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Resumen

Antecedentes y estado actual del tema

La nocién de variedad de Poisson fue introducida por Lichnerowicz en [73]
(ver también [115]). Una estructura de Poisson en una variedad M es
un corchete de algebra de Lie en el espacio de las funciones reales C*°-
diferenciables en M, C*°(M,R), tal que es una derivacién en cada uno de
los argumentos con respecto al producto usual de funciones. Una de las
principales motivaciones para la introduccion de esta nocién es que las varie-
dades de Poisson juegan un papel importante en la Mecdnica Clédsica. De
hecho, los corchetes de Poisson aparecen de manera natural en el estudio de
algunos sistemas mecanicos, particularmente sistemas con ligaduras o en la
reduccién de sistemas con grupos de simetria. Pero la geometria de Poisson es
también relevante para las algebras de observables en la Mecénica Cuéntica.
De hecho, Kontsevich [59] ha mostrado que la clasificacién de deformaciones
formales del algebra C°°(M,R) para cualquier variedad M es equivalente a
la clasificacién de familias formales de estructuras de Poisson en M.

Geométricamente, el corchete de Poisson induce un 2-vector Il en M, carac-
terizado por la relacién {f, g} = (dof, dog), para f,g € C*°(M,R), donde
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do es la diferencial exterior sobre M. Asi, la identidad de Jacobi para {, }
puede ser reinterpretada como la condicion

[Hv H] =0,

donde [, | es el corchete de Schouten-Nijenhuis (ver [3, 73, 110]).

Dos ejemplos interesantes de variedades de Poisson son las variedades sim-
plécticas y las estructuras de Lie-Poisson en el dual de un algebra de Lie.
De hecho, una variedad de Poisson esta hecha de piezas simplécticas en el
sentido de que admite una foliacién generalizada, la foliacién simpléctica,

cuyas hojas son variedades simplécticas.

Otra categoria con una relacién cercana a la geometria Poisson es la de los
algebroides de Lie. Un algebroide de Lie sobre una variedad M es un fibrado
vectorial A sobre M tal que su espacio de secciones I'(A) admite un corchete
de dlgebra de Lie [, ] y, ademds, existe una aplicacion fibrada p de A en TM,
la aplicacién ancla, tal que el correspondiente homomorfismo de C°° (M, R)-
moédulos, también denotado por p : I'(A) — X(M), satisface una relacion de
tipo Leibniz, esto es,

[X, 1Y) = p(X)(N)Y + FIX, Y],

para X, Y € I'(A) y f € C(M,R) (ver [82, 99]). Los algebroides de Lie son
una generalizacion natural de los fibrados tangentes y de las dlgebras de Lie
reales de dimensién finita. Pero existen muchos otros ejemplos interesantes.
Asi, la estructura de algebra de Lie en el espacio de las funciones reales C'°°-
diferenciables en una variedad de Poisson M nos permite definir un corchete
de Lie en el espacio de las 1-formas, el cual dota al fibrado cotangente T M
con una estructura natural de algebroide de Lie ([3, 14, 30, 65, 110]). Existe
también otra conexién entre las variedades de Poisson y los algebroides de
Lie: Hay una correspondencia biyectiva entre estructuras de algebroide de Lie
en un fibrado vectorial 7 : A — M y estructuras de Poisson homogéneas en el
fibrado dual A* (ver [14, 15]). En el caso particular en el que M es un punto,
esto es, A es un algebra de Lie real de dimensién finita, la correspondiente
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estructura de Poisson homogénea en A* es justamente la estructura de Lie-
Poisson usual.

Dos operadores importantes asociados con cualquier algebroide de Lie son el
corchete de Schouten y la diferencial (ver [82]). Ademads, ciertas definiciones
y construcciones relacionadas con algebras de Lie graduadas, levantamientos
de campos tensoriales sobre una variedad y estructuras de Poisson pueden
ser generalizadas a algebroides de Lie arbitrarios (ver [36, 37]). En la misma
direccidn, en [38] los autores introdujeron la nocién de algebroide como una
extension de la definicién de algebroide de Lie y mostraron que muchos ob-
jetos del célculo diferencial en una variedad (asociado con la estructura de
algebroide de Lie candnica en T'M) pueden ser obtenidos en el contexto de

un algebroide general.

Desde el punto de vista de la Fisica, los algebroides de Lie pueden ser usados
para dar descripciones geométricas de la Mecanica Lagrangiana y Hamilto-
niana. Asi, en [89], Martinez desarrollé6 una descripcién geométrica de la
Mecanica Lagrangiana independiente del tiempo sobre algebroides de Lie de
una manera paralela al formalismo usual de Mecanica Lagrangiana en el
fibrado tangente de una variedad. Otros articulos que estudian, en parti-
cular, diversos aspectos de sistemas Lagrangianos en algebroides de Lie son
8,9, 13, 71, 119]. Mads recientemente, otros autores (ver [31, 91, 103]) han
comenzado una investigacién sobre la posible generalizacién del concepto de
algebroide de Lie a fibrados afines. La principal motivacién fue crear un
modelo geométrico que proporcione un entorno natural para una version de-

pendiente del tiempo de las ecuaciones de Lagrange en algebroides de Lie.

Por otra parte, los algebroides de Lie pueden ser considerados como los inva-
riantes infinitesimales de los grupoides de Lie. Para ser precisos, recordamos
primero que una categoria pequena G sobre una base M es un conjunto G
equipado con aplicaciones “source” y “target” de G en M, una seccion unidad
¢ : M — G,y una multiplicacién (g, h) — gh definida en el conjunto G =
{(9,h) € G x G/alg) = B(h)} de pares componibles. Estas operaciones
satisfacen las condiciones a(gh) = a(h), B(gh) = B(g), (gh)k = g(hk) cuando
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alguno de los dos miembros esta definido, y los elementos de ¢(M) en G
actian como neutros para la multiplicacién. Si todos los elementos de G
poseen inverso con respecto a estas identidades, se dice que G es un grupoide.
Si Gy M son variedades, y las aplicaciones de estructura son diferenciables
(se requiere que « y [ sean sumersiones para asegurar que el dominio de la
multiplicacién es una variedad), entonces G se denomina un grupoide de Lie

(ver, por ejemplo, [82]).

El algebra de Lie de campos de vectores en un grupoide de Lie GG contiene
una subdlgebra distinguida X1 (G) de campos que son invariantes a izquierda
en un cierto sentido; éstos son secciones de un fibrado vectorial AG el cual
puede ser identificado con el fibrado normal a ¢(M) en G y, entonces, con
el nicleo de T3. Ta es una aplicacién ancla AG — TM para una estruc-
tura de algebroide de Lie en AG. A éste se le denomina el algebroide de Lie
del grupoide de Lie G. Esta construccién generaliza la manera de obtener
el algebra de Lie asociada con cualquier grupo de Lie. Ademads, sabemos
que cualquier algebra de Lie puede ser integrada a un grupo de Lie conexo
y simplemente conexo. Sin embargo, esto no es cierto para algebroides de
Lie y grupoides de Lie: No todos los algebroides de Lie pueden ser integra-
dos a grupoides de Lie (ver [82]). Recientemente, Crainic y Fernandes [18§]
han obtenido las obstrucciones precisas para integrar un algebroide de Lie
arbitrario a un grupoide de Lie.

Hemos visto que el fibrado cotangente T*M de una variedad de Poisson
tiene una estructura de algebroide de Lie natural derivada del corchete de
Poisson de funciones. Si existe un grupoide de Lie G cuyo algebroide de Lie
es isomorfo a T*M, decimos que M es una variedad de Poisson integrable.
En este caso, existe una estructura simpléctica (2 en G para la cual el grafo de
la multiplicacion {(g, h,gh) € G x G x G/ a(g) = B(h)} es una subvariedad
lagrangiana del producto simpléctico (G x G x G, Q2@ Q@ —). Un grupoide
de Lie G = M dotado con una estructura simpléctica satisfaciendo esta
propiedad se denomina un grupoide simpléctico (ver [14]). El espacio base

de un grupoide simpléctico es siempre una variedad de Poisson. Un ejemplo



Resumen

candnico de grupoide simpléctico es el fibrado cotangente T*G de un grupoide
de Lie arbitrario G = M, donde la estructura simpléctica es justamente la
estructura simpléctica canénica Q+¢. En este caso, el espacio base es A*G y
la estructura de Poisson en A*G es justamente la estructura de Poisson lineal
inducida por el algebroide de Lie AG. Una propiedad interesante es que la
aplicacion “source” de un grupoide simpléctico o : G — M es un morfismo de
Poisson. Realizaciones globales para variedades de Poisson arbitrarias fueron
descubiertas por primera vez por Karasaev [55] y Weinstein [116] (resultados
recientes pueden ser encontrados en [10, 19]).

