions of SNPs. Even with a very small number of 

SNPs such as 3, the resulting 27 combinations would require minimum population sizes of many 

hundreds to be able to observe the number of observations expected in each category within a few 

tenths of individuals. This is feasible in studies with sample sizes around a thousand or a few 

thousands individuals. Even in this case, the risk of false positives is huge due to the high number of 

models being tested. Beyond 3 SNPs, mining complex models without strong prior hypotheses is not 

feasible with realistic sample sizes. This must be accepted as a limitation of data mining without a 

priori information in such a loosely defined problem. If we consider simplifying the model, even if the 

model will not represent all possible biological complexity, we obtain models with 5 to 20 SNPs that 

classify cases and controls as seen in 5.8. This is suitable for an MCTS implementation and is 

consistent with the common disease–common variant hypothesis: A theory that many common 

diseases are caused by common alleles that individually have little effect but in concert confer a high 

risk. [105] 
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e. GWAS must be replicated. The NCI-NHGRI Working Group on Replication in Association Studies 

has made some recommendations in the form of a checklist [106]. 

Table 5.11. Recommendations on replication in GWAS. 

 Statistical analyses demonstrating the level of statistical significance of a finding should be 
published or at least available so that others can attempt to reproduce the reported 
results 

 Explicit information should be provided about the study’s power to detect a range of 
effects 

 The study should be epidemiologically sound, with careful accounting for potential biases 
in selection of subjects, characterization of phenotypes, comparability of environmental 
exposures (when possible) and underlying population structure in cases and controls 

 Phenotypes should be assessed according to standard definitions provided in the report 

 Associations should be consistent (within the range of expected statistical fluctuation) and 
reported for the same phenotypes across study subgroups or across similar phenotypes in 
the entire study group 

 Significance should not depend on altering the quality control methods beyond standard 
approaches that could change inclusion or exclusion of large numbers of samples or loci 

 Measures to assess the quality of genotype data should include results of known study 
sample duplicates or publicly available samples 

 The results for concordance between duplicate samples (if applicable) as well as 
completion and call rates per SNP and per subject should be disclosed, along with rates of 
missing data 

 A subset of notable SNPs should be evaluated with a second technology that verifies the 
same result with excellent concordance, because no technology is error-free 

 Associations with nearby SNPs in strong linkage disequilibrium with the putatively 
associated SNP should be reported (and should be similar) 

 The results of replication studies of previous findings should be reported even if the results 
are not significant 

 Testing for differences in underlying genetic heterogeneities in case and control groups 
should be performed and reported 

 Appropriate correction for multiple comparisons across all statistical tests examined 
should be reported. Comparison to genome-wide thresholds should be described. 
Similarly, for bayesian approaches, the choice of prior probabilities should be described 

Source: NCI-NHGRI Working Group on Replication in Association Studies. NATURE, Vol. 447, 7 June 2007. 
 

 

5.3 Cumulative genetic difference models 

 

Cumulative genetic difference models are models in which the association between each SNP individually 

and the phenotype or population is stated for each candidate marker one by one. The most significant markers 

following some of the criteria described below are added to a list of "n best candidates". For the particular case 
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of disease phenotypes, once the SNPs found in that list are replicated and confirmed by independent studies, 

the risk (probability of being a case) of an individual whose phenotype is unknown is assessed using some 

increasing function over the number of risk alleles found in his/her genome. 

5.3.1 Cochran-Armitage test 

 

We include this measure for the sake of completeness even if it is not used in our study. It is a simple 

extension of the 𝜒2  test for trends that is superseded by the measures described in the rest of this section. 

 

A simple way to assess the association between a categorical two state variable and a categorical two state 

phenotype (𝑐𝑎𝑠𝑒, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) is a 𝜒2  test. Since the categories for a SNP are three RR, RA, AR (missing data can 

be case-wise excluded in one variable studies) the corresponding test should consider the trend. The equivalent 

to a 𝜒2  test for 3 categories considering the trend is the Cochran-Armitage test for trends. 

 

For two phenotype categories, the trend test statistic is: 

 

 𝑇 =   𝑡𝑖(𝑁1𝑖𝑅2 − 𝑁2𝑖𝑅1)𝑘
𝑖=1   (5.32) 

 

 

where 𝑘 = 3, 𝑁𝑖𝑗  is the number of individuals (𝑖 = 1 𝑐𝑎𝑠𝑒𝑠, 𝑖 = 2 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) with allele (𝑗 = 1 𝑅𝑅, 𝑗 =

2 𝑅𝐴, 𝑗 = 3 𝐴𝐴), 𝑡𝑖  are weights described below 𝑅𝑖 =  𝑁𝑖𝑗𝑗𝜖 {1..3}  are row totals, 𝐶𝑗 =  𝑁𝑖𝑗𝑖𝜖{1,2}  are column 

totals and 𝑁 =  𝐶𝑗𝑗𝜖 {1..3} =  𝑅𝑖𝑖𝜖{1,2}  is the total.  Under the null hypothesis, this statistic is distributed: 

 

 
𝑇

 𝑉𝑎𝑟  𝑇 
~𝑁(0,1)  (5.33) 

 

being: 

 

 𝑉𝑎𝑟(𝑇) =
𝑅1𝑅2

𝑁
( 𝑡𝑖

2𝐶𝑖(𝑁 − 𝐶𝑖 )𝑘
𝑖=1 − 2 ·   𝑡𝑖𝑡𝑗 𝐶𝑖𝐶𝑗

𝑘
𝑗=𝑖+1

𝑘−1
𝑖=1 )  (5.34) 

 

 

The choice for 𝑡𝑖  is done as follows based on the inheritance model to be tested. In order to test a 

dominant model where allele R is dominant over allele A, the choice 𝑡 =  (1, 1, 0) is locally optimal. In order 

to test a recessive model where allele R is recessive to allele A, the optimal choice is 𝑡 =  (0, 0, 1). To test 

whether alleles R (or A) have additive effects, the choice 𝑡 =  (0, 1, 2) is locally optimal. For complex 

diseases, the underlying genetic model is often unknown but most often association studies assume the additive 

version of the test based on Bateson & Yule initial model from 1902 to explain genetics underlying complex 

and quantitative traits. 
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5.3.2 Allele frequency 

 

Another way to assess the difference is using the allele frequency in both populations. The frequency of 

Allele A in a SNP with possible alleles A and T and whose genotypes AA, AT and TT have been observed 

𝑛𝐴𝐴 , 𝑛𝐴𝑇  and 𝑛𝑇𝑇  times, is defined as: 

 

 𝑝𝐴 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝐴 =
𝑛𝐴𝐴 +

1

2
𝑛𝐴𝑇

𝑛𝐴𝐴 +𝑛𝐴𝑇 +𝑛𝑇𝑇
  (5.35) 

 

 

The simplest idea is to measure absolute allele frequency difference between the two populations. This 

idea has some limitations that have been improved by two other statistics. These statistics are generalized to 𝑘 

subpopulations, i.e., an 𝑘-category phenotype: the Weir & Cockerham 𝜃𝑆𝑇  genetic distance [107], and the 

informativeness of assignment index 𝐼𝑛  [108]. The author derived a program named SNPInfostats from his 

GEM library described below in 6.2 to compute these statistics for an entire set of SNPs returning a list of 𝑛-

highest values to asses North African influences and potential bias in case-control association studies in the 

Spanish population in [5]. 

 

5.3.3 The Weir & Cockerham θST genetic distance 

 

Is a variance based method for estimation of F-statistics, which measure the correlation of pairs of alleles 

between individuals within a sub-population. The null hypothesis assumes the absence of population structure. 

Alternatively, alleles found within a subpopulation may be found more often together than expected from the 

entire population.  

 

 𝜃𝑆𝑇 =
  𝜎𝐵

2
𝑢𝑖

  𝜎𝑇
2

𝑢𝑖
  (5.36) 

 

is defined over all alleles 𝑖 and all loci 𝑢. The total variance (in allele frequency) 

 

 𝜎𝑇
2 = 𝜎𝐵

2 + 𝜎𝑊
2 + 𝜎𝐼

2   (5.37) 
 

 is the sum of 𝜎𝐵
2  between subpopulation variance, 𝜎𝑊

2  between individuals within subpopulation 

variance, and 𝜎𝐼
2  between gametes (each half of the genotype) within individuals variance. 

 

When sample sizes are large enough, this statistic is approached by:  
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 𝜃𝑆𝑇 =

 𝑛𝑗 (𝑝 𝑗−𝑝 )2
𝑗

(𝑘−1)𝑛 

𝑝 (1−𝑝 )
  (5.38) 

 

 

where 𝑝𝑗  and 𝑛𝑗  are the observed allele frequency and sample size of the 𝑗-th population, and 𝑝  and 𝑛  are 

the average allele frequency and sample size for the entire population.  

 

The distribution of this statistic is not used to compute a p-value. The statistic defines an order over the 

SNPs and the 𝑛-highest values are taken in consideration. If the former was required, an empirical distribution 

could be computed using Monte-Carlo methods. 

 

5.3.4 Informativeness of assignment index In 

 

This index has an information theoretic motivation. It is a measure of Kullback-Leibler information 

divergence [79] under certain number of assumptions, which are not tested.  

 

 𝐼𝑛 =  (−𝑝𝑗 log 𝑝𝑗 +  
𝑝 𝑖𝑗

k
log  𝑝𝑖𝑗

𝑘
𝑖=1 )𝑛

𝑗=1   (5.39) 
 

 

where 𝑘 is the number of populations  𝑖𝜖{1. . 𝑘}, 𝑛 = 2 is the number of alleles at a given locus 𝑙. The 

relative frequency for allele 𝑗 of locus 𝑙 in population 𝑖 is 𝑝𝑖𝑗
(𝑙)

 and 𝑝𝑗
(𝑙)

=   
𝑝𝑖𝑗

(𝑙)

𝑘

𝑘
𝑖=1  

 

[108] states: "When the minimum description length principle [109] is used, up to a constant, In equals the 

expected reduction, upon observation of J, in the length of the optimal coding of the random variable Q. It 

gives the average (taken across populations) Kullback-Leibler information for distinguishing population-

specific allele frequency distributions from the distribution for the “average population.” For k = 2, 𝐼𝑛  is 

similar to a previously proposed statistic based on Kullback-Leibler information." 

 

As in the case of the allele frequency difference and Weir & Cockerham 𝜃𝑆𝑇  genetic distance, no 

theoretical p-value is computed, a list of 𝑛-highest values is returned instead. 
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5.4 Ancestry assignation in genetic studies. 

 

Teasing apart population sources of human samples is extended in most human studies, be it focused on 

medicine or forensics. The inference of individual ancestry (commonly termed ―global ancestry‖) is very 

useful in some grounds such as for the improvement of the understanding of complex diseases [110-112] and 

pharmacological responses [113, 114], as well as in the forensic identification of sample donors [115]. In this 

context, ancestry of an individual is taken to mean the inherited make up resulting from the genetic influences 

of an individual’s biological ancestors. Self-declared racial or ethnic categories have been widely used for 

ancestry assignation in the biomedical literature. However, racial and ethnic categories are proxies for a wide 

range of factors, potentially genetic and non-genetic. Therefore, while such labels are important for testing, 

diagnosis and treatment of human diseases and other biomedical contexts [116], it is widely recognized that 

self-declared ancestry is error prone [117] and is not an adequate descriptor of the biogeographical ancestry of 

an individual [118]. This issue has been shown to be extremely important in the context of complex diseases, 

where ancestry ascertainment assists in the interpretation of results from the most heavily applied designs, i.e. 

case-control association studies, since unrecognized/unconsidered population subdivisions can severely bias 

association results if not appropriately adjusted for. Thus, identifying a panel of polymorphims capable of 

recapitulating individual ancestries is therefore important for the medical sciences. In particular, such panel 

would offer a cost-efficient tool for independent targeted association studies on particular genes or genomic 

regions (termed replication studies), in order to bolster the support of initial findings and to be able to examine 

the generalizability of findings to other populations while maintaining standards of the field (see Table 5.11) 

even when limited budget is available. [119, 120] constitute two fabulous examples of the issues derived from 

the presence of population subdivisions (commonly known as population stratification) in association studies 

of complex diseases. 