Como acabamos de decir, los grupoides simplécticos aparecieron en los afnos
80 en los trabajos independientes de Karasaev [55] y Weinstein [116] (ver
también los trabajos de Zakrzewski [122]), motivados por problemas de cuan-
tificacion. Mientras tanto, una teoria de grupos de Lie-Poisson habia sido de-
sarrollada a través de los trabajos de Drinfeld [27] y Semenov-Tian-Shansky
[104, 105] sobre sistemas completamente integrables y grupos cudnticos (ver
también [28, 63, 80, 81]). Nétese que un grupo de Lie-Poisson abeliano conexo
y simplemente conexo es isomorfo al espacio dual de un algebra de Lie real
dotada con la estructura de Lie-Poisson. Por tanto, fue natural unificar la
teoria de grupos de Lie-Poisson y la teoria de grupoides simplécticos. Para
este propdsito, Weinstein [117] introdujo la nocién de grupoide de Poisson.
Un grupoide de Poisson es un grupoide de Lie G = M con una estructura
de Poisson II para la cual el grafo de la multiplicacion parcial es una sub-
variedad coisétropa en la variedad de Poisson (G x G x G, 11 & Il & —II).
Si (G = M,1I) es un grupoide de Poisson entonces existe una estructura de
Poisson en M tal que la proyeccién “source” a : G — M es un morfismo
de Poisson. Ademas, si AG es el algebroide de Lie de G entonces el fibrado
dual A*G a AG también posee una estructura de algebroide de Lie. Por otra
parte, los grupoides de Poisson tienen interesantes aplicaciones en la ecuacion
de Yang-Baxter dindmica cldsica (ver, por ejemplo, [29, 68]).

En [83], Mackenzie y Xu probaron que un grupoide de Lie G = M dotado
con una estructura de Poisson II es un grupoide de Poisson si y solo si la
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aplicacion fibrada #p : T*G — T'G inducida por I es un morfismo entre el
grupoide cotangente T*G = A*G y el grupoide tangente T'G = T'M. Esta
caracterizacion fue usada para probar que los bialgebroides de Lie son los
invariantes infinitesimales de los grupoides de Poisson, esto es, si (G = M, II)
es un grupoide de Poisson entonces (AG, A*G) es un bialgebroide de Lie vy,
reciprocamente, una estructura bialgebroide de Lie en el algebroide de Lie
de un grupoide de Lie (a-simplemente conexo) puede ser integrada a una
estructura de grupoide de Poisson [79, 83, 85] (estos resultados pueden ser
aplicados para obtener una nueva demostracion de un teorema de Karasaev
[55] y Weinstein [116]). Un bialgebroide de Lie es un algebroide de Lie A tal
que el fibrado vectorial dual A* también posee una estructura de algebroide
de Lie la cual es compatible con la de A en cierta manera (ver [83]). Los
bialgebroides de Lie generalizan las bidlgebras de Lie de Drinfeld [27]. Otro
ejemplo importante de bialgebroide de Lie es el asociado con una estructura
de Poisson. De forma mas precisa, si M es una variedad de Poisson con
2-vector de Poisson I y en TM (respectivamente, T*M) consideramos la
estructura de algebroide de Lie trivial (respectivamente, la estructura de
algebroide de Lie cotangente asociada con II) entonces el par (T M,T*M) es
un bialgebroide de Lie. La condicion de compatibilidad de un bialgebroide
de Lie ha sido expresada en el lenguaje de las dlgebras de Gerstenhaber en
[61].

Aunque las estructuras simpléctica y de Lie-Poisson son de Poisson, existen
estructuras interesantes para la Mecanica Clasica, como las estructuras de
contacto, que no lo son. Una generalizacion tanto de las variedades de Poisson
como de las variedades de contacto, son las variedades de Jacobi. Una estruc-
tura de Jacobi en una variedad M es un 2-vector A y un campo de vectores
E en M tal que [A,A] =2E ANAy [E,A] =0 (ver [74]). Si (M, A, E) es una
variedad de Jacobi uno puede definir un corchete de funciones, el corchete de
Jacobi, de tal manera que el espacio C*°(M,R) dotado con el corchete de Ja-
cobi es un algebra de Lie local en el sentido de Kirillov [57]. Reciprocamente,
una estructura de algebra de Lie local en C°(M,R) induce una estructura

de Jacobi en M [39, 57]. Algunos ejemplos interesantes de variedades de
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Jacobi, aparte de las variedades de Poisson y de contacto, son las variedades
localmente conforme simplécticas (l.c.s.). De hecho, una variedad de Jacobi
admite una foliacién generalizada, llamada la foliacién caracteristica, cuyas
hojas son variedades de contacto o lL.c.s. (ver [24, 39, 57]).

Existe también una relacién entre las variedades de Jacobi y los algebroides
de Lie. De hecho, si M es una variedad arbitraria entonces el fibrado vectorial
TM x R — M posee una estructura de algebroide de Lie natural. Ademas,
si M es una variedad de Jacobi entonces el fibrado de 1-jets T"M x R —
M admite una estructura de algebroide de Lie [56] (para una variedad de
Jacobi el fibrado vectorial T*M no es, en general, un algebroide de Lie). Sin
embargo, el pair (TM x R,T*M x R) no es, en general, un bialgebroide de
Lie (ver [111]).

La existencia de una estructura de algebroide de Lie asociada con cualquier
estructura de Jacobi justifica la introducciéon de la nocién de grupoide de
contacto. Un grupoide de contacto (G = M,n,0) es un grupoide de Lie
G = M dotado con una 1-forma de contacto n € Q'(G) y una funcién
o € C*(G,R) tal que

1(gh)(Xy ®re Ya) = n(g)(Xy) + e”Dn(h)(Ya),

para (X,,Y;) € T(g,h)G(Q), donde @7¢ es la multiplicacién parcial en el
grupoide de Lie tangente TG = T'M (ver [22, 23, 56, 69, 70]). Los grupoides
de contacto pueden ser considerados como la versiéon en dimensién impar
de los grupoides simplécticos y tienen aplicacién en la precuantificacion de
variedades de Poisson y en la integracién de estructuras de algebras de Lie lo-
cales en fibrados vectoriales de rango 1 (ver [22, 23]). En este caso, la funcién
o es multiplicativa y el espacio base M posee una estructura de Jacobi de tal
manera que el par («,e”) es un morfismo conforme de Jacobi. Asi, podemos
considerar el algebroide de Lie T*M x R — M. De hecho, el algebroide de
Lie AG de G es isomorfo a T*M x R — M.
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Objetivos de la investigaciéon y metodologia

Como se indica en el titulo, el propdsito general de esta Memoria es estudiar
la relacién que existe entre la teoria de grupoides de Lie (y algebroides de
Lie) y las variedades de Jacobi.

Un esquema general de esta Memoria es el siguiente:

e Capitulo 1: Estructuras de Jacobi, algebroides y grupoides de Lie

Este es un capitulo introductorio que contiene algunas generalidades
sobre estructuras de Jacobi, algebroides de Lie y grupoides de Lie,
tales como su definicién, algunos ejemplos y propiedades que van a ser
utiles a lo largo de la Memoria.

e Capitulo 2: Algebroides de Jacobi, estructuras de Jacobi homogéneas y su
foliaciéon caracteristica

Una estructura de algebroide de Jacobi en un fibrado vectorial es una
estructura de algebroide Lie y un 1-cociclo en ella. En este capitulo,
consideramos estructuras de Jacobi homogéneas en fibrados vectoriales.
Obtenemos una caracterizacion de este tipo de estructuras y su relacion
con los algebroides de Jacobi. Finalmente, probamos que las hojas de
la foliacion caracteristica de una estructura de Jacobi homogénea en
un espacio vectorial son las érbitas de una accién de un grupo de Lie
sobre el espacio vectorial y describimos dicha accion.

e Capitulo 3: Estructuras de Jacobi y bialgebroides de Jacobi

Después de desarrollar un cédlculo diferencial para los algebroides de
Jacobi, introducimos la nocién de bialgebroide de Jacobi (una genera-
lizacion de la nocién de bialgebroide de Lie) de tal manera que una
variedad de Jacobi tiene asociado un bialgebroide de Jacobi candnico.
De manera reciproca, probamos que se puede definir una estructura
de Jacobi en el espacio base de un bialgebroide de Jacobi. También

mostramos que es posible construir un bialgebroide de Lie desde un
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bialgebroide de Jacobi y, como consecuencia, deducimos un teorema
de dualidad. La definicion de un bialgebroide de Jacobi es ilustrada
con varios ejemplos. En la ultima parte del capitulo, obtenemos una
caracterizacion de los bialgebroides de Jacobi en términos de morfismos
de algebroides de Jacobi.

e Capitulo 4: Bialgebras de Jacobi

Estudiamos en este capitulo bialgebroides de Jacobi para los que el
espacio base es un punto, esto es, bidlgebras de Jacobi. Proponemos un
método, que generaliza el método de la ecuacién de Yang-Baxter, para
obtener bidlgebras de Jacobi y damos ejemplos de ellas. Finalmente,

describimos las bialgebras de Jacobi compactas.

e Capitulo 5: Grupoides de Jacobi y bialgebroides de Jacobi

Finalizamos la Memoria introduciendo los grupoides de Jacobi como
una generalizacion de los grupoides de Poisson y de contacto. Se prueba
que los bialgebroides de Jacobi son los invariantes infinitesimales de los

grupoides de Jacobi.

Resultados obtenidos y conclusiones

Precisaremos ahora el contenido de cada uno de los capitulos incluidos en

esta Memoria.

CAPITULO 1

Comenzamos esta memoria con el Capitulo 1, donde recordamos algunas
definiciones y resultados sobre estructuras de Jacobi, algebroides y grupoides
de Lie. En primer lugar, recordamos la definiciéon de variedad de Jacobi y
consideramos algunos ejemplos, incluyendo a las variedades de Poisson, asi
como otros ejemplos interesantes de variedades de Jacobi que no son Poisson,
como las variedades de contacto o las localmente conforme simplécticas (ver
Seccién 1.1.2). Estas ultimas estructuras son especialmente importantes ya

que, de manera poco precisa, podemos decir que toda variedad de Jacobi esta
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compuesta por piezas de contacto y localmente conforme simplécticas. De
una forma maés rigurosa, tenemos que las hojas de la foliacién caracteristica
de una variedad de Jacobi son variedades de contacto o localmente conforme
simplécticas (ver Seccién 1.1.3).

Las estructuras de Poisson son ejemplos de estructuras de Jacobi, pero existe
otra relacion entre estructuras de Poisson y de Jacobi. De hecho, si M es
una variedad de Jacobi entonces la variedad producto M x R admite una
estructura de Poisson exacta que se denomina la Poissonizacion de M. En
la Seccién 1.1.6 de este Capitulo, damos una descripcién de esta estructura
en M x R.

Es bien conocido que si M es una variedad de Jacobi entonces el fibrado
vectorial T*M x R — M admite una estructura de algebroide de Lie [56]. En
la segunda parte de este Capitulo (Seccién 1.2), recordamos la definicién de
estructura de algebroide de Lie en un fibrado vectorial A sobre una variedad
M vy la definicion de dos operadores importantes asociados con cualquier
algebroide de Lie: el corchete de Schouten de dos multi-secciones de A y la
diferencial de una multi-seccion del fibrado dual A* de A. La diferencial es un
operador de cohomologia e induce el complejo de cohomologia de algebroide
de Lie con coeficientes triviales. Varios ejemplos de algebroides de Lie son
considerados en la Seccién 1.2.2, describiendo los elementos asociados con
cada uno de ellos. En particular, presentamos la relacion entre las estructuras
de algebroide de Lie en un fibrado vectorial 7: A — M y las estructuras de
Poisson en el fibrado dual 7* : A* — M que son homogéneas con respecto a
A 4+, el campo de Liouville de A*.

Los objetos globales correspondientes a los algebroides de Lie son los gru-
poides de Lie. En la ultima Seccién del Capitulo 1, recordamos la definicién
de un grupoide de Lie y de morfismo entre grupoides de Lie. Como en el
caso de un grupo de Lie, uno puede considerar multi-vectores invariantes
a izquierda en un grupoide de Lie. En particular, los campos de vectores
invariantes a izquierda son cerrados con respecto al corchete de Schouten-

Nijenhuis y pueden ser identificados con las secciones de un fibrado vectorial
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AG — M. Estos hechos permiten la construccién de una estructura de
algebroide de Lie en AG. Finalmente, algunos ejemplos de grupoides de
Lie son considerados en la Seccién 1.3.2; describiendo el algebroide de Lie
asociado en cada caso.

CAPITULO 2

En el Capitulo 1, hemos recordado la correspondencia biyectiva entre las
estructuras de algebroide de Lie en un fibrado vectorial 7: A — M y las es-
tructuras de Poisson homogéneas en el fibrado dual A*. Ademds, mostramos
la relacién entre la homogeneidad de una estructura de Poisson I y el compor-
tamiento del corchete de Poisson {, }i1 con respecto a las funciones lineales.
De hecho, una estructura de Poisson en un fibrado vectorial es homogénea
si y s6lo si la estructura de Poisson es lineal, es decir, las funciones lineales
son cerradas con respecto al corchete de Poisson. En el Capitulo 2 de esta
Memoria extendemos esta relacion al contexto Jacobi. Mas precisamente,
en la Seccién 2.1, describimos las estructuras de Jacobi homogéneas en un
fibrado vectorial, esto es, estructuras de Jacobi (A, E') en un fibrado vectorial
A — M tales que A y E son homogéneos con respecto al campo de Liouville
de A. Ademaés, como en el caso Poisson, deducimos la relacion entre esta
homogeneidad y el comportamiento del corchete de Jacobi {, }a ) entre
funciones lineales y constantes. En particular, probamos que el campo E
es el levantamiento vertical de cierta seccion de A — M y que existe una
estructura de Poisson homogénea 114 tal que A =114 + E A Ay, siendo Ay
el campo de Liouville en A (ver Teorema 2.3).

En la Seccién 2.2, mostramos la relacién entre las estructuras de Jacobi
homogéneas en A* y las estructuras de algebroide de Lie en A. De hecho,
si (A, E) es una estructura de Jacobi homogénea en A* entonces obtenemos
que induce no sélo una estructura de algebroide de Lie en A, sino también
un 1-cociclo ¢y € I'(A*) en el complejo de cohomologia de A con coeficientes
triviales. El campo FE es, salvo el signo, el levantamiento vertical ¢y € X(A*)
de ¢y, esto es, & = —¢y. Motivados por este resultado, introducimos la

nociéon de algebroide de Jacobi como un par formado por una estructura de
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algebroide de Lie y un 1-cociclo en él. Después de mostrar un reciproco
de este resultado, esto es, obtener una estructura de Jacobi homogénea en
A* — M desde una estructura de algebroide de Jacobi (([, ], p), o) en A,
presentamos algunos ejemplos y aplicaciones en la Seccién 2.3. Dos ejemplos
interesantes son: i) para una variedad arbitraria M, el algebroide de Lie A =
TM xRy el 1-cociclo ¢y = (0, —1) € QY (M) x C>*(M,R) = I'(A*), probamos
que la estructura de Jacobi homogénea resultante en el fibrado vectorial
T*M x R — M es justamente la estructura de contacto canodnica n; y ii)
para una variedad de Jacobi (M, A, E), el algebroide de Lie A* = T*M x R
y el 1-cociclo Xy = (—E,0) € X(M) x C*(M,R) = I'(A), deducimos que
la correspondiente estructura de Jacobi homogénea en el fibrado vectorial
TM x R — M esta dada por

0 0
A(TMX]KXO) = A"+ a N t<AV + a A EV)’ E(TMXR,XQ) = EV7

donde Ay E° (resp., AV y EV) es el levantamiento completo (resp. vertical)
aTM de Ay E, respectivamente. Esta estructura de Jacobi fue introducida
por vez primera en [43] y es la versién Jacobi de la estructura de Poisson
tangente usada por primera vez en [102] (ver también [15, 35]). Como apli-
cacion de nuestra construcciéon, obtenemos una estructura de algebroide de
Lie ([, ]"?, p?) en el fibrado vectorial A = A x R — M x R desde una
estructura de algebroide de Jacobi (([, [, p), o) en A — M.