 

Broad-scale genetic analyses among worldwide populations have shown that about 87-96% of human 

genetic variation is attributable to differences among individuals, while only 4-13% is due to differences 

between populations [121]. Congruently, genome wide data allows recapitulating groups of individuals that 

match closely with groups defined by self-identified race or continental ancestry [122]. Therefore, genetic data 

can reveal an individual’s full ancestry, but only to continental and sub-continental levels [123]. 

 

Several recent studies have focused on identifying small panels of SNPs showing large allele frequency 

differences between populations to serve for ancestry inference, termed ancestry-informative markers 
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(AIMs), to allow recapitulating recent population origins of an individual’s genome. However, as markers in 

sexual chromosomes or in genomic regions where no crossover occurs can yield conflicting results [124], 

particularly for populations that have experienced sex-mediated genetic influences [125], these identifications 

have focused on autosomal genetic markers. In these studies, AIM sets have been selected based on individual 

marker tests after a careful removal of the underlying correlation (i.e. linkage disequilibrium) is made, so that 

the resultant AIM sets are composed of SNPs that are far apart in the genome [126]. Typically, these studies 

have prioritized the SNPs to be picked up for ancestry assignment based on ancestry information content 

measures such as the ones described in Chapter 5, namely 𝐼𝑛 , 𝜃𝑆𝑇  and ∆ [108, 127], or Principal Component 

Analysis (PCA) eigenvalues [128, 129]. In addition, these methods have relied on the ancestry information 

recapitulated by single markers, which is not necessarily the same as the one extracted through multipoint 

(combined) analyses [130]. 

 

PCA has been successfully applied to describing sets of AIMs, by retaining the top hundreds that can 

accurately reconstruct population differences, that are used to control population stratification in association 

studies [129]. However, such studies have only been attempted to derive AIMs for European and American 

populations [126, 129, 131-134] so that an extension of such studies to bring up AIMs for other continents 

continues to be a necessity. In particular, AIMs for populations whose recent ancestors are not represented by 

any of the currently used reference samples (e.g. HapMap) are lacking. In fact, this was the main problem we 

faced when aimed to apportion ancestry in an admixed population from Europeans and North Africans [5]. In 

this context, providing AIM sets for worldwide use is of great value for ancestry inference across human 

population groups around the world. 

 

In an attempt to describe an efficient and small set of AIMs for worldwide population sets different 

authors have put forward less than 15 carefully ascertained AIMs for accurate assignation to the 3-4 out of the 

5 major continental population subdivisions that have been evidenced across studies [127, 128].  [135] also 

obtained a set of AIMs for diverse global populations by employing PCA repeatedly through a population-

based decision tree to allow optimal individual assignations to populations, supporting that only 50 and 350 

carefully selected SNPs would allow precise individual classification to 5 and seven continental regions, 

respectively, using a consensus nearest-neighbor algorithm with cross validation. Noteworthy, the authors 

found that classification models failed mostly when aiming to classify individuals of European descent (65.4% 

accuracy with 300 SNPs). 
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5.5 The n-factor GEP 

 

In section 5.3 we described two simple (5.3.1 and 5.3.2) and two more advanced (5.3.3 and 5.3.4) 

measures of association between a SNP and a categorical phenotype. The simplest idea would be to evaluate 

association for each SNP individually and make a list of the most associated SNPs. This was done in the first 

implementation of our GEM system in [5]. Such models work to some extent, but are far from being the best 

𝑛-factor models found, as we will see in the experimental results in 5.8. 

 

5.5.1 Classification models with n SNPs 

 

From a biological point of view, 𝑛-factor models can aim at more ambitious targets like inferring the 

biological pathway [136], detecting haplotype [137] or structuring traits in a network [138]. This is beyond the 

scope of our study since it requires additional (biological) knowledge and we intend to keep our 

implementation of MCTS to the n-factor GEP as simple as possible. 

 

Interest in discovering combinations of SNPs with combined high association, rather than just 

combinations of (individually) highly associated SNPs, has only being paid attention recently [39] and it is a 

hard and not much explored computation field today. Besides the caveats already mentioned in 5.2, this 

problem is a case of the well known statistical model selection problem [139-143]. Among the mathematical 

reasons explaining why the "best model" surpasses the "model of the best", correlation and information 

redundancy between the variables should be noted. In biological terms: linkage disequilibrium and high 

complexity of the pathways. This problem has a very large spectrum of applications including medical science, 

forensics, population genetics, agriculture, etc. 

 

In this dissertation, we define the n-factor GEP as the problem of finding set of n SNPs that best 

classifies a population based on a categorical phenotype using the following algorithm. 

 

5.5.2 The classification method 

 

A population from which we have genotype and phenotype files as described in page 110 is divided in 

two sets: the learning set 𝑃𝑡
𝐿 and the test set 𝑃𝑡

𝑇. Note that phenotype is used here only to assign the group 

membership of each sample and can be generally referred to as the categories or populations. This is done 𝑛𝐶𝐷  
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(number of cross-validation draws) times 𝑡 𝜖 {1. . 𝑛𝐶𝐷} to avoid the classification depending on specific cross-

validation draws. The whole classification procedure is repeated each time and the result is averaged. The size 

of the test set  𝑃𝑡
𝑇  is a configurable parameter. 

 

Let 𝐺 = {𝑅𝑅, 𝑅𝐴, 𝐴𝐴} be the set of possible genotypes for each SNP 𝑖 ∈ {1, . . 𝑁}, 𝑁 is the number of 

SNPs in the model and  𝐺·𝑖
  is a probability distribution over 𝐺. For each subpopulation k ∈ {1, . . 𝐾} where 𝐾 is 

the number of categories in the phenotype, 𝐺𝑘
  is a vector formed by the 𝐺𝑘𝑖

  distributions learned ignoring 

missing data in the population 𝑃𝑡
𝐿 at each step 𝑡 𝜖 {1. . 𝑛𝐶𝐷}.  

 

Let 𝑋 be an individual of the test set 𝑃𝑡
𝑇 whose population is unknown (for the sake of classification) and 

whose genotype at locus 𝑖 is 𝑋𝑖 ∈ {𝑅𝑅, 𝑅𝐴, 𝐴𝐴}. We define the function: 

 

 𝑙𝑜𝑔 𝑋, 𝐺𝑘
  =  log(𝑝𝑟𝑜𝑏{"𝑋𝑖  𝑖𝑠 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑁

𝑖=1 𝐺𝑘𝑖 " })  (5.40) 
 

 

Since, under the hypothesis of statistical independence between the SNPs, the probability that 𝑋 is drawn 

at random from the distribution 𝐺𝑘
  is the product of the probabilities that each of his SNPs 𝑖 is drawn from 

each distribution 𝐺𝑘𝑖
 , 𝑙𝑜𝑔 𝑋, 𝐺𝐿

   is the logarithm of the probability of "𝑋 is drawn at random from the learned 

distribution of the subpopulation 𝑘" under the mentioned hypothesis. Abusing language, we shorten the phrase 

to "𝑋 is a 𝑘". 

 

To keep our classification method simple and statistically sound, we based it on the likelihood ratio. Since 

the categorical phenotype has more than 2 categories, we used the likelihood ratio test for composite 

hypotheses [144]. It is a generalization of the widely used likelihood ratio test created by Pearson in 1933 [145] 

and has the same value when 𝐾 = 2. 

 

We compute the 𝑙𝑜𝑔 𝑋, 𝐺𝑘
   for each  𝑘 ∈ {1, . . 𝐾} and note the categories 𝑘(1) and 𝑘(2) corresponding to 

the highest and second highest values of 𝑙𝑜𝑔 𝑋, 𝐺𝑘
  . 

 

For each individual 𝑗 𝜖 [1. .  𝑃𝑡
𝑇 } we note the category it most likely belongs 𝑘𝑗

(1)
 and compute 

 

 

 Λj = 𝑙𝑜𝑔  𝑋, 𝐺
𝑘𝑗

(1)  − 𝑙𝑜𝑔 𝑋, 𝐺
𝑘𝑗

(2)    (5.41) 
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Note that Λj is a measure of the confidence we have in the classification 𝑘𝑗
(1)

 for individual 𝑗. Λj is a log-

likelihood ratio. Since the denominator of the likelihood ratio is the likelihood of the alternative hypothesis, it 

may not seem obvious why we replaced the alternative hypothesis of a composite hypothesis (which should be 

the complementary of the null hypothesis "𝑋 is a 𝑘(1)") by the second-most likely hypothesis "𝑋 is a 𝑘(2)". We 

did so after experimenting with different weights for the second and all the other hypotheses. It turned out that 

the classification obtains better results from discriminating between the most-likely and the second-best, rather 

than from the "most likely being right" vs. the "most likely being wrong". 

 

The evaluation of each model is simple. To avoid having to compensate between models classifying 

different numbers of individuals, all models classify exactly 95% of the individuals in 𝑃𝑡
𝑇. From the total 

number  𝑃𝑡
𝑇  of  individuals the 5% with lowest Λj are discarded. The remaining 95% are classified, without 

having used their known phenotypes so far, the classified phenotypes are compared with the real phenotypes. 

The number of well classified individuals averaged over 𝑛𝐶𝐷  complete repetitions of the classification method 

are used as the value of a model: 

 

 V 𝑀 =
1

𝑛𝐶𝐷
  𝛿

𝑘𝑗
(1)

,𝑘𝑗
 𝑃 · 𝐼Λ j  ≥ Λ t

c 5%
 𝑃𝑡

𝑇  

𝑗 =1
𝑛𝐶𝐷
𝑡=1   (5.42) 

 

 

where 𝑘𝑗
(𝑃)

 is the real phenotype category of the individual 𝑗, 𝛿 is Kronecker's delta, 𝐼 is the indicator 

function and Λt
c5% is 5

th
 percentile of distribution of the log-likelihood ratio Λj at each cross-validation draw 𝑡. 

 

In short, the n-factor GEP is the problem of finding the model 𝑀 of 𝑛 SNPs maximizing 𝑉(𝑀) on a given 

population 𝑃 defined by its genotype and phenotype files. 

 

 

5.6 The MCTS implementation of the n-factor GEP 

 

 We implemented MCTS to search the space of 𝑛-SNP combinations among hundreds of thousands of 

candidates. Each tree node represents a model. Each node is created by expanding its parent adding one SNP to 

the parent model starting from the void root node. 
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Figure 5.3. Example of an MCTS run evaluating a 5 SNP model with only 9 candidates. 

 

The initial list containing possibly a couple of million SNPs is filtered and evaluated on 𝑉𝑖
(𝑝)

= 𝑤1 · 𝐼𝑛 +

𝑤2 · 𝜃𝑆𝑇 + 𝑤3 · ∆ a weighted combination of 𝐼𝑛  as defined in equation 5.39, 𝜃𝑆𝑇  as defined in equation 5.38 

and a generalized measure of allele frequency difference ∆. 