En la ultima Seccién del Capitulo 2 (Seccién 2.4), probamos que las hojas
de la foliacién caracteristica de una estructura de Jacobi homogénea en el
espacio dual g* de un espacio vectorial real g son las érbitas de cierta accion
de un grupo de Lie conexo y simplemente conexo G sobre g* y describimos la
estructura de Jacobi inducida en cada hoja. Como consecuencia, deducimos
un resultado bien conocido: si IIg« es una estructura de Poisson lineal en g*
entonces g es un algebra de Lie y las hojas de la foliacién simpléctica de IIg-
son las érbitas de la representacion coadjunta asociada con un grupo de Lie

conexo y simplemente conexo G con algebra de Lie g.
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CAPITULO 3

Motivados por los resultados obtenidos en el Capitulo 2, introducimos, en
el Capitulo 3, un calculo diferencial asociado con cualquier algebroide de
Jacobi. Si (A, ([, ],p),¢0) es un algebroide de Jacobi sobre M entonces
la representacién usual del dlgebra de Lie I'(A) sobre el espacio C*°(M,R)
dada por la aplicacion ancla p puede ser modificada y se obtiene una nueva
representacion. El operador de cohomologia resultante d*° se denomina la
¢o-diferencial de A. La ¢g-diferencial de A nos permite definir, de manera
natural, la ¢o-derivada de Lie por una seccién X € T'(4), LY = d% oiy +
ix o d?. Por otra parte, imitando la definicién de corchete de Schouten de
dos operadores diferenciales multilineales de primer orden en el espacio de las
funciones reales C*°-diferenciables en una variedad N (see [3]), introducimos
el ¢p-corchete de Schouten de una k-seccién P y una k’-seccién P’ como la
(k 4+ K — 1)-seccién dada por

[P PT? =[PP+ (=1)" " (k = )P A (ig, P') = (K" = 1)(ig, P) A P,

donde [, | es el corchete de Schouten usual en A. Para estos operadores,

describimos algunas de sus propiedades.

Por otra parte, si M es una variedad de Jacobi entonces, como sabemos, el
fibrado de 1-jets T*M x R — M admite una estructura de algebroide de Lie
[56]. Sin embargo, si en el fibrado vectorial TM x R — M consideramos la
estructura de algebroide de Lie natural entonces el par (T'M x R, T*M x R)
no es, en general, un bialgebroide de Lie (ver [111]). Por tanto, para una
variedad de Jacobi M, parece razonable considerar el par de algebroides de
Jacobi ((A=TM xR, ¢y = (0,1)),(A* =T*M xR, Xy = (—FE,0))) en lugar
del par de algebroides de Lie (T'M x R, T*M x R). De hecho, probamos que
los algebroides de Jacobi (A, ¢g) y (A*, Xj) satisfacen algunas condiciones de
compatibilidad. Estos resultados nos sugieren introducir, en la Seccién 3.3, la
definicion de un bialgebroide de Jacobi como un par de algebroides de Jacobi
en dualidad que son compatibles en un cierto sentido. Si M es una variedad
de Jacobi entonces el par (A =TM xR, ¢pq = (0,1)),(A* =T*M xR, X, =
(—FE,0))) es un bialgebroide de Jacobi. Reciprocamente, probamos que una
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estructura de Jacobi puede ser definida en el espacio base de un bialgebroide
de Jacobi. Después de esto, mostramos una caracterizacion interesante de
bialgebroides de Jacobi que fue probada por Grabowski and Marmo en [33],
a saber, si (A, ¢g) v (A*, X) son un par de algebroides de Jacobi en dualidad
entonces ((A, ¢o), (A*, X)) es un bialgebroide de Jacobi si y sélo si la Xy-
diferencial de A* es una derivacién con respecto a (B [(A*A), [, ]'?°), donde
®r[(AFA) es el espacio de las multi-secciones de A y [, ]'?° es el ¢o-corchete
de Schouten modificado, que esta definido por

[P.QI" = (-1)""'[P,.Q]™,
para P € I'(APA) y Q € I'(A*A).

Si ((A, ¢o), (A*, Xo)) es un bialgebroide de Jacobi y los 1-cociclos ¢y v Xo
se anulan entonces el pair (A, A*) es un bialgebroide de Lie. Este y otros
ejemplos interesantes, tales como los bialgebroides de Jacobi triangulares
(que generalizan los bialgebroides de Lie triangulares [83]) y el bialgebroide
de Jacobi asociado con una estructura de Poisson exacta, son descritos en la
Seccién 3.4, mostrando en cada caso cudl es la estructura de Jacobi inducida
en el espacio base M.

Es bien conocido que el producto de una variedad de Jacobi con R, dotado
con la Poissonizacion de la estructura de Jacobi, es una variedad de Poisson
(ver [74] y Seccién 1.1.6). En la Seccién 3.5 de este Capitulo, mostramos un
resultado similar para bialgebroides de Jacobi. Mas precisamente, probamos
que si ((A, ¢o), (A%, Xp)) es un bialgebroide de Jacobi sobre M entonces es
posible definir una estructura de bialgebroide de Lie en el par de fibrados
vectoriales duales (A x R, A* x R) sobre M x R, de tal manera que la es-
tructura de Poisson inducida en M X R es justamente la Poissonizacién de
la estructura de Jacobi en M (ver Teorema 3.29). Usando este resultado,
mostramos que los bialgebroides de Jacobi satisfacen un teorema de duali-
dad, esto es, si ((A, ¢o), (A*, X)) es un bialgebroide de Jacobi, también lo es

((A*7 XO)? (A7 ¢0))

Finalmente, en la dltima seccién del Capitulo 3 (Seccién 3.6), obtenemos una
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caracterizacién de bialgebroides de Jacobi en términos de morfismos de al-
gebroides de Jacobi (ver Teorema 3.34). Como consecuencia, deducimos que
los bialgebroides de Lie puede ser caracterizados en términos de morfismos de
algebroides de Lie. Esta ultima caracterizacion fue probada por Mackenzie
y Xu en [83].

CAPITULO 4

El objetivo del Capitulo 4 es estudiar las bidlgebras de Jacobi, esto es, los
bialgebroides de Jacobi para los que el espacio base es un punto. Comenzamos
el Capitulo, en la Seccion 4.1, estudiando varios aspectos relacionados con es-
tructuras de Jacobi algebraicas. Estas ultimas pueden ser consideradas como
una version sobre un algebra de Lie de las estructuras de Jacobi sobre una va-
riedad. Entre los ejemplos de estructuras de Jacobi algebraicas encontramos
las dlgebras de Lie-localmente conforme simplécticas (una generalizacién de
las algebras de Lie simplécticas [76]) y las édlgebras de Lie-contacto. Para
este dltimo tipo de estructuras, damos una demostracién directa de un resul-
tado que fue probado por Diatta [25]. De hecho, mostramos que si g es un
algebra de Lie compacta dotada con una estructura de contacto algebraica,
entonces g es isomorfa al dlgebra de Lie su(2) del grupo unitario especial
SU(2). Ademas, describimos todas las estructuras de contacto algebraicas
en su(2).

En la Seccién 4.2, mostramos que la Xo-diferencial d2X° de g* en una bidlgebra
de Jacobi ((g, ¢o), (g%, Xo)) es un l-cociclo con respecto a cierta representa-
cién del dlgebra de Lie g sobre A?g. Motivados por este hecho, proponemos
un método para obtener bidlgebras de Jacobi donde dX° es un 1-coborde
(ver Teorema 4.8). Este método es una generalizacion del método de la
ecuacién de Yang-Baxter para bidlgebras de Lie y, ademas, nos permite
obtener bialgebras de Jacobi desde estructuras de Jacobi algebraicas. Para
ilustrar la teoria, presentamos algunos ejemplos de bialgebras de Jacobi en

la Seccién 4.3.

Varios autores han dedicado especial atencién al estudio de las bidlgebras

de Lie compactas. Un importante resultado en esta direccion es el siguiente
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[81] (ver también [86]): todo grupo de Lie semisimple compacto y conexo
admite una estructura de grupo de Lie-Poisson no trivial. En la Seccion
4.4, describimos la estructura de una bidlgebra de Jacobi ((g, ¢0), (g%, Xo)),
donde g es un élgebra de Lie compacta y ¢g # 0 6 Xy # 0 (ver Teoremas 4.18
y 4.20). En particular, deducimos que, aparte del dlgebra de Lie abeliana
de dimension par, el inico ejemplo no trivial de bidlgebra de Lie compacta
((g,¢0), (g%, Xo)) se obtiene cuando g es el algebra de Lie u(2) del grupo
unitario U(2).