 

 

 ∆=
1

𝑛𝑘𝑘
   𝑝𝐴

𝑖 − 𝑝𝐴
𝑗  𝑘

𝑗=𝑖+1
𝑘−1
𝑖=1   (5.43) 

 

 

where 𝑝𝐴
𝑖  is the allele frequency as defined in equation 5.35 for the subpopulation 𝑖 and 𝑛𝑘𝑘  is the number 

of different 2-element combinations of 𝑘 subpopulations. This list 𝐿𝑎𝑝  of approximately 50,000 SNPs above 

some threshold criteria is sorted by 𝑉𝑖
(𝑝)

 and the candidate SNPs are ranked. This rank is used as a priori 

information for MCTS and also for the GrQS method described below in 5.7.2. The weights (𝑤1, 𝑤2 , 𝑤3) were 

adjusted by tuning the GrQS algorithm before MCTS was implemented and used without any further tuning in 

the MCTS algorithm.  

 

Figure 5.3 shows an example of an MCTS run for 𝑛 =  5. The models are composed by introducing the 

SNPs defined by their rank in the a priori table (1 to 9 in the example). E.g., 𝑀1 is a 1 SNP model using the 

highest ranked a priori SNP, 𝑀13  is a 2 SNP model adding the 3
rd

 ranked SNP to the previous one, etc. The 

search starts considering the first model which is the child of root maximizing equation 5.44. Let's assume it is 
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𝑀1. After that, the same applies to the children of 𝑀1 and 𝑀13  is reached in the example. In the next step 𝑀134  

is reached and, since it is a leaf and the current model has only 3 SNP instead of 5, two more SNPs not already 

in the model are added to it as a "random playout". The final model is always an 𝑛-SNP model and is evaluated 

as described in 5.5.2. Its value is propagated in the tree upwards in order: 𝑀134 , 𝑀13 , 𝑀1, 𝑟𝑜𝑜𝑡. 

 

Each node 𝑖 keeps the following information:  

 

 𝑉𝑖
(𝑝)

 is the a priori value obtained by weighting 𝐼𝑛 , 𝜃𝑆𝑇  and ∆ as described above for the SNP 

which is added to the parent model at the node. 

 𝑛𝑖  is the number of times the node has been visited in the search. 

 Σ 𝑉 𝑀𝑖·   is the sum of all the evaluations of models built by adding SNPs to this model in the 

previous search runs. 

 The necessary tree structure (pointer to its parent, first child and next sibling) and the necessary 

model information (IDs of SNPs included). 

 

The path down the tree is done finding at each step the child 𝑖 maximizing the following Vi 

 

 Vi =
Σ 𝑉 𝑀𝑖·  +𝑉𝑖

(𝑝)

𝑛𝑖 +1
+ 𝐾 ·  

log (𝑛𝑝 𝑖 +1)

𝑛𝑖+1
  (5.44) 

 

 

where K is the constant used in the simplest form of UCT. Also as in the simplest version of UCT, 𝑛𝑝 𝑖  is 

the number of visits of the parent node of 𝑖. 

 

When a leaf node is reached and the number of SNPs is below 𝑛, a random selection of SNP is added by a 

non-uniform random draw. The candidate SNPs are drawn using a Bradley-Terry model [146] with a weight 

system that uses the rank in the a priori table 𝐿𝑎𝑝  in inverse order 𝑤𝑖 = 𝑛𝑎𝑝 − 𝑟𝑖 + 1 where 𝑛𝑎𝑝  is the size of 

the a priori table and 𝑟𝑖  is the rank of SNP 𝑖. E.g., in a table with 50000 SNPs the 6
th
 ranked will have a weight 

49995 and the last one a weight of 1. Only the SNPs with ranks above the last already in the model are 

considered since, to avoid repetitions, models are always considered with their SNPs in increasing rank in the  

candidate table 𝐿𝑎𝑝  order. 

 

When a leaf node is reached, the number of SNPs is below 𝑛 and the leaf already has previous visits, the 

leaf is expanded. Expansion is just adding all children to the tree with zero visits and their a priori value copied 
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from the candidate table 𝐿𝑎𝑝 . The first candidate added is the successor of the last one already in the model to 

avoid wasting computer resources by inserting the same model more than once in the tree. 

 

When a final 𝑛-SNP model is reached, the model is added to 𝐿𝑏𝑒𝑠𝑡 , a list of best models found so far, 

when its value is above that of the worst model in the list. 

 

When the final 𝑛-SNP was obtained entirely in the tree (without a random playout) its value is penalized 

(by a small value like the 2%) before propagating upwards to the tree. This is necessary to avoid the algorithm 

deterministically repeating the same path when the best model is found in the tree, wasting CPU time since it 

ends further exploration. Note that unlike the playout, the tree search is deterministic. The penalization favors 

the exploration of all siblings in the tree whose value is close to that of the nodes in the repeated path and will 

find and alternative promising path to be explored in a natural way. It was tuned experimentally starting with 

small values and increasing the value until path repetition was avoided fast enough in preliminary tests. 

 

Tree update is done by increasing the number of visits and adding the value of the final model to the 

Σ 𝑉 𝑀𝑖·   field of the nodes in the path visited. Update is done starting with the leaf and visiting the parent of 

each node until root is updated. 

 

When the assigned computation time is over, the list of best models 𝐿𝑏𝑒𝑠𝑡  is returned.   

 

 

5.7 Other methods used in the experiments 

 

This section describes the methods used in the experimental section to compare with MCTS. There is no 

established regression model to predict phenotype that could help comparing our results with those of other 

authors. Neither is there a public data set intended for that purpose and no algorithm is a de facto standard 

since the field is still in its early days. For that reason, we used two simple methods, one is the top list of n 

SNPs which is a mandatory reference point and provides evidence supporting the claims made in 5.5.1 that the 

"best model" in not the "model of best" and the other is a highly optimized method used to select categorical 

factors in statistical regression with suitable properties for the experiments. 
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5.7.1 TopN: Best of n-best based on genetic difference models 

 

TopN returns 3 models which are the models formed by 𝑛-SNP with the highest values of:  

 

 List 1. 𝐼𝑛  as defined in equation 5.39  

 List 2. ∆ as defined in equation 5.43 

 List 3. 𝜃𝑆𝑇  as defined in equation 5.38  

 

This algorithm is just a reference point and does not benefit from additional CPU allocation. The statistics 

in the candidate list 𝐿𝑎𝑝  described in 5.6 is computed in advance. This algorithm just evaluates the three 

models and returns the result for comparison with the other two algorithms.  This is done almost immediately 

with no substantial part of the allocated CPU time used. 

 

5.7.2 GrQS: Greedy queued search applied to the n-factor GEP 

 

GrQS a greedy incomplete brute force search using an infinite priority queue. The priority queue has a 

physical size in excess of the number of models that could be evaluated in the allocated CPU time. For that 

reason, when the queue is filled, models with a priority below that of the worst model in the queue are 

discarded. This behavior is logically equivalent to using an infinite priority queue since the discarded models 

would not have been evaluated in time anyway. The implementation of the priority queue is very efficient due 

to the use of AA trees [147]. This algorithm uses the same candidate list 𝐿𝑎𝑝  described in 5.6. Just like the 

MCTS algorithm, the algorithm starts with an empty model and adds SNPs to it one by one in a similar way as 

the tree expansion works in MCTS. Instead of evaluating the models, their value is estimated which is much 

faster. The estimated value of a model is Vi
 :  

 

 Vi
 =  Vp(i) + 𝐾𝑛(𝑝 𝑖 ) · 𝑉𝑖

(𝑝)
  (5.45) 

 
 

where Vp(i) is the (evaluated) value of the parent, 𝐾𝑛(𝑝 𝑖 ) is a constant (a slope) that represents the 

expected increase in value due to adding one SNP to the model and is therefore a function of the number of 

SNPs in the parent model 𝑛 𝑝 𝑖   tuned by averaging many 𝑛-SNP models in preliminary tests. As before, 

𝑉𝑖
(𝑝)

 is the a priori value breaking the ties within the children of the same parent anything else being equal in 

that case. This estimated value is the priority with which the models wait in the queue. 
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The algorithm works as follows: The queue is initialized with all the children of the void model (the 1 

SNP models) estimated by equation 5.45. At each step of the algorithm, the model with the highest priority is 

read out of the queue and evaluated using the classification procedure described in 5.5.2. If the model has less 

than 𝑛 SNPs, all its children are estimated by the equation 5.45 and pushed to the queue with their 

corresponding priorities. If the model has 𝑛 SNPs, the model is added to 𝐿𝑏𝑒𝑠𝑡 , a list of best models found so 

far, when its value is above that of the worst model in the list. 

 

Just like in MCTS, when the assigned computation time is over, the list of best models 𝐿𝑏𝑒𝑠𝑡  is returned. 

Unlike the MCTS algorithm, this algorithm also evaluates models with less than 𝑛 SNPs. A poor choice of the 

constants 𝐾𝑛(𝑝 𝑖 ) (too optimistic estimation does not fit approximately the real values obtained from 

evaluation) could result in too much exploration (rather than exploitation) and the algorithm not reaching 𝑛-

SNP models fast enough. On the opposite side, too pessimistic estimation could result in a model immediately 

reaching 𝑛 SNPs and the algorithm changing only the final SNPs in the model without exploring alternatives to 

the first SNPs in it. Besides these important caveats, the algorithm is not hard to tune. Because of the 

hierarchical structure of the models, analyzing the pace at which models representing alternatives for the first 

SNP reach the end of the queue gives excellent feedback to tune the algorithm. For the problems in the 

experiments, the same set of values could be used across the three problems resulting in suitable balance 

between exploration and exploitation. These values were adjusted to match the allocated CPU time (more 

exploration for larger times). Automatic tuning could be a future improvement to consider. 

The need of tuning is also an argument in favor of MCTS, whose only tunable constant K is far easier to 

interpret and the algorithm is robust enough not to need any tuning if the evaluation function had been scaled 

to a fixed range, e.g., [0, 1].  

 

In favor of GrQS, this algorithm converges to an exhaustive brute force search if the problem had been 

small enough for this to be feasible. Limiting the number of candidate SNPs the algorithm would efficiently 

find the best model without ever repeating an evaluation. MCTS is known to converge to perfect play when 

applied in a minimax search to a {𝑤𝑖𝑛, 𝑙𝑜𝑠𝑠} output, but in optimization problems, the algorithm could cycle 

even with the penalization described in 5.6. The number of models computed more than once is also very high, 

except when the search space is so big that the explored part is scarce even for the highest CPU times like in 

the experiments. This issue is further discussed in 7.2.6 and references to MCTS applied to optimization 

problems can be found in 7.1.2. 
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5.8 Experimental results 

 

We conducted a series of experiments to compare the three algorithms described above: MCTS (see 5.6), 

GrQS (see 5.7.2) and TopN (see 5.7.1). We used a dataset of 1043 human individuals from the entire planet 

from the public genome wide dataset Human Genome Diversity Project [40] we created three different 

problems, World 7, World 5 and World 3 dividing the global human population in 7, 5 and 3 categories 

respectively. We used standardized categories described in [41] for 5 and 7 categories and removed the less 

represented categories: Americas (108 individuals in all) and Oceania (36 individuals) for the World 3 

problem. 

 

Each of the 3 problems (World3, World 5 and World 7) was run by each of the 3 algorithms (MCTS, 

GrQS and TopN) with 3 different model sizes (4 SNPs, 8 SNPs and 12 SNPs) and with 3 different CPU 

allocation times (10 minutes, 40 minutes and 160 minutes). Note that the TopN algorithm does not scale with 

CPU allocation and always returns the same results without using the allocated time.  

 

The number of individuals in the test set  𝑃𝑡
𝑇  was 400 for the World 7 and World 5 problems and 300 for 

World 3. The number of individuals used for learning  𝑃𝑡
𝐿  were 643 in the World 5 and World 7 problems and 

599 in World 3. As mentioned, the 5% of individuals with lower log-likelihood ratio Λj as explained in 5.5.2 

were not classified. I.e., the value of each model is a number in {0, . . 380} of well classified individuals for 

World 5 and World 7 and {0, . . 285} for World 3. 

 

Each time the model is evaluated, the classification procedure is repeated 𝑛𝐶𝐷 = 5 times on different 

randomly drawn cross-validation sets. The cross validation populations are pre-computed. Therefore, each time 

the same model is evaluated, it returns exactly the same value: the average of 5 cross-validation draws on the 

pre-computed population.  
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Table 5.12. Human Genome Diversity Project populations in our problems. 

 Pop. name Origin Count In World 7 In World 5 In World 3 

1 Bantu Kenya Kenya 12 Africa Africa Africa 
2 Bantu South Africa South Africa 8 Africa Africa Africa 
3 Biaka Pygmy Central African Republic 32 Africa Africa Africa 

4 Mandenka Senegal 24 Africa Africa Africa 
5 Mbuti Pygmy Democratic Republic of Congo 15 Africa Africa Africa 
6 San Namibia 6 Africa Africa Africa 

7 Yoruba Nigeria 24 Africa Africa Africa 
8 Colombian Colombia 13 Americas Americas --- 
9 Karitiana Brazil 24 Americas Americas --- 

10 Maya Mexico 25 Americas Americas --- 
11 Pima Mexico 25 Americas Americas --- 
12 Surui Brazil 21 Americas Americas --- 

13 Cambodian Cambodia 11 E Asia E Asia E Asia 
14 Dai China 10 E Asia E Asia E Asia 
15 Daur China 9 E Asia E Asia E Asia 

16 Han China 34 E Asia E Asia E Asia 
17 Han N China China 10 E Asia E Asia E Asia 
18 Hezhen China 9 E Asia E Asia E Asia 

19 Japanese Japan 29 E Asia E Asia E Asia 
20 Lahu China 10 E Asia E Asia E Asia 
21 Miao China 10 E Asia E Asia E Asia 

22 Mongola China 10 E Asia E Asia E Asia 
23 Naxi China 9 E Asia E Asia E Asia 
24 Oroqen China 10 E Asia E Asia E Asia 

25 She China 10 E Asia E Asia E Asia 
26 Tu China 10 E Asia E Asia E Asia 
27 Tujia China 10 E Asia E Asia E Asia 

28 Xibo China 9 E Asia E Asia E Asia 
29 Yakut Siberia 25 E Asia E Asia E Asia 
30 Yi China 10 E Asia E Asia E Asia 

31 Balochi Pakistan 25 CS Asia Eurasia Eurasia 
32 Brahui Pakistan 25 CS Asia Eurasia Eurasia 
33 Burusho Pakistan 25 CS Asia Eurasia Eurasia 

34 Hazara Pakistan 24 CS Asia Eurasia Eurasia 
35 Kalash Pakistan 25 CS Asia Eurasia Eurasia 
36 Makrani Pakistan 25 CS Asia Eurasia Eurasia 

37 Pathan Pakistan 23 CS Asia Eurasia Eurasia 
38 Sindhi Pakistan 25 CS Asia Eurasia Eurasia 
39 Uygur China 10 CS Asia Eurasia Eurasia 

40 Adygei Russia Caucasus 17 Europe Eurasia Eurasia 
41 Basque France 24 Europe Eurasia Eurasia 
42 French France 29 Europe Eurasia Eurasia 
43 Italian Italy (Bergamo) 13 Europe Eurasia Eurasia 

44 Orcadian Orkney Islands 16 Europe Eurasia Eurasia 
45 Russian Russia 25 Europe Eurasia Eurasia 
46 Sardinian Italy 28 Europe Eurasia Eurasia 

47 Tuscan Italy 8 Europe Eurasia Eurasia 
48 Bedouin Israel (Negev) 48 Middle East Eurasia Eurasia 
49 Druze Israel (Carmel) 47 Middle East Eurasia Eurasia 

50 Mozabite Algeria (Mzab) 30 Middle East Eurasia Eurasia 
51 Palestinian Israel (Central) 51 Middle East Eurasia Eurasia 
52 Melanesian Bougainville 19 Oceania Oceania --- 

53 Papuan New Guinea 17 Oceania Oceania --- 
 

Note: The two major human categorizations used in our problems: World 7 and World 5 were taken from Noah A. 

Rosenberg, "Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting for atypical and 
duplicated samples and pairs of close relatives". World 3 was created removing the two categories with smaller population 
counts in the World 5 dataset. 

 

 

Table 5.12 shows the categories for each of the problems in colors grouping the 53 populations in the 

HGDP dataset in standardized classes. 
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Some algorithm-specific results and settings used in the experiments were: 

 

 MCTS specific: The UCT constant 𝐾 in equation 5.44 was optimized at  𝐾 = 40. 

 TopN specific: From the 3 lists, the best classifier across all experiments 3 (problems) ×  3 

(number of SNPs) ×  1 (all allocation times return the same models): The list based on maximum 

values of 𝐼𝑛  was the best 5 times of 9. The lists based on 𝜃𝑆𝑇  and ∆ were both the best twice in 9. 

The list based on 𝜃𝑆𝑇  was the worst (4 of 9), 𝐼𝑛  was the worst (3 of 9) and ∆ was the worst (2 of 

9). Also, when weighting the influence in the list of candidates 𝐿𝑎𝑝 , best results were obtained by 

giving more weight to 𝐼𝑛  and less to 𝜃𝑆𝑇  with the weight of ∆ in between. 

 

5.8.1 Average performance of the best model 

 

Focusing on the algorithms, rather than the individual problems, table 5.13 shows the results obtained by 

each algorithm across the 3 problems. Results are in percentage of 380 for the problems World 5 and Word 7 

and 285 for Word 3 and the displayed value is the average of the 3. The percentage can be stated as 

"percentage of well classified individuals in the most confident 95% of the classified population". 

Table 5.13. Average performance of the best model 

 n SNP = 4 n SNP = 8 n SNP = 12 

Time 600" MCTS 88.1±1.1 (p=0.0002) 

GrQS 85.8±1.8 (p<0.0001) 

TopN 78.5±2.3 

MCTS 93.3±0.5 (p<0.0001) 

GrQS 89.4±0.8 (p<0.0001) 

TopN 87.0±1.5 

MCTS 94.6±0.6 (p<0.0001) 

GrQS 92.8±0.6 (p<0.0001) 

TopN 89.4±1.5 

Time 2400" MCTS 88.1±1.1 (p=0.0332) 

GrQS 87.2±1.1 (p<0.0001) 

TopN 78.5±2.3 

MCTS 93.3±0.6 (p<0.0001) 

GrQS 90.0±1.2 (p<0.0001) 

TopN 87.0±1.5 

MCTS 94.8±0.6 (p<0.0001) 

GrQS 93.0±0.5 (p<0.0001) 

TopN 89.4±1.5 

Time 9600" MCTS 88.1±1.1 (p=0.7595) 

GrQS 88.0±0.6 (p<0.0001) 

TopN 78.5±2.3 

MCTS 93.5±0.9 (p<0.0001) 

GrQS 91.4±0.7 (p<0.0001) 

TopN 87.0±1.5 

MCTS 95.3±0.3 (p<0.0001) 

GrQS 93.4±0.8 (p<0.0001) 

TopN 89.4±1.5 
 

Note: Each cell represents the best model averaged across the three problems: World 7, World 5 and World 3. The values 
represent percentage of well classified individuals ± SD (standard deviation). Algorithms are sorted best first. Each 
evaluation is done on five independent random draws of the dataset, selecting different learning and training subsets. P-

values measure evidence that the algorithm's average performance is above that of the next algorithm, MCTS > GrQS and 
GrQS > TopN, using a single sided t-test for independent samples. Times represent computing time in seconds for each 
search: one problem, one number of SNP, one algorithm (GrQS and MCTS). 

 

 
In all the cases, MCTS was the best algorithm performing better than GrQS and GrQS performed better 

than TopN for all model sizes and CPU allocations. Additionally, the tables show that this difference is 

statistically significant with significance above 99% for all models larger than 4 SNPs using a t-test for 

independent samples. 
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5.8.2 Best model for each problem 

Table 5.14. Best model for each problem 

 n SNP = 4 n SNP = 8 n SNP = 12 

Problem World 3 MCTS 282.6± 1.7(99.2%) 

GrQS 281.6± 0.5(98.8%) 

TopN 272.6± 4.2(95.6%) 

MCTS 284.6± 0.5(99.9%) 

GrQS 284.0± 0.7(99.6%) 

TopN 273.6± 4.6(96.0%) 

MCTS 284.8± 0.4(99.9%) 

GrQS 284.2± 0.8(99.7%) 

TopN 273.0± 5.1(95.8%) 

Problem World 5 GrQS 359.8± 3.6(94.7%) 

MCTS 359.4± 4.9(94.6%) 

TopN 301.4± 9.0(79.3%) 

MCTS 376.0± 1.7(98.9%) 

GrQS 373.4± 2.5(98.3%) 

TopN 357.2± 3.9(94.0%) 

MCTS 379.0± 0.7(99.7%) 

GrQS 375.4± 1.7(98.8%) 

TopN 360.4± 4.1(94.8%) 

Problem World 7 MCTS 268.2± 5.6(70.6%) 

GrQS 268.2± 2.2(70.6%) 

TopN 230.6±11.7(60.7%) 

MCTS 310.0± 7.9(81.6%) 

GrQS 289.8± 4.4(76.3%) 

TopN 269.6± 7.2(70.9%) 

MCTS 327.4± 2.3(86.2%) 

GrQS 310.8± 5.8(81.8%) 

TopN 294.4± 6.4(77.5%) 
 

Note: Each cell represents the best model evaluated on five independent random draws of the dataset, selecting different 
learning and training subsets. The values represent total number of well classified individuals ± SD (standard deviation). The 

algorithms classify 285 individuals in the problem World 3 and 380 individuals in the problems World 5 and World 7.  
Percentages in brackets represent the proportion of correctly classified from the number of classified individuals. Algorithms 
are sorted best first. All values are obtained from the best model found in the longest search (9600 seconds). 

 

 
Table 5.14 shows the best model (obtained from the maximum CPU time allocated) for each of the 

problems. As would be expected from the large performance differences obtained across the problems with 

more than 4 SNPs, MCTS was the best in each of the problems with more than 4 SNPs and not only on 

average across the problems. In problem World 5 with 4 SNPs GrQS performed slightly better than MCTS 

although that difference (359.8± 3.6 vs. 359.4± 4.9) is not statistically significant (p=0.4433) using a t-test for 

the mean. This was the only case in which GrQS performed better than MCTS. 

 

5.8.3 Average performance of the second and third-best models found 

 

Table 5.15. Average performance of the second and third-best models found 

 n SNP = 4 n SNP = 8 n SNP = 12 

Time 600" MCTS 88.1±1.1 88.0±1.2 

GrQS 85.7±1.5 85.5±1.2 

TopN 70.5±1.5 67.8±1.3 

MCTS 93.2±0.6 93.2±0.5 

GrQS 89.1±1.5 89.1±0.9 

TopN 84.3±1.3 77.7±1.4 

MCTS 94.4±0.4 94.3±0.6 

GrQS 92.7±0.6 92.7±0.7 

TopN 88.3±1.1 85.1±1.8 

Time 2400" MCTS 88.1±1.1 88.0±1.0 

GrQS 86.9±1.5 86.6±1.2 

TopN 70.5±1.5 67.8±1.3 

MCTS 93.3±0.7 93.3±0.6 

GrQS 89.9±1.0 89.8±1.1 

TopN 84.3±1.3 77.7±1.4 

MCTS 94.8±0.6 94.8±0.5 

GrQS 93.0±0.9 92.9±0.7 

TopN 88.3±1.1 85.1±1.8 

Time 9600" MCTS 88.1±1.1 88.1±1.1 

GrQS 87.9±0.9 87.8±1.0 

TopN 70.5±1.5 67.8±1.3 

MCTS 93.4±0.9 93.4±0.9 

GrQS 91.3±0.5 91.2±1.0 

TopN 84.3±1.3 77.7±1.4 

MCTS 95.3±0.3 95.3±0.3 

GrQS 93.3±0.6 93.3±0.8 

TopN 88.3±1.1 85.1±1.8 
 

Note: Each cell represents the second and third-best models averaged across the three problems: World 7, World 5 and 
World 3. The values represent percentage of well classified individuals ± SD (standard deviation) second-best model found 
followed by third-best model found. Algorithms are sorted by second-best model. Each evaluation is done on five 
independent random draws of the dataset, selecting different learning and training subsets. Times represent computing time 

in seconds for each search: one problem, one number of SNP, one algorithm (GrQS and MCTS). 
 