CAPITULO 5

Finalizamos la Memoria introduciendo, en el Capitulo 5, los grupoides de
Jacobi como una generalizacién de los grupoides de Poisson y de contacto y de
tal manera que los bialgebroides de Jacobi son los invariantes infinitesimales
de los grupoides de Jacobi. Como en el caso de los grupoides de contacto,
comenzamos con un grupoide de Lie G =% M, una estructura de Jacobi (A, E)
en G y una funcion multiplicativa o : G — R. Entonces, como en el caso de
los grupoides de Poisson, consideramos el morfismo de fibrados vectoriales
#,p) : T*G xR — TG x R inducido por la estructura de Jacobi (A, E). La
funcién multiplicativa ¢ induce, de manera natural, una accién del grupoide
tangente TG = T'M sobre la proyeccién canénica m : TM x R — TM
obteniéndose un grupoide accion TG x R sobre T'M x R. Asi, es necesario
introducir una estructura de grupoide de Lie adecuada en T*G xR sobre A*G.
De hecho, probamos que si AG es el algebroide de Lie de un grupoide de Lie
arbitrario G = M, 0 : G — R es una funcién multiplicativa, 7¢ : T"G xR —
G es la proyeccion candnica y 7 es la 1-forma de contacto candnica en
T*G x R entonces,(T*G x R = A*G,ng, 0 o ) es un grupoide de contacto
de tal manera que la estructura de Jacobi en A*G es justamente la estructura
de Jacobi homogénea (A(a+G.40), E(a+c,6)) inducida por el algebroide de Lie
y el 1-cociclo ¢y que viene de la funciéon multiplicativa o (ver Teoremas 5.7
y 5.10).

Motivados por los resultados anteriores, en Secciéon 5.2, introducimos la

definicién de un grupoide de Jacobi como sigue. Sea G = M un grupoide
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de Lie, (A, E) una estructura de Jacobi en G y 0 : G — R una funcién
multiplicativa. Entonces, (G = M, A, E,0) es un grupoide de Jacobi si la
aplicacion # ) : T°G x R — TG x R es un morfismo de grupoides de Lie
sobre alguna aplicacién ¢y : A*G — TM x R. En esta Seccién, también
obtenemos las propiedades principales de este tipo de grupoides. Por otra
parte, los grupoides de Poisson y de contacto son grupoides de Jacobi. Es-
tos y otros ejemplos interesantes, como los grupoides localmente conforme
simplécticos o los grupoides de Jacobi para los que el espacio base es un
punto (llamados grupos de Lie-Jacobi), son tratados en la Seccién 5.3.

En la tdltima seccién del Capitulo 5 (Seccién 5.4), probamos que los bial-
gebroides de Jacobi son los invariantes infinitesimales de los grupoides de
Jacobi. Para este propdsito, procedemos como sigue. Si (G = M, A, E, o)
es un grupoide de Jacobi entonces, usando algunos resultados sobre subva-
riedades coisétropas de una variedad de Jacobi obtenidos en la Seccion 5.4.1,
mostramos que el fibrado vectorial A*G admite una estructura de algebroide
de Lie y la funcién multiplicativa o (respectivamente, el campo de vectores
E) induce un 1-cociclo ¢q (respectivamente, Xg) en AG (respectivamente,
A*G) de tal manera que ((AG, ¢g), (A*G, Xj)) es un bialgebroide de Jacobi
(ver Teorema 5.25). Varios ejemplos ilustran este resultado.

También probamos un reciproco al resultado anterior. Para ello nos situamos
en las siguientes hipdtesis: Sea ((AG, ¢p), (A*G, Xy)) un bialgebroide de
Jacobi donde AG es el algebroide de Lie de un grupoide de Lie G = M
a-conexo v a-simplemente conexo. Entonces, existe una unica funcion mul-
tiplicativa o : G — R y una tnica estructura de Jacobi (A, E) en G que
hace de (G = M, A, E,0) un grupoide de Jacobi con bialgebroide de Ja-
cobi ((AG, ¢p), (A*G, X)) (ver Teorema 5.33). Los dos resultados previos
generalizan los obtenidos por Mackenzie and Xu [83, 85] para grupoides de
Poisson. Como otra aplicacién, mostramos que dada una variedad de Jacobi
(M, Ay, Ey) siempre existe, al menos localmente, un grupoide de contacto
(G = M,n,o0) tal que AG es isomorfo al algebroide de Lie T*M x R — M.
Este resultado fue probado por primera vez en [23] (ver también [2]). Fi-
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nalmente, en el caso particular de un bialgebroide de Jacobi triangular inte-
grable, damos una expresién explicita de la estructura de Jacobi (A, E) en el
correspondiente grupoide de Jacobi.



UMIVERSIIDAD DE LA LAGUNA

DEPARTMENT OF FUNDAMENTAL MATHEMATICS
SECTION OF GEOMETRY AND TOPOLOGY

LIE GROUPS AND GROUPOIDS
AND
JACOBI STRUCTURES

David Iglesias Ponte

A Memory fulfilled under the supervision
of Prof. Juan Carlos Marrero Gonzdlez to

opt for the degree of Doctor by the Univer-
sity of La Laguna

LA LAGUNA, APRIL 2003






Contents

Introduction 1
1 Jacobi structures, Lie algebroids and Lie groupoids 17
1.1 Local Lie algebras and Jacobi manifolds. Examples . . . . . . 17
1.1.1 Local Lie algebras and Jacobi manifolds . . . .. ... 17

1.1.2 Examples of Jacobi manifolds . . . ... ... ... .. 18

1.1.3 The characteristic foliation of a Jacobi manifold . . . . 21

1.2

1.3

1.1.4 Conformal changes of Jacobi manifolds and conformal

Jacobi morphisms . . . . . ... 23
1.1.5 Coisotropic submanifolds . . . . . . . ... .. ... .. 24
1.1.6  The Poissonization of a Jacobi manifold . . . . . ... 25
Lie algebroids. Examples . . . . . . . . ... .. ... .. ... 26
1.2.1 Lie algebroids . . . . . . ... ... ... ... ... .. 26
1.2.2  Examples of Lie algebroids . . . . . . ... .. ... .. 28
1.2.3 Lie algebroid morphisms . . . . . . .. .. .. ... .. 38
Lie groupoids. Examples . . . . . . . .. ... 39
1.3.1 Lie groupoids . . . . . .. .. ... ... ... 39
1.3.2 Examples of Lie groupoids . . . . . . ... .. ... .. 42

Jacobi algebroids, homogeneous Jacobi structures and its

characteristic foliation 47
2.1 Homogeneous Jacobi structures . . . . .. ... .. ... ... 47
2.2 Homogeneous Jacobi structures and Jacobi algebroids . . . . . 50
2.3 Examples and applications . . . . . ... ... 53
2.4 The characteristic foliation of a homogeneous Jacobi structure

on a vector space . . . . . ... Lo o e 56



ii

Contents

3 Jacobi structures and Jacobi bialgebroids 61
3.1 Differential calculus on Jacobi algebroids . . . . .. .. .. .. 61
3.1.1 ¢g-differential and ¢y-Lie derivative . . . . . . . . . .. 61

3.1.2  ¢g-Schouten bracket . . . . . ... ... 64

3.2 Jacobi structures and Lie bialgebroids . . . . . ... ... .. 69
3.3 Jacobi bialgebroids . . . . ... ... 0oL 71
3.4 Examples of Jacobi bialgebroids . . . . .. ... ... L. 78
3.4.1 Lie bialgebroids . . . . ... ... ... 78

3.4.2  The Jacobi bialgebroid associated with a Jacobi structure 79
3.4.3 Jacobi bialgebroids and strong Jacobi-Nijenhuis struc-

tures . . . .o 79
3.4.4 Triangular Jacobi bialgebroids . . . . .. .. ... ... 84

3.4.5 The Jacobi bialgebroid associated with an exact Pois-
son structure . . . . ..o 87
3.5 Lie bialgebroids associated with Jacobi bialgebroids . . . . . . 88
3.5.1 Time-dependent sections of a Lie algebroid . . . . . . . 89
3.5.2  Lie bialgebroids and Jacobi bialgebroids . . . . . . .. 92
3.6 A characterization of Jacobi bialgebroids . . . . . . . ... .. 98
4 Jacobi bialgebras 111
4.1 Algebraic Jacobi structures . . . . . . ... 111
4.2 Coboundary Jacobi bialgebras . . . . . . ... ... ... ... 116
4.3 Examples of Jacobi bialgebras . . . . . ... ... ... ... 120
4.3.1 Jacobi bialgebras from contact Lie algebras. . . . . . . 120

4.3.2 Jacobi bialgebras from locally conformal symplectic Lie
algebras . . . . ..o 122
4.3.3 Other examples of Jacobi bialgebras . . . . ... ... 124
4.4 Compact Jacobi bialgebras . . . . . . . ... ... ... .. .. 125
5 Jacobi groupoids and Jacobi bialgebroids 135
5.1 Contact groupoids and 1-jet bundles . . . . . . ... ... .. 135



Contents 1ii

5.2 Jacobi groupoids: definition and characterization . . . . . .. 146
5.3 Examples of Jacobi groupoids . . . . . .. ... .. ... 154
5.3.1 Poisson groupoids . . . . .. ... 154
5.3.2 Contact groupoids . . . . . . . ... ... ... 154
5.3.3 Locally conformal symplectic groupoids . . . . . . . .. 154
5.3.4 Jacobi-Lie groups . . . . . . .. ... 160
5.3.5  An abelian Jacobi groupoid . . . . ... ... ... .. 161
5.3.6  The banal Jacobi groupoid . . . . . . .. ... ... .. 161
5.4 Jacobi groupoids and Jacobi bialgebroids . . . . .. .. .. .. 162
5.4.1 Coisotropic submanifolds of a Jacobi manifold and Ja-
cobi algebroids . . . . . ... 163
5.4.2 The Jacobi bialgebroid of a Jacobi groupoid . . . . . . 165
5.4.3 Integration of Jacobi bialgebroids . . . . . . .. .. .. 178
Future directions 191

Bibliography 197



iv

Contents




Notation

All the manifolds which are going to be considered in this Memory will be
connected. Moreover, if M is a smooth manifold, we will use the following

notation:
e C°(M,R) is the algebra of C* real-valued functions on M.
e X(M) is the Lie algebra of vector fields on M.
o QF(M) is the space of k-forms on M.
e V¥(M) is the space of k-vector fields on M.

[, ] is the Schouten-Nijenhuis bracket on V*(M) = &, VE(M).

dp is the exterior differential on Q*(M) = @ Q~(M).

Ly is the usual Lie derivative.






Introduction

The notion of a Poisson manifold was introduced by Lichnerowicz in [73] (see
also [115]). A Poisson structure on a manifold M is a Lie algebra bracket on
the space of C* real-valued functions on M such that it is a derivation on
each argument with respect to the usual product of functions. One of the
main motivations for the introduction of this notion is that Poisson mani-
folds play an important role in Classical Mechanics. In fact, Poisson brackets
appear in a natural way in the study of some mechanical systems, particu-
larly systems with constraints or in the reduction of systems with symmetry
groups. But Poisson geometry is also relevant to the algebras of observables
in quantum mechanics, as well as to more general noncommutative algebras.
In fact, Kontsevich [59] has just shown that the classification of formal de-
formations of the algebra C*°(M,R) for any manifold M is equivalent to the
classification of formal families of Poisson structures on M.

Geometrically, the Poisson bracket induces a 2-vector II on M, characterized

by the relation

{fag} = H(d0f7 dOQ)? for fug € COO<M7R)
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Thus, the Jacobi identity for {, } can be reinterpreted as the condition
[II, II} = 0 (see [3, 73, 110]).

Two interesting examples of Poisson manifolds are symplectic manifolds and
Lie-Poisson structures on the dual of a Lie algebra [115]. In fact, a Pois-
son manifold is made with symplectic pieces in the sense that it admits a
generalized foliation, the symplectic foliation, whose leaves are symplectic
manifolds.

Another category with close relations to Poisson geometry is that of Lie
algebroids. A Lie algebroid over a manifold M is a vector bundle A over M
such that its space of sections I'(A) admits a Lie algebra bracket [, ] and,
moreover, there exists a bundle map p from A to T'M, the anchor map, such
that the corresponding homomorphism of C'*°(M, R)-modules, also denoted
by p: T'(A) — X(M), satisfies a Leibniz relation, that is,

[X, 1Y] = p(X)(N)Y + FIX, Y],

for XY € T(A) and f € C®(M,R) (see [82, 99]). Lie algebroids are a
natural generalization of tangent bundles and real Lie algebras of finite di-
mension. But, there are many other interesting examples. For instance, the
Lie algebra structure on the space of C'"* real-valued functions on a Poisson
manifold M allows us to define a Lie bracket on the space of 1-forms which
endows the cotangent bundle T*M with a natural Lie algebroid structure
([3, 14, 30, 65, 110]). There is also a connection in the reverse direction
between Poisson manifolds and Lie algebroids: there is a one-to-one corre-
spondence between Lie algebroid structures on a vector bundle 7 : A — M
and homogeneous Poisson structures on the dual bundle A* (see [14, 15]). In
the particular case when M is a single point, that is, A is a real Lie algebra
of finite dimension, the corresponding homogeneous Poisson structure on A*

is just the usual Lie-Poisson structure.

Two important operators associated with any Lie algebroid are the Schouten
bracket and the differential (see [82]). Moreover, certain definitions and con-
structions related with graded Lie algebras, lifts of tensor fields over a man-

ifold and Poisson structures may be generalized to arbitrary Lie algebroids
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(see [36, 37]). In the same direction, in [38] the authors introduced the notion
of an algebroid as an extension of the definition of a Lie algebroid and they
showed that many objects of the differential calculus on a manifold (associ-
ated with the canonical Lie algebroid structure on T'M) may be obtained in
the framework of a general algebroid.

From the Physics point of view, Lie algebroids can be used in order to give
geometric descriptions of Lagrangian and Hamiltonian Mechanics. Thus,
in [89], Martinez developed a geometric description of time-independent La-
grangian Mechanics on Lie algebroids in a parallel way to the usual formalism
of Lagrangian Mechanics on the tangent bundle of a manifold. Other papers
which study, in particular, aspects of time-independent Lagrangian systems
on Lie algebroids are [8, 9, 13, 71, 119]. More recently, other authors (see
[31, 91, 103]) have started an investigation on the possible generalization of
the concept of a Lie algebroid to affine bundles. The main motivation was
to create a geometrical model which would be a natural environment for a
time-dependent version of Lagrange equations on Lie algebroids.

On the other hand, Lie algebroids may be considered as the infinitesimal
invariants of Lie groupoids. To be precise, we recall first that a small category
G over a base M is a set G equipped with source and target maps « and
£ from G to M, a unit section € : M — G, and a multiplication operation
(g,h) + gh defined on the set G = {(g9,h) € G x G /a(g) = B(h)} of
composable pairs. These operations satisfy the conditions that a(gh) = a(h),
B(gh) = B(g), (gh)k = g(hk) when either side is defined, and the elements
of (M) in G act as identities for multiplication. If all the elements of G
have inverses with respect to these identities, GG is called a groupoid. If G
and M are manifolds, and the structural maps are smooth (one requires «
and [ to be submersions to insure that the domain of the multiplication is a
manifold), then G is called a Lie groupoid (see, for instance, [82]).

The Lie algebra of vector fields on a Lie groupoid G contains a distinguished
subalgebra X (G) of fields which are left-invariant in a certain sense; these

are sections of a vector bundle AG which can be identified with the normal
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bundle to (M) in G, and then with the kernel of T8. T« is then an anchor
map AG — T'M for a Lie algebroid on AG. We call this the Lie algebroid
of the Lie groupoid G (see [82]). This construction generalizes the way to
obtain the Lie algebra associated with any Lie group. Moreover, we know that
any Lie algebra can be integrated to a connected and simply-connected Lie
group. However, this is no longer true for Lie algebroids and Lie groupoids:
Not all Lie algebroids can be integrated to Lie groupoids (see [82]). Recently,
Crainic and Fernandes [18] have given the precise obstructions to integrate
an arbitrary Lie algebroid to a Lie groupoid.