 
Further insight on how all algorithms consistently succeed in finding more models at (or near) their best 

performance is shown in table 5.15. In most cases, the 3
rd
 best model found by each algorithm performs better 
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than the best of the next algorithm. As in the previous cases, the difference is smaller for the models with less 

SNPs (n SNP =  4). 

 

5.8.4 Worst evaluation in the best model 

Table 5.16. Worst evaluation in the best model 

 n SNP = 4 n SNP = 8 n SNP = 12 

Time 600" MCTS 86.7 

GrQS 83.4 

TopN 75.4 

MCTS 92.6 

GrQS 88.1 

TopN 85.1 

MCTS 93.7 

GrQS 91.9 

TopN 87.4 

Time 2400" MCTS 86.6 

GrQS 86.0 

TopN 75.4 

MCTS 92.5 

GrQS 88.8 

TopN 85.1 

MCTS 94.0 

GrQS 92.2 

TopN 87.4 

Time 9600" GrQS 87.5 

MCTS 86.6 

TopN 75.4 

MCTS 92.3 

GrQS 90.4 

TopN 85.1 

MCTS 94.8 

GrQS 92.4 

TopN 87.4 
 

Note: Each cell represents the worst evaluation in the five random draws of the dataset averaged across the three 

problems: World 7, World 5 and World 3. The values represent percentage of well classified individuals in the worst of five 
evaluations. The algorithms are sorted best first. This is a lower bound for the performance of each algorithm. Times 
represent computing time in seconds for each search: one problem, one number of SNP, one algorithm (GrQS and MCTS).  

 

 
Like in the previous case, in order to establish the consistency of the results, we show the results obtained 

by the worst evaluation (worst of 5) obtained in the cross-validation draws in table 5.16. Results show, 

especially for the models with more than 4 SNPs, that even a worst-case classification obtained by each 

algorithm outperforms average classification of the next algorithm providing further evidence in favor of 

MCTS. 

 

5.8.5 Improvement with increased CPU allocation 

Table 5.17. Improvement with CPU allocation before the best model was found 

 Time 600" Time 2400" Time 9600" 

n SNP = 4 MCTS 14.8 

GrQS 38.7 

MCTS 37.5 (d=0.00) 

GrQS 32.9 (d=1.35) 

MCTS  7.7 (d=0.02) 

GrQS 24.0 (d=2.19) 

n SNP = 8 MCTS 60.9 

GrQS 70.6 

MCTS 55.4 (d=0.05) 

GrQS 43.0 (d=0.61) 

MCTS 33.4 (d=0.20) 

GrQS 60.0 (d=2.01) 

n SNP = 12 MCTS 89.9 

GrQS 29.6 

MCTS 67.9 (d=0.25) 

GrQS 19.0 (d=0.25) 

MCTS 43.7 (d=0.68) 

GrQS 38.2 (d=0.67) 
 

Note: Each cell represents the percentage of CPU time required to find the best model from the total time assigned to each 
search averaged across the three problems: World 7, World 5 and World 3. The value shown as d is the difference in 
average performance of the best model achieved by longer computing time as a difference with the base performance (Time 

= 600 sec).  
 

 
  

Table 5.17 gives some insight about the time needed to find each of the best models. A full scalability 

study would require a large amount of CPU allocation and possibly more problems and datasets. At least for 
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the times chosen, each quadruplication in allocated time resulted in better performance as shown by 𝑑 > 0 for 

all results, except when SNP = 4. Some amount of diminishing returns should be considered normal, especially 

for n SNP = 4 which is clearly scaling less than the other sizes. We do not have enough information to plot a 

performance vs. time graph. Also, some implementation details concerning memory allocation and estimation 

of effective width at node expansion could play a major role. Mechanisms to recycle least-recently visited 

nodes should be considered for a more robust version of the program designed to compute over long periods. 

The current version just stops node expansion when RAM is exhausted, but that did not happen in the 

experiments. At this stage, results provide evidence that the problem is hard and benefits from longer (hours) 

computation at least for the larger problems.  
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Chapter 6. Methods: Description of the software used in this thesis 

 

6.1 The GoKnot platform 

 

GoKnot is a graphical board interface and playing client entirely written by the main author for over 10 

years. The project started in 2002 and version 1.0 was released in February 2003. It started as proprietary 

software, although when version 2.0 was released in November 2005, the interface with the engine, named gke 

together with a complete gnugo based engine were released as free software. GoKnot had over 30,000 

downloads since version 2.0 was released [148].  

 

GoKnot is also an sgf editor and sgf-syntax converter and its board rendering utilities can also be used for 

generating documentation. All go boards included in this dissertation were rendered by GoKnot. 

 

Since then, no more releases have been made public so far. Work on GoKnot has continued without 

interruption prioritizing implementation of a strong engine and a development environment rather than 

spending time documenting and supporting work in progress. GoKnot itself is the GUI editor, client and 

analysis tool. The term GoKnot platform is used to describe all utility programs, libraries, and datasets 

including the isGO (MCTS) go engine (formerly named QYZ). 

 

Table 6.18 describes the main modules giving an idea of the size of this ten year long software project and 

the amount of work necessary for implementing a strong go engine. Especially, if the implementation is 

focused on new research rather than just on implementing successful ideas. This section also describes some of 
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the free libraries and datasets and some results on move prediction based on the patterns managed by the HBS 

board system.  

Table 6.18. List of modules in the GoKnot platform 

Name Description Started  
(approx. # of lines) 
Language 

License 

GoKnot.exe The GUI, local and internet playing client, analysis 
tool, game editor and development environment for 
the engine 

2002 (23,317) CP
(*)
 Prop 

Sgfc.exe SGF syntax checker and converter from old versions 2004 (5,495) C
(*)
 Free 

gkGTP.exe GTP end for the GUI environment. Connects the 
active engine in the GUI to other GTP-compatible 
programs and internet servers. 

2007 (1,117) P
(*)
 Prop 

GKE: types library Types library for writing GKE compatible engines. 
GKE engines are loaded in RAM without 
interprocess barriers and support MCTS specific 
analysis and debugging tools. 

2004 (1,103) P
(*)
 Free 

GKE: GTPeng.dll And example open source GKE engine that links 

any gtp-enabled engine to GoKnot and GKE tools 

2008 (1,736) P
(*)
 Free 

HBS: wrCrJeit.exe Pascal program writing board urgency pattern 
management functions in automatically written 
assembly language 

2008 (918) P
(*)
 Prop 

HBS: wrUpNeib.exe Pascal program writing proximity management 
patterns in automatically written assembly 

2008 (863) P
(*)
 Prop 

HBS: brdTest.exe Exhaustive board functionality testing program that 
verifies 100% of the functionality of the assembly 

language code and other high level board 
functionality in all modes and sizes 

2008 (1,492) P
(*)
 Prop 

HBS: ASM board source Automatically written board pattern management 2008 (53,855)A
(*)
 Free 

HBS: board source Board level functionality: stone playing, legality, 
Zobrist hashing, liberty counts, patterns 

2008 (7,348) ACP
(*)
 Prop 

HBS: MCTS fundamentals MCTS engine functionality: tactical utilities, 
playout functionality, tree management, time 
control, etc. 

2008 (18,798) CP
(*)
 Prop 

MASTERS: UpdMastr.exe Utility merging the master games database with 
folders containing .sgf files filtering by criteria and 
automatically managing version conversion, etc. 

2007 (1,304) P
(*)
 Prop 

MASTERS: masters.go The database of master games 2007 (data) Free 

UTILS: BldUrgen.exe Utility for extracting from master games the 
frequently seen local patterns, learning the Bradley 
Terry models of urgency and testing the results. 

2007 (4,150) AP
(*)
 Prop 

UTILS: BldJoseki.exe Utility extracting fuseki/joseki from master's db 2008 (4,749) CP
(*)
 Prop 

UTILS: JosekLrn.exe Utility using the MCTS engine to compute final 
territory and assigning predicted territory to joseki 
patterns described in M-eval 2.0 

2010 (2,211) P
(*)
 Prop 

UTILS: LearnR8.exe Utility creating .csv dataset files from positions in 
the master's db for NMF analysis 

2008 (2,142) P
(*)
 Prop 

UTILS: regTest.exe Utility for testing GKE engines on regression 
problems stored in Fuego-compatible text files. The 
output is written in .csv for analysis. 

2010 (1,114) C
(*)
 Prop 

UTILS: TwoGke.exe Utility for playing games between two GKE engines 

(one of them may be a gtp link to another engine). 
The output, including time information is stored as 
.csv files for analysis and .sgf files (the games). 

2010 (1,462) C
(*)
 Prop 

UTILS: EdO.exe Utility for managing GKE engine parameter settings 
for the experiments. 

2010 (206) P
(*)
 Prop 

isGO.dll The engine. Top level management. 2008 (6,358) ACP
(*)
 Prop 

 

(*) Programming language: Any combination of: A = Pentium II assembly (32 bits), C = C++, P (Delphi) Pascal 
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6.1.1 The Hologram Board System (HBS) 

 

The board system is named "hologram" because each cell (board intersection) contains information about 

its neighbors in the form of a bitmap pattern (or a Zobrist hash of the pattern depending on the board mode). 

This is similar as the way information is stored in a hologram (which is about storing interference patterns 

rather than picture elements) and shares the property that each part of a hologram "somehow" contains the 

whole picture. Of course, this is a redundant way to store information, but it is done for the sake of efficiency 

when checking the pattern. To make the whole idea work, each time a stone is added or a chain is captured, all 

possibly interacting cells must have their neighboring patterns updated. This is done by over 50,000 lines of 

automatically written (and 100% error free) assembly language source code. All variables are kept in CPU 

registers and neither conditional jumps nor loops are used. Also board limits are not coded as conditionals, 

since each board cell has its own updating function written for its position relative to the limits of the board. 

 

The board system not only supports keeping patterns up to date, but also checking the hash codes of the 

patterns in a table of shapes→urgencies. The first MCTS engine implemented used this distribution over the 

legal moves as a playout policy (see 6.1.3) and its speed was comparable to that of other strong engines. 

Unfortunately, the policy was very weak in terms of playing strength. Finally, the hash values of patterns have 

been used in our playout policy as described in 4.3.2, making the HBS board libraries, again, an interesting 

option for go engines. 

 

Since implementing all the pattern management in assembly language to make it fast enough to be 

interesting is a complicated and time consuming task, and this is already implemented since about 2009, we 

have decided to make the board level assembly language libraries open source software [149] hoping other 

authors will be interested in implementing a similar board system to support learning playouts as described 

here. Since they are automatically written, customization can in some cases be done to match other ways to 

store the board information. 

 

6.1.2 The collection of master level games in 19x19 

 

Thanks to the internet, large collections of high quality games can be found. In our research we use one 

collection with 55,271 games named Masters 2010, about one third is played by pro players and the others by 
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high dan players on internet servers filtering all kind of lower quality games like fast games and handicap 

games. The website includes the database for download in a binary format (one game per record) that is 

documented on the website [150].  