We have seen that the cotangent bundle T*M of a Poisson manifold has
a natural Lie algebroid structure derived from the Poisson bracket of func-
tions. If there is a Lie groupoid G whose Lie algebroid is isomorphic to
T*M, we say that M is an integrable Poisson manifold. In this case, there
exists a symplectic structure 2 on G for which the graph of the multiplica-
tion {(g,h,gh) € G x G x G /a(g) = B(h)} is a lagrangian submanifold of
the symplectic product (G x G x G,Q2® Q@ —Q). A Lie groupoid G = M
endowed with a symplectic structure satisfying this property is called a sym-
plectic groupoid (see [14]). The base space of a symplectic groupoid is al-
ways a Poisson manifold. A canonical example of a symplectic groupoid is
the cotangent bundle T*G of an arbitrary Lie groupoid G = M, where the
symplectic structure is just the canonical symplectic structure Q. In this
case, the base space is A*G and the Poisson structure on A*G is just the
linear Poisson structure induced by the Lie algebroid AG. An interesting
property is that the source map of a symplectic groupoid o« : G — M is a
Poisson morphism. Global realizations for arbitrary Poisson manifolds were
first found by Karasaev [55] and Weinstein [116] (recent results can be found
in [10, 19]).

As we have just said, symplectic groupoids appeared in the 1980’s with the
independent work of Karasaev [55] and Weinstein [116] (see also the papers by
Zakrzewski [122]), motivated by quantization problems. Meanwhile, a theory
of Poisson-Lie groups had been developing through the work of Drinfeld [27]
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and Semenov-Tian-Shansky [104, 105] on completely integrable systems and
quantum groups (see also [28, 63, 80, 81]). We remark that a connected
simply connected abelian Poisson-Lie group is isomorphic to the dual space
of a real Lie algebra endowed with the Lie-Poisson structure. It was therefore
natural to unify the theory of Poisson-Lie groups and the theory of symplectic
groupoids. For this purpose, Weinstein [117] introduced the notion of Poisson
groupoid. A Poisson groupoid is a Lie groupoid G = M with a Poisson
structure II for which the graph of the partial multiplication is a coisotropic
submanifold in the Poisson manifold (G x G x G, II&llg—II). If (G = M, 1I)
is a Poisson groupoid then there exists a Poisson structure on M such that the
source projection « : G — M is a Poisson morphism. Moreover, if AG is the
Lie algebroid of GG then the dual bundle A*G to AG itself has a Lie algebroid
structure. In addition, Poisson groupoids have interesting applications in the

classical dynamical Yang-Baxter equation (see, for instance, [29, 68]).

In [83], Mackenzie and Xu proved that a Lie groupoid G = M endowed
with a Poisson structure II is a Poisson groupoid if and only if the bundle
map #p : TG — TG induced by II is a morphism between the cotangent
groupoid T*G = A*G and the tangent groupoid TG = T'M. This character-
ization was used in order to prove that Lie bialgebroids are the infinitesimal
invariants of Poisson groupoids, that is, if (G = M, II) is a Poisson groupoid
then (AG, A*G) is a Lie bialgebroid and, conversely, a Lie bialgebroid struc-
ture on the Lie algebroid of a (suitably simply connected) Lie groupoid can
be integrated to a Poisson groupoid structure [79, 83, 85] (these results can
be applied to obtain a new proof of a theorem of Karasaev [55] and Wein-
stein [116]). A Lie bialgebroid is a Lie algebroid A such that the dual vector
bundle A* also carries a Lie algebroid structure which is compatible in a
certain way with that on A (see [83]). Lie bialgebroids generalize Drinfeld’s
Lie bialgebras [27]. Another important example of Lie bialgebroid is the
associated one with a Poisson structure. More precisely, if M is a Poisson
manifold with Poisson 2-vector IT and on T'M (respectively, T*M) we con-
sider the trivial Lie algebroid structure (resp., the cotangent Lie algebroid
structure associated with IT) then the pair (T'M,T*M) is a Lie bialgebroid.
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The compatibility condition of a Lie bialgebroid have been expressed in the
language of derivations of Gerstenhaber algebras in [61].

Although symplectic and Lie-Poisson structures are Poisson, there are inte-
resting structures for Classical Mechanics, such as contact structures, which
are not Poisson. An interesting generalization of Poisson manifolds, as well as
of contact manifolds, are Jacobi manifolds. A Jacobi structure on a manifold
M is a 2-vector A and a vector field F on M such that [A, A] =2E A A and
[E,A] =0 [74]. If (M,A,E) is a Jacobi manifold one can define a bracket
of functions, the Jacobi bracket, in such a way that the space C*°(M,R)
endowed with the Jacobi bracket is a local Lie algebra in the sense of Kirillov
[57]. Conversely, a local Lie algebra structure on C*°(M, R) induces a Jacobi
structure on M [39, 57]. Some interesting examples of Jacobi manifolds,
apart from Poisson and contact manifolds, are locally conformal symplectic
(l.c.s.) manifolds. In fact, a Jacobi manifold admits a generalized foliation,
called the characteristic foliation, whose leaves are contact or l.c.s. manifolds
(see [24, 39, 57]).

There is also a relation between Jacobi manifolds and Lie algebroids. In fact,
if M is an arbitrary manifold then the vector bundle TM xR — M possesses
a natural Lie algebroid structure. Moreover, if M is a Jacobi manifold then
the 1-jet bundle 7*M x R — M admits a Lie algebroid structure [56] (for a
Jacobi manifold the vector bundle 7*M is not, in general, a Lie algebroid).
However, the pair (T'M x R,T*M x R) is not, in general, a Lie bialgebroid
(see [111]).

The existence of a Lie algebroid structure associated with any Jacobi struc-
ture justifies the introduction of the notion of a contact groupoid. A contact

groupoid (G = M,n,o0) is a Lie groupoid G = M endowed with a contact
1-form 1 € Q@) and a function 0 € C*(G, R) such that

n(gh)(Xy ®ra Yi) = n(g)(Xy) + 7 Dn(h)(Ya),

for (X,,Y,) € T(gﬁh)G@), where @rq is the partial multiplication in the tan-
gent Lie groupoid TG = T'M (see [22, 23, 56, 69, 70]). Contact groupoids can
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be considered as the odd-dimensional counterpart of symplectic groupoids
and they have applications in the prequantization of Poisson manifolds and
in the integration of local Lie algebras associated to rank one vector bundles
(see [22, 23]). In this case, the function o is multiplicative and the base space
M carries an induced Jacobi structure in such a way that the pair (a,e”)
is a conformal Jacobi morphism. Thus, we can consider the 1-jet Lie alge-
broid T*M x R — M. In fact, the Lie algebroid AG of G is isomorphic to
T*M xR — M.

As it is indicated in the title, the main purpose of this Memory is to study
the relation that there exists between the theory of Lie groupoids (and Lie

algebroids) and Jacobi manifolds.

A general scheme of this Memory is the following one:

e Chapter 1: Jacobi structures, Lie algebroids and Lie groupoids

This is an introductory chapter which contains some generalities about
Jacobi structures, Lie algebroids and Lie groupoids, such as their defi-
nition, several examples and properties which are going to be useful in
the sequel.

e Chapter 2: Jacobi algebroids, homogeneous Jacobi structures and its cha-

racteristic foliation

A Jacobi algebroid structure on a vector bundle is a Lie algebroid struc-
ture plus a 1-cocycle on it. In this chapter, we consider homogeneous
Jacobi structures on vector bundles. We obtain a characterization of
this type of structures and its relation with Jacobi algebroid structures.
We also discuss some examples and applications. Finally, we prove that
the leaves of the characteristic foliation of a homogeneous Jacobi struc-
ture on a vector space are the orbits of an action of a Lie group on the

vector space and we describe such an action.



8 Introduction

e Chapter 3: Jacobi structures and Jacobi bialgebroids

After developing a differential calculus for Jacobi algebroids, we intro-
duce the notion of a Jacobi bialgebroid (a generalization of the notion of
a Lie bialgebroid) in such a way that a Jacobi manifold has associated a
canonical Jacobi bialgebroid. As a kind of converse, we prove that a Ja-
cobi structure can be defined on the base space of a Jacobi bialgebroid.
We also show that it is possible to construct a Lie bialgebroid from a
Jacobi bialgebroid and, as a consequence, we deduce a duality theo-
rem. The definition of a Jacobi bialgebroid is illustrated with several
examples. In the last part of the chapter, we obtain a characterization

of Jacobi bialgebroids in terms of Jacobi algebroid morphisms.

e Chapter 4: Jacobi bialgebras

We study in this chapter Jacobi bialgebroids over a single point, that is,
Jacobi bialgebras. We propose a method generalizing the Yang-Baxter
equation method to obtain Jacobi bialgebras and give some examples
of them. Finally, we discuss compact Jacobi bialgebras.

e Chapter 5: Jacobi groupoids and Jacobi bialgebroids

We finish the Memory introducing Jacobi groupoids as a generaliza-
tion of Poisson and contact groupoids. It is also proved that Jacobi
bialgebroids are the infinitesimal invariants of Jacobi groupoids.