 

Searching patterns in this database can be used for: 

 

 Fuseki: Full board opening in 19x19 go it is not very useful since the engine gets out of the book 

very soon, but it is still a good idea because the engine gets some free thinking time and the 

opening looks better. There is no fixed number of opening moves expected. The game gets very 

fast into a position that is not found the database. A typical book with about 25 thousand positions 

will only rarely play the first eight moves and that will probably happen against a program with a 

book extracted from a similar collection. Against humans, the book will only reach to move four 

or five at most. 

 Urgency of the pattern of stones with a fixed size around the next move. It cannot be used as a 

playout policy, but it gives interesting information about shape, as urgent points are frequently 

weaknesses in the shape and it still makes part of the most recent versions of M-eval. 

 Obtaining datasets for analyzing the multivariate structure of the qualities described in M-eval 

(see 3.4). The collection can be used as a large set of positions.  

 Joseki: We analyzed the board divided in regions from different sizes. These regions are small 

corners, which are not enclosed by empty intersections, big corners which are, and big sides. In 

these areas we study common patterns seen in a large amount of games and learn their possible 

answers. Besides what the answers are, we also learn how frequently each answer is found. This 

gives us a good idea of possible human continuations to moves in places where known patterns 

are found, even when the rest of the board is too complicated to judge by simple methods. This 

provides the engine with joseki sequences that will be considered together with the candidate 

moves and compete with them. Of course, this definition of joseki only means "frequently found 

in that place", joseki should also be about optimality which we do not analyze here. 

 

6.1.3 Prediction of master level moves using HBS's local patterns 

 

The board system developed for all MCTS engines in GoKnot was conceived with the idea of using 

urgencies of frequently seen patterns formed by the stones around all intersections to define a probability 

distribution over the legal moves. The implementation includes over 50,000 automatically generated lines of 
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assembly source code for each possible pattern size. Pattern sizes range from 4 neighbors to 40 and they are 

bitmaps of 4 possible states (empty, own color, opponent color, off board). Functionality includes mirroring, 

rotation and computing Zobrist hashes. The urgency defined as the number of times the pattern was played 

divided by the number of times it was seen and later improved using Bradley-Terry models was stored in a 

database of frequently seen patterns independently of mirroring and rotation. The possible sizes and their 

layout are described in 4.3.2. The code is highly optimized with all possible loops unrolled, no conditional 

jumps and all results stored in CPU registers. Also, systematic testing of the entire code was performed 

checking its functionality against an implementation written in a high level language. 

 

This code allowed an implementation that performed very high prediction rate of played moves while 

being fast enough to produce a number of simulations per second comparable with those of the stronger 

programs based on benchmarking open source implementations and also performance reported by the authors 

of proprietary programs. This performance is between 1000 and 2000 sims/second on a 19x19 board for a 

single 3GHz core depending on pattern size, database size and other settings. Prediction rate cannot be directly 

compared with values reported by other authors since we only tried to optimize prediction rate among the 

positions with a played move found in the database. Prediction rate was never a target by itself, but rather a 

way to sort the candidate moves for the tree search and to increase their exploration in the playouts. Some 

prediction rate results in summary are: Using a large database containing 239,502 patterns of 40 neighbors, 

from a set of 4,968,759 random positions tested from a collection of 55,271 games 1,381,595 positions 

(27.8%) were followed by a move found in the database of frequent patterns. The database was learned from 

different positions of the same collection of games and its urgencies were adjusted to maximize the chances of 

guessing the played move. From those positions, the most urgent pattern represented the played move correctly 

40.9% of the time and the second best 11.5% of the times. The first 5 candidates included the correct move 

over 65% of the times (66.5%). The first 7 moves over 70% (71.6). 15 candidate moves were necessary to 

reach 80% of inclusion of the played move, 62 to reach 85.0% and 99 to reach 90%. In all, only the 17 best 

moves found in the database had better chances of being the played move than any legal random move. 

 

Unfortunately, that high prediction rate of strong player's moves did not result in strong play. This idea 

was a serious limitation for the program strength until it was finally abandoned in 2010. Nevertheless, the 

board implementation efficiently computes bitmap patterns around the legal moves at a very small 

computational cost and these patterns are essential in the learning playout policy described below in 2. 
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6.1.4 isGO: the MCTS engine using the HBS 

 

First named QYZ and renamed to isGO when the original playout policy based on playing moves with a 

probability distribution learned from human play as described above was replaced by the policies described in 

chapter 4, starting in 2010 an completed in 2012. isGO is based on the GKE interface which is open software 

[151]. isGO is proprietary software using the libraries mentioned above in 6.1. It is a competitive engine whose 

playing strength can be compared with that of the strongest open source engines. A comparison with Fuego in 

terms of strength can be found in the results of the experiments on playouts in chapter 4. 

  

6.2 The GEM library 

 

All the experiments in chapter 5 were done using C++ software written by the main author. This program 

is a collection of libraries for bioinformatics jointly named GEM [152]: The Gene Etiology Miner. GEM was 

originated from different projects written by the author, the statistics described in 5.3 were used for the first 

time in [5] and also taken from other commercial products developed by the author like the fundamentals of 

the algorithm GrQS (see 5.7.2) which was originally with a different classification method. 

 

The GEM library is still under development. It can do everything implemented in chapter 5 and many of  

the features in the specification list for the next version, including: 

 

 Read genotype/phenotype files from in variety of formats including support for many commercial 

DNA chips from major manufacturers, including: Affymetrix, Illumina and Perlegen. 

 Include information about genes, linking SNPs with the gene database. 

 Automatically provide information to the user about Genome Wide Association Studies 

mentioning the SNPs used in the models. That information is regularly updated from the database 

at the National Human Genome Research Institute (NHGRI) [153] and GEM-based software can 

keep its information synchronized with a centralized server using SOAP technology. 

 Provide information (or implement it in the search) about the (predicted) functionality of the SNP. 

These predictions are updated from two different servers SIFT [154] located at Craig Venter 

Institute [155] and PolyPhen [156-158] located at Harvard University [159]. Like in the previous 

case, GEM-based software can be synchronized with a centralized server using SOAP technology. 

 Download, update, configure and interact with GEM based programs using any Ajax enabled web 

browser. 



 

 

139 

 Implement n factor GEP algorithms as plug-ins to add a new algorithm without reinstalling all the 

system. 

 Distribute CPU workload on different machines possibly renting computers and software. 

 Export results using a postprocessor. This allows converting results to many established file 

formats like: CSV, PHASE, Sweep, PLINK, EIGENSOFT, Structure, Arlequin or DnaSP. 

 Linux and Windows versions for 32 and 64 bit platforms. 

 

 

6.2.1 Human Genome Diversity Project (HGDP) database 

 

The HGDP was originally a DNA bank created with the intention to represent (most of) the entire human 

population. Around 2005, the DNA was sequenced using genome wide DNA chips from Illumina containing 

650,000 markers. The dataset is in the public domain and was used in our experiments. In [160] the project is 

described as: 

 

"The Human Genome Diversity Project (HGDP) was started by Stanford University's Morrison Institute 

and a collaboration of scientists around the world. It is the result of many years of work by Luigi Cavalli-

Sforza, one of the most cited scientists in the world, which has published extensively in the use of genetics to 

understand human migration and evolution. The HGDP data sets have often been cited in papers on such 

topics as population genetics, anthropology, and heritable disease research. 

 

The project has noted the need to record the genetic profiles of endogenous populations, as isolated 

populations are the best way to understand the genetic frequencies that have clues into our distant past. The 

relationship between such populations allows inferring the humankind journey from the initial humans that left 

Africa and populated the world. The HGDP-CEPH Human Genome Diversity Cell Line Panel, is a resource of 

1063 cultured lymphoblastoid cell lines (LCLs) from 1050 individuals in 52 world populations, banked at the 

Foundation Jean Dausset-CEPH in Paris." 

 

The dataset contains a genotype file with the 650,000 markers for each of the 1043 individuals in the 

study and the phenotype is the population to which the individual belongs. The list of all populations can be 

found in table 5.12. 
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6.2.2 PSExplorer, a standalone GEM implementation  

 

PSExplorer [6] is a standalone GEM-based application distributed with the HGDP database and with 

gene, functionality and GWAS files up to date at the time of its publication. The application also includes n-

factor functionality like the algorithms described in chapter 5 for trial. The program is useful for analyzing 

population stratification which is important in GWAS studies as listed in the NCI workgroup recommendations 

(see table 5.11). The reason why population stratification is important is explained above in 5.4. The program 

is distributed as free software. 

 

6.3 The WLS library 

 

Besides implementing WLS [3] in GoKnot, an open source implementation written in C++, Pascal and 

Java was written by the author to promote the idea to the widest possible audience. The web page [91] includes 

a description of WLS including, source code to build the lookup tables, a program to test the data built in the 

table for verification and instructions on implementing WLS. 

 

The program is open source, distributed under a Berkeley-type license [161]. This means, it can be 

included in both open and close source programs. 

 

6.4 Implementation of MCTS to the Strip Packing Problem 

 

This dissertation also mentions an implementation of MCTS to the Strip Packing Problem done by the 

author in 2008. The work is described in an unpublished paper in Spanish [33]. This implementation is one of 

the two implementations in optimization problems described in this dissertation. All the software written for 

the implementation is released as open source and can be found in the same website as the paper. 

 

6.5 Prototype/scripting software used 

 

Besides all the software mentioned above, some prototype level software was used mainly for data 

analysis: 
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 NMF of M-eval described in 3.4 was done in Matlab [162] using third party code [80]. 

 Elo rating and confidence intervals, as well as Wilcoxon matched pairs tests for assessing the 

difference in computed times used were performed by Statistica 8.0 [163] Visual Basic scripts. 

 All tables with experimental results in chapters 4 and 5 were created automatically using Statistica 

8.0 Visual Basic scripts. 

 Data analysis described in chapter 3 and 4.5 was done using Statistica 8.0 
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Chapter 7. Findings and discussion 

 

In this final chapter we summarize our findings and conclude. But first, we want the reader to note the 

relevance of what has been happening in MCTS during the last five years, the same period of the work 

described in this dissertation. We describe only the most important applications in best known problems and 

games to put into perspective the importance of MCTS research. We have been researching in MCTS from its 

very beginning, when the whole algorithm was still called UCT, and have been exchanging preliminary results 

and ideas with other researchers in [19] while they were doing the research that has seeded the field. Five years 

later, the success of MCTS in most fields comes as no surprise to us who have been watching intelligent 

behavior arise from stochastic experimentation for five years. Most of the first section is taken from an 

extensive survey [85] which cites almost 250 articles in peer reviewed journals describing MCTS research in 

the last five years, completed with other relevant research results in some well known games and a very 

interesting work on Beam MCTS.  

 

7.1 MCTS's success story: Preeminent algorithm in many hard problems 

 

The mentioned MCTS survey [85] is very extensive describing in almost 50 pages the different published 

MCTS variations in many fields. It supersedes all previously known descriptions of application of MCTS in 

different fields. It also includes two tables describing which of 66 published MCTS variants/heuristics have 

been implemented in 69 games/problems. In this section, we exclude implementations in computer go which 

have already been addressed in this dissertation and focus on "best known" games and problems citing a 

maximum of two works per problem, usually the first one and the (considered) strongest. It is also worth 
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noting that no MCTS implementations have been described yet in the fields of neither human genetics nor 

biology, making our work a pioneer in the fields. 

 

7.1.1 MCTS in two player and multiplayer games 

 

Non-randomized two player board games: 

 

 Hex: This first MCTS implementation dates from 2008 and the program also plays the games: Y, 

*Star and Renkula! [164] The current best program is also MCTS and RAVE based, named 

MOHEX described in [165]. 

 Havannah: A UCT Havannah player with AMAF and a playout horizon was implemented in 

2009 [166], 

 Lines of Action: An MCTS-Solver is able to prove the game-theoretic values of positions given 

sufficient time was implemented in 2008 [167]. 

 Othello (Reversi): Nijssen developed a UCT player for Othello called MONTHELLO in 2007 

[168]. 

 Amazons: Amazons was researched by the UCT creator Levente Kocsis. He proved the 

superiority of plain UCT over flat Monte Carlo for Amazons in 2006 in his seminal paper [169]. 

 Arimaa: The implementation of a UCT player in Arimaa was researched in Kozelek's master 

thesis in 2009 [170]. 

 Shogi: Sato et al. describe a UCT Shogi player with a number of enhancements was first 

described in 2009. The original paper is in Japanese and was translated for the ICGA journal in 

2010 [171]. Shogi has been a very active research area in Japan for decades and at the time of this 

publication top programs were playing approximately at professional human level. Top programs 

are based on minimax search with α—β pruning and domain specific ordering and pruning 

heuristics. The MCTS implementation was not top level in Shogi. 

 Mancala (by other names: Oware, Wari and Awari): Even if this game is already solved since 

2003 [172], a UCT player for Mancala and minimax search both perform at similar high level 

according to [173]. 

 Chinese checkers: Nijssen and Winands applied their Multi-Player Monte-Carlo Tree Search 

solver (MPMCTS-solver) and progressive history techniques to Chinese checkers, in 2011 [174]. 

 General Game Playing: General Game Playing [34] has been, like go, another area in which 

MCTS has been dominant producing an "MCTS era" in which all strong programs are MCTS 
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based. The first MCTS program was CADIAPLAYER developed by Hilmar Finnsson for his 

master's thesis in 2007 [175]. Current MCTS players include ARY [176] and CENTURIO [177]. 

 

Randomized games: 

 

 Poker: MCTS is currently state of the art in Poker [178]. The Monte-Carlo playout models the 

opponents' strategies implemented using Expectimax tree search. Computer poker has also 

experienced a revolution in recent years. In 2006 a group of researchers including Michael 

Bowling stated in a conference (see slide 16 in [179]) "Expectimax cannot be used for Poker". 

Nowadays, the team from University of Alberta Computer Poker Research Group, of which 

Michael Bowling is part, is currently top level. According to "The annual AAAI Computer Poker 

Competition": Their program, Hyperborean, was gold and bronze in the two categories of Heads-

up Limit Texas Hold'em, in 2011, and silver in 2012. Difficulties have been "ironed out" [180] 

and extremely large trees are stored in the form of LUTs stored in clusters of computers. 

Furthermore, Monte Carlo Counter Factual Regret (MCCFR) has been able approximate Nash 

equilibria and the notion of exploitability has been coined and is measurable [181]. In [182] it is 

stated that exploitability has been reducing in computer Poker over the recent years. If, in the near 

future, exploitability (measured in milliblinds per game) reached near zero values for some 

program, it would mean that no long term strategy exists consistently winning any money against 

it. This is arguably the closest possible situation to Poker being "solved" (as randomized hidden 

information games can obviously not be minimax-solved) and that could happen in the next three 

years. 

 Backgammon: The best Backgammon programs are stronger than the best human players. The 

UCT-based player MCGAMMON developed in 2007 [183] is the only implementation mentioned 

in the survey and it did not reach top level. 

 

7.1.2 MCTS in optimization problems 

 

MCTS implemented in one player games (puzzles, solitaires): 

 

 Bubble Breaker (and other similar puzzles): MCTS was implemented for Bubble Breaker in 

[184]. Beside the successful implementation, the paper introduces Beam MCTS a very promising 
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algorithm for deep optimization problems. Beam MCTS is included in our future work on the 

GEM framework in 7.3.1. 

 Morpion Solitaire: Morpion is an NP-hard solitaire puzzle in which the player successively 

colors vertices of an undirected graph. The aim is to make as many moves as possible. Reflexive 

Monte Carlo Search solved the puzzle in 78 moves, beating the existing human record of 68 

moves and previous AI record of 74 moves [185]. Later, the same author used Nested Monte 

Carlo Search and improved the solution to 80 moves. Unfortunately, we were unable to find the 

paper reporting this improvement cited in the MCTS survey, but the same author describes Nested 

Monte Carlo Search in [176]. 

 Sudoku (and also Kakuro): Sudoku, is the NP-complete (versus board size) logic puzzle. MCTS 

was applied to the 16x16 Sudoku (also Nested MCTS). 

 

MCTS implemented in real-time one player games (videogame): 

 

 Pac-Man: There are competitions and a development platform to play (both players: the human 

player and the machine). The annual CIG conference hosts such events and conference papers are 

presented regularly, for example [186]. MCTS is currently the best algorithm for both players. 

 

Implementations other than games: 

 

 Security (biometrics): MCTS methods were used to evaluate vulnerability to attacks in an image 

based authentication system. The results obtained are promising and suggest a future development 

of an MCTS based algorithm [187]. 

 Mixed Integer Programming: UCT is applied to guide Mixed Integer Programming (MIP), 

comparing the performance of the UCT based node selection with that of CPLEX, a traditional 

MIP solver, and best-first, breadth-first and depth-first strategies [188]. 

 Travelling Salesman Problem: The TSP with time windows using Nested Monte Carlo Search 

was studied in [189]. The annual CIG also host real time TSP competitions in which MCTS is 

also the dominating algorithm. 

 Sailing Domain: UCT was also applied to the sailing domain by Kocsis and Szepesvari in their 

seminal paper [20]. The Stochastic Shortest Path (SSP) problem describes a sailboat searching for 

the shortest path between two points under fluctuating wind conditions. 

 Physics Simulations: The simulation of many problems in physics using Hierarchical Optimistic 

Optimization applied to Trees (HOOT) algorithm [190]. 
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 Function approximation: The approximation of Lipschitz functions (I.e., functions satisfying a 

strong form of uniform continuity: For every pair of points on the graph of this function, the 

absolute value of the slope of the line connecting them is no greater than a definite real number 

named the Lipschitz constant.) is used to compare Bandit Algorithm for Smooth Trees (BAST) 

(an early UCT variant described in [191]) with  flat UCB. Rimmel also describes MCTS applied 

to function approximation in his PhD dissertation [192].  

 Constraint Problems: A real-time algorithm based on UCT to solve quantified constraint 

satisfaction problems (QCSP). Vanilla UCT was not outperforming other algorithms, but the 

authors developed a constraint propagation technique that allows the tree to focus in the most 

promising parts of the search space [193]. 

 Scheduling Problems: Results in the 4th International Planning Competition (IPC-4) showed 

MCTS based Monte Carlo Random Walk (MRW) planner with promising results compared to the 

other planners tested, including FF, Marvin, YASHP and SG-Plan [194]. Also [195] combined 

UCT with heuristic search in the Mean-based Heuristic Search for anytime Planning (MHSP) 

method. 

 Production Management Problems: PMPs are planning problems that require a parameter 

optimization process. An MCTS algorithm was used to solve PMPs, getting results faster than 

Evolutionary Planning Heuristics (EPH), reaching at least the same score in small problems and 

outperforming EPH in large problems [196]. 

 Bus Regulation Problem: The BRP is scheduling bus waiting times to minimize delays for the 

passengers. Nested Monte Carlo search with memorization outperformed the other methods tested 

in [197].  

 

7.2 Findings 

 

7.2.1 Our research question 

 

This PhD thesis did not start with a unique question to be researched, something like "Does the use of 

expert knowledge improve MCTS?". The answer would have been easy: Of course, it does. Search is always 

about finding knowledge guiding the search in promising directions. Most authors have already stated that, 

although it is worth noting how well knowledge-less MCTS makes intelligent behavior emerge naturally in 

simple problems like the SPP. But we decided to implement what is arguably one of the hardest possible 
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implementations in game research and possibly in AI research, go. Besides the learning curve of the game 

itself, a look at table 6.18 gives an idea on the amount work done on our system. We did it without taking any 

shortcuts: implementing everything (including the testing framework) and researching at each step rather than 

just implementing what had been described as most successful. The implementation culminates our ten year 

long period in computer go (2002-2012), half of it dedicated to MCTS. This dissertation only covers the 

positive results, with the exception of what is described in 6.1.3. On that issue, we were on the wrong path 

more than one year (erroneously) sure that good move prediction rates would result in strong evaluation in the 

simulations. 

 

Just like go was once part of Japanese (male) education as a way of learning about strategy, but also about 

improvement through intense dedication to abstract thinking, what justifies the PhD thesis is the path itself 

rather than answering some predetermined questions. When this started, expert knowledge was mainly 

intended to mean "knowledge learned from human master level players". Some of the ideas worked fine, most 

did not and we grasped the importance of knowledge learned from "human go teachers": teaching correct 

answers like all the heuristics described, especially in chapter 4. Furthermore, MCTS is about online learned 

knowledge and we finally succeeded in extending that online learning to the playout in the form of a loose tree, 

which we consider our main contribution in computer go, finally completing our "way of go". 

 

As if computer go was not hard enough, we implemented MCTS in human genetics. From the beginning 

we have been stating that common practice in genetic etiology, cumulative risk models, is very far from being 

the best option in genotype/phenotype prediction models. We have proven experimentally that cumulative risk 

models performed worst in all problems, for all times and for all model sizes. In this case, we had proven our 

point if verifying a predetermined hypothesis had been our aim. As in go, the implementation itself is far more 

important than this conclusion, which is recently getting attention coined as "high order SNP combinations" 

[39]. Our n-factor GEP is, of course, a high order SNP combination. As in go, the hard work implementing 

GEM has provided: further insight in MCTS applied to optimization problems, an unexpected finding and the 

framework itself which has a potential for many applications. Again, a "way of go" in computer genetics. 

 

7.2.2 Contributions to the analysis of MCTS problems 

 

The main contributions of our work in terms of MCTS analysis and problem status are: 
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 The mathematical analysis including a Wiener process described in 4.1.1. To our knowledge no 

similar analysis has been made about simulation functions in neither MCTS nor Monte-Carlo 

literature. This process plays a major role understanding how MCTS scales, for instance when 

board size in changed. In the beginning of UCT go, around 2007, a scalability study had 

determined the playing strength expected from each doubling in the number playouts. Doubling 

the board size was expected to result in the program weakening by a factor of 4 (two doublings) 

due to the increase in width and slowing down by another factor of 4 due to the increase in 

playout length. The results obtained were even worse before 19x19 specific heuristics were 

developed (proximity heuristics and progressive widening mainly). The reason of this 

unexplained weakening was discussed in [19]. The author of this dissertation pointed out that the 

"missing factor" was of the size predicted by the increase of variance in the Wiener process 

resulting in bias towards 1/2 as a result of the increase in playout length. Sylvain Gelly, the main 

author of Mogo agreed that this was the plausible explanation of the weakening. No other model 

explains the role of the length of the playouts. 

 Although controversially in the beginning, the authors have been the first pointing out that the 

opening is a weakness in 19x19 go, why it is a weakness and how this is recognized by players. 

This subject is described in 3.3.3. 

 In our application in human genetics, besides our implementations for the n factor GEP, the 

problem itself is a major contribution. Before our work, researchers did not have a comparable 

reference point. All studies have the limitation of proposing a method and implementing it on a 

different dataset making comparison between methods impossible. Our implementation provides: 

a dataset (6.2.1), a classification method (both as a mathematical description 5.5.2 and as source 

code [6]) and easily reproducible results of our algorithms (5.8) using both. This allows using the 

whole as an open context allowing other authors to compare method-to-method. To our 

knowledge, no such competition framework exists. 