Next, we will precisely give the contents of every chapter included in this
Memory.

We start this Memory with Chapter 1, where we recall some definitions and
results about Jacobi structures, Lie algebroids and Lie groupoids, which will
be useful in the sequel. First of all, we recall the definition of a Jacobi mani-
fold. Several examples are considered, including Poisson manifolds, as well as
other interesting examples of Jacobi manifolds which are not Poisson, such as
contact or locally conformal symplectic manifolds (see Section 1.1.2). These

last structures are specially important since, roughly speaking, every Jacobi
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manifold is made from contact and locally conformal symplectic pieces. More
precisely, we have that the leaves of the characteristic foliation of a Jacobi

manifold are contact or locally conformal symplectic manifolds (see Section
1.1.3).

Poisson structures are examples of Jacobi structures, but there exists another
relation between Jacobi and Poisson structures. In fact, if M is a Jacobi
manifold then the product manifold M x R admits an exact Poisson structure
which is called the Poissonization of M. In Section 1.1.6 of this Chapter, we
give a description of this structure on M x R.

It is well known that if M is a Jacobi manifold then the vector bundle 7™M x
R — M admits a Lie algebroid structure [56]. In the second part of this
Chapter (Section 1.2), we recall the definition of a Lie algebroid structure on
a vector bundle A over a manifold M and the definition of two important
operators associated with any Lie algebroid: the Schouten bracket of two
multi-sections of A and the differential of a multi-section of the dual bundle
A* to A. The differential is a cohomology operator and it induces the so-
called Lie algebroid cohomology complex with trivial coefficients. Several
examples of Lie algebroids are considered in Section 1.2.2, describing all the
elements associated with each of them. In particular, we present the relation
between Lie algebroid structures on a vector bundle 7 : A — M and Poisson
structures on the dual bundle 7% : A* — M which are homogeneous with
respect to Ay«, the Liouville vector field of A*.

The global objects corresponding with Lie algebroids are Lie groupoids. In
the last section of Chapter 1, we recall the definition of a Lie groupoid and of
a morphism between Lie groupoids. As in the case of a Lie group, one may
consider left-invariant multivector fields on a Lie groupoid. In particular,
left-invariant vector fields are closed with respect to the Schouten-Nijenhuis
bracket and can be identified with sections of a vector bundle AG — M.
These facts permit the construction of a Lie algebroid structure on AG.
Some examples of Lie groupoids are considered in Section 1.3.2, describing

the associated Lie algebroid in each case.
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In Chapter 1, we have recalled the one-to-one correspondence between Lie
algebroid structures on a vector bundle 7 : A — M and homogeneous Poisson
structures on the dual bundle A*. Moreover, we show the relation between
the homogeneity of a Poisson structure and the behaviour of the Poisson
bracket with respect to linear functions. In fact, a Poisson structure on a
vector bundle is homogeneous if and only if the Poisson structure is linear, i.e.,
linear functions are closed with respect to the Poisson bracket. In Chapter 2
of this Memory we extend this relation to the Jacobi setting. More precisely,
in Section 2.1, we describe homogeneous Jacobi structures on a vector bundle,
that is, Jacobi structures (A, F) on a vector bundle A — M such that A and
E are homogeneous with respect to the Liouville vector field of A. Moreover,
as in the Poisson case, we explain the relation between this homogeneity and
the behaviour of the Jacobi bracket {, } g) between linear and constant
functions. In particular, we prove that the vector field F is the vertical lift of
a certain section of A — M and there exists a homogeneous Poisson structure
T4 such that A =114+ E A Ay, Ay being the Liouville vector field of A (see
Theorem 2.3).

In Section 2.2, we show the relation between homogeneous Jacobi structures
on A* and Lie algebroid structures on A. In fact, if (A, E) is a homogeneous
Jacobi structure on A* then we obtain that it induces not only a Lie algebroid
structure on A, but also a 1-cocycle ¢y € I'(A*) in the cohomology complex
of A with trivial coefficients. The vector field E is, up to the sign, the
vertical lift ¢y € X(A*) of ¢, that is, £ = —¢y. Motivated by this result,
we introduce the notion of a Jacobi algebroid as a pair formed with a Lie
algebroid structure and a 1-cocycle on it. After showing a converse of this
result, that is, to obtain a homogeneous Jacobi structure on A* — M from
a Jacobi algebroid structure (([, [, p), ®o) on A, we present some examples
and applications in Section 2.3. Two interesting examples are: i) for an
arbitrary manifold M, the Lie algebroid A = TM x R and the 1-cocycle
do = (0,—1) € QY (M) x C>°(M,R) = T'(A*), we prove that the resultant
homogeneous Jacobi structure on the vector bundle 7*M x R — M is just

the canonical contact structure n,,; and ii) for a Jacobi manifold (M, A, E),
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the Lie algebroid A* = T*M x R and the 1-cocycle Xq = (—F,0) € X(M) x
C*(M,R) 2 T'(A), we deduce that the corresponding homogeneous Jacobi
structure (Ararxr xo), Ermxr x,)) on the vector bundle TM x R — M is
given by

0 0
Ararxr xo) = A+ ot N t(A" * ot " Ev>7 Ernxrxy) = E7,

where A€ and E° (resp. AY and EV) is the complete (resp. vertical) lift to 7'M
of A and E, respectively. This Jacobi structure was first introduced in [43]
and it is the Jacobi counterpart to the tangent Poisson structure first used in
[102] (see also [15, 35]). As an application of our construction, we obtain a Lie
algebroid structure ([, ]°®, 5%°) on the vector bundle A = A x R — M x R
from a Jacobi algebroid structure (([, ], p), ¢o) on A — M.

In the last Section of Chapter 2 (Section 2.4), we prove that the leaves of the
characteristic foliation of a homogeneous Jacobi structure on the dual space
g* of a real vector space g are the orbits of a certain action of a connected
simply connected Lie group G on g* and we describe the Jacobi structure
induced on each of the leaves. As a consequence, we deduce a well-known
result: if Il is a linear Poisson structure on g* then g is a Lie algebra and
the leaves of the symplectic foliation of Il are the orbits of the coadjoint
representation associated with a connected simply connected Lie group G
with Lie algebra g.

Motivated by the results obtained in Chapter 2, we introduce, in Chapter 3, a
differential calculus associated with any Jacobi algebroid. If (A, ([, ], p), ¢o)
is a Jacobi algebroid over M then the usual representation of the Lie algebra
['(A) on the space C° (M, R) given by the anchor map p can be modified and
a new representation is obtained. The resultant cohomology operator d?° is
called the ¢q-differential of A. The ¢g-differential of A allows us to define,
in a natural way, the ¢p-Lie derivative by a section X € I'(A), E?(O, as the
commutator of d?° and the contraction by X, that is, 5?(0 = d®oix+ixod?.
On the other hand, imitating the definition of the Schouten bracket of two
multilinear first-order differential operators on the space of C'*° real-valued
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functions on a manifold N (see [3]), we introduce the ¢y-Schouten bracket of
a k-section P and a k’-section P’ as the (k + k' — 1)-section given by

[[P7 Pl]]% = [[P7 P/]] + (_1)k+1<k - 1)P N (i%Pl) - (k, - 1)(i¢op> N Pla

where [, ] is the usual Schouten bracket of A. For these operators, we des-

cribe some of their properties.

On the other hand, if M is a Jacobi manifold then, as we know, the 1-jet
bundle 7*M x R — M admits a Lie algebroid structure [56]. However, if on
the vector bundle TM xR — M we consider the natural Lie algebroid struc-
ture then the pair (T'M x R, 7*M x R) is not, in general, a Lie bialgebroid
(see [111]). Therefore, for a Jacobi manifold M, it seems reasonable to con-
sider the pair of Jacobi algebroids ((A = TM xR, ¢g = (0,1)),(A* = T*M x
R, Xo = (—E,0))) instead of the pair of Lie algebroids ("M x R, T*M x R).
In fact, we prove that the Jacobi algebroids (A, ¢g) and (A*, Xy) satisfy some
compatibility conditions. These results suggest us to introduce, in Section
3.3, the definition of a Jacobi bialgebroid as a pair of Jacobi algebroids in
duality which are compatible in a certain sense. If