 

7.2.3 Contributions based on successful implementations of MCTS 

 

In a nutshell, since these contributions have already been described extensively: 

 

 M-eval. (3.4) A solution to improve both style and strength in 19x19 openings. 

 WLS. (4.5) An open source tool implemented in learning playouts and also with a potential for 

being used in a wide range of simulation related areas. 
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 Learning playouts. (4.7 and 4.8) An important improvement that works on an already strong 

program and makes an elegant idea work. 

 The implementation of MCTS in human genetics. (5.6 and 5.8) 

 

Of course, in all cases the finding is that the fully described and reproducible method works and what 

improvement that can be expected from implementing it. 

 

7.2.4 Contributions in human genetics 

 

In order to prove the power of the methods proposed in Chapter 5, we applied them to a genome-wide 

dataset of 640K SNPs genotyped in 944 unrelated individuals from 52 populations from the global sample 

from the Human Genome Diversity Project-Centre d’Etude du Polymorphisme Humain (HGDP-CEPH) panel 

[121], to explore the ability of these SNPs across the genome to infer ancestry, and demonstrated that the 

combination of as few as 12 SNPs bears substantial information about biogeographical ancestry to allowing 

classifying>85% samples in the correct population without taking into account any prior pre-assignment of 

individuals to populations. We also provide the first tool for fast, user-friendly automated AIMs selection for 

efficient ancestry inferences across worldwide populations. 

 

It must be noted that the AIMs sets provided are aimed to maximize information about individual ancestry 

at minimal cost and sample necessity. It should be stressed that larger sets of markers or a set of highly 

specialized ones would be required to distinguish the ancestries of genetically similar populations and/or to 

fully control false positive and false negative results due to population stratification in association studies 

[198]. However, when genome-wide genotyping data is not available, they would be useful for reducing 

population stratification effects in case-control association studies by identifying outlier individuals in study 

samples and perform association tests across ancestry matched individuals.  

 

We envision that these AIMs and the tool will be of particular value in several scenarios: 

 

a. when aiming to infer ancestry and low sample quantity is available (typical in forensics) 

[199] 

b. helping improving the design of disease-association studies at reduced costs by their use 

for pre-selecting population members before more thorough genome-wide studies are 

conducted. 
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7.2.5 Limitations of this study 

 

In our go research, since the aim was implementing a strong program, something we finally succeeded at, 

and we invested five years in the MCTS research using our own code base which started in 2002, we are not 

aware of any limitations other than not having researched in cluster parallelization. This was both due to 

material limitations and to the fact that we always keep the intention of producing a commercial program and 

commercial programs target average users and lightweight platforms like tablets rather than clusters. Not 

having a cluster version of the program gives us an unfair comparison in competitions, especially since our 

typical hardware is an off-the-shelf low cost multi-core PC while most of our opponents use clusters and high 

end multi-core machines. 

 

In our human genetics study, the main limitation is the lack of a comparison with something other than 

our three algorithms, one of them being the cumulative risk model based on established statistics. It was too 

easy to just beat this model, so the study lacks comparison with any CPU intensive algorithm other than GrQS. 

It is worth noting that GrQS is a very well performing algorithm, but with a different classification function, a 

General Linear regression Model (GLIM) in the problem of finding out which is the best n factor GLIM. It is 

not established if GrQS is a strong opponent in the n factor GEP or not. As mentioned in 7.2.2, it would be an 

important step forward if our framework (or some other framework) could be used to make fair comparisons. It 

is also difficult to have access to genome wide data, since medical ethic procedures make it harder today than it 

was when HGDP was released. This is a problem even for anonymized data, since complete genotype could be 

used for identification. Our implementation would have benefited of more subjects and different datasets for 

the different problems if that had not been a limitation. 

 

 

7.2.6 Unexpected finding: Possible lack of convergence to optimality 

 

In very wide but not deep applications, like the n factor GEP, some attention must be paid to search paths 

not containing randomization. Unlike in two players games, where these paths automatically convert MCTS in 

a minimax algorithm, since the result (always a win for the same player) is extremely good for one player who 

will favor exploitation and extremely bad for the other who will favor exploration and find refutation paths 
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should any exist. But in optimization problems when a good solution is found using a non randomized path and 

the solutions in its neighborhood are not as good, it results in the algorithm exploring the same solution again 

and again.  

 

Of course, from a theoretical point of view the algorithm would not be completely "trapped" by the 

solution as, when the number of visits increases, the algorithm still explores alternatives. But for practical 

reasons it doesn't work. Firstly, the exploration is designed to work when the leaves represent classes of 

solutions combining the path in the tree with a randomized simulation, not one solution evaluated repeatedly. 

Secondly, the siblings are not good enough to beat the solution and are also explored repeatedly, since they are 

also non randomized (this applies in the GEP implementation, since all paths containing the same number of 

SNPs are non-randomized). As a result, even if theoretically the algorithm would "someday" explore any given 

path, in practice it is flawed because not only it is evaluating the same solution repeatedly, but its inefficiency 

also increases ad infinitum since the alternatives are also explored repeatedly. 

 

We worked around this problem by biasing the value propagated in the tree when the path is non-

randomized. The bias was small (like 2% less than the real value), but still reduced the number of repeated 

evaluations to low levels without much impact on the search. We did not research the subject in depth 

considering it tolerable when the search "escaped" the trap after not many simulations focusing on new 

promising targets. This solution is good enough not to be considered a limitation, but we mentioned another 

idea as future work below in 7.3.1. 

 

7.3 Discussion 

 

In conclusion, we are excited about having been a part of a success story in computer science from its 

beginning, MCTS research. MCTS is a XXI century algorithm already playing an important role in many 

fields, and that role is probably going to increase in the future. One reason for this is: MCTS is a skeleton that 

supports diverse ideas for including knowledge, both in the tree and in the simulations, and hybridization with 

other algorithms.  

 

We did not want to present this dissertation as a mere collection of results, but have structured the main 

body as a complete work that can be used as a post degree textbook. Chapters 3 and 4, possibly without the 

final go specific descriptions if the reader is not interested in computer go, provide insight on questions a new 

MCTS researcher should ponder about after she has read the basic descriptions. Chapter 5 is a fully self 
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contained description of an actual problem in biology including everything a computer scientist needs to know 

to understand the field. Besides the already mentioned (7.2.2 and 7.2.3) contributions to the field, our research 

has produced quality software both in computer go and in genetics than will hopefully be used in new research 

and in useful products.  

 

7.3.1 Future work 

 

A number of ideas could be the next steps both in genetics and for the go engine. The lowest hanging 

fruits could be: 

 

 In genetics: Make MCTS automatically find parameter settings resulting in correct exploration 

metrics. Only two parameters: the K in UCT and the initial exploration width are the initial 

targets. Since the response is not in {0, 1} but an integer value (the number of well classified 

individuals), some sampling could be used to estimate its distribution. An estimate of the number 

of simulations that will be allowed to run and some testing runs can also find correct exploration 

width settings. This could make the algorithm more robust over a wide range of applications. 

 In genetics: Explore alternatives to the method avoiding MCTS repeating the same path (7.2.6) 

actually using the penalization described in 5.6. Really pruning leaves that lead to non 

randomized paths by completely removing them from the tree. This would solve the problem 

completely and without interfering with the algorithm by propagating inaccurate results. 

 In genetics: Implement Beam MCTS [184] to widen the range of models to higher numbers of 

SNPs like 50 SNP models. These models could be interesting in forensics to assess classification 

with high certitude. Our current approach is very wide but not deep. Beam MCTS is a promising 

idea to make the program support simultaneously wide and deep searches. 

 In go: Implement another layer of WLS that generates the moves just as described in 4.7 but is not 

updated in the playout. The values in the array of WLS are updated while the engine is pondering 

(the opponent is thinking) from the knowledge in the tree from the previous search. If this idea 

worked, it would be a way of propagating knowledge learned in the tree to the playouts, a long 

time dreamed idea in the computer go community no author has yet reported success in. 
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Chapter 8. Conclusions / Conclusiones 

 

 

8.1 Conclusions 

 

In this section we recapitulate major conclusions that have already been discussed along this dissertation 

as a bulleted list. These conclusions do not include other contributions of our research to the field such as: 

novel ideas, free software or research frameworks. We only include methodologically sound conclusions 

obtained from the experimental sections. 

 

 M-Eval, as implemented in 2009, achieves a 16 point advantage in the first 50 moves of a 19x19 

go game against the same program without M-Eval. 

 M-Eval, as implemented in 2011, achieves an 80 Elo point improvement over a complete 19x19 

go game against the same program without M-Eval. 

 The Jump to Past State (JPS) heuristic solves the saturation problem in Win/Loss States (WLS). 

 The settling time is a linear function of the end of scale in WLS. 

 The auto-balancing policy described in 4.7.4 improves the strength of the learning policy. 

 The learning playout policy described in 4.7.5 achieves at least a 90 Elo point improvement for all 

board sizes tested and all CPU allocations tested against the same program playing the same 

number of simulations with the base policy. 
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 The learning playout policy outperforms the base policy against a reference opponent by 128 Elo 

points given the same number of simulations for 13x13 go. 

 The non parametric, cross validated classification method described in 5.5.2 is capable of 

achieving high rates (above 80%) of correct classification in complex problems (classifying 

individuals in 7 categories) given appropriate SNPs. 

 Algorithms for searching high order SNP combinations using search outperform lists of best 

classifiers in all problems and all numbers of SNPs. 

 MCTS outperforms the other methods in each of the problems with more than 4 SNPs. 

 MCTS benefits from the extra CPU allocation, making it suitable for deep searches in large 

genetic searches. 

 

8.2 Conclusiones 

 

 

En esta sección recapitulamos las principales conclusiones que ya han sido discutidas a lo largo de esta 

tesis simplemente enumerándolas. Estas conclusiones no incluyen otras contribuciones de nuestra 

investigación al campo de la misma como: ideas novedosas, software libre o entornos de investigación. 

Solamente incluimos conclusiones metodológicamente válidas obtenidas de los experimentos. 

 

 M-Eval, tal y como fue implementado en 2009, alcanza una ventaja de 16 puntos en las 50 

primeras jugadas de una partida go 19x19 contra la misma versión del programa sin M-Eval. 

 M-Eval, tal y como fue implementado en 2011, alcanza una ventaja de 80 puntos Elo en partidas 

completas de go 19x19 contra la misma versión del programa sin M-Eval. 

 La heurística JPS (Jump to Past State) resuelve el problema de la saturación de los WLS 

(Win/Loss States). 

 El tiempo de establecimiento es una función lineal del parámetro fin de escala de un WLS. 

 La política de equilibrado del número de jugadas descrita en 4.7.4 contribuye a la mejora de la 

política de aprendizaje online en simulaciones. 

 La política de aprendizaje online en simulaciones descrita en 4.7.5 alcanza al menos 90 puntos 

Elo de mejora para todos los tamaños de tablero probados y todas las asignaciones de CPU 

probadas contra el mismo programa realizando el mismo número de simulaciones con la política 

de base. 
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 La política de aprendizaje online en simulaciones supera a la política de base contra un adversario 

de referencia por 128 puntos Elo dado en mismo número de simulaciones en go 13x13. 

 El método de clasificación no paramétrico con validación cruzada descrito en 5.5.2 puede 

alcanzar altas tasas de clasificación correcta (más del 80%) en problemas complejos (clasificar en 

7 categorías) dándole un conjunto de SNPs apropiado. 

 Los algoritmos para encontrar conjuntos de SNPs basados en búsqueda superan a los basados en 

listas de mejores clasificadores en todos los problemas con todos los tamaños.  

 MCTS supera a todos los demás métodos en todo los problemas con más de 4 SNPs 

 MCTS se beneficia de una mayor asignación de CPU, lo que lo convierte en apropiado para 

búsquedas profundas en aplicaciones genéticas. 
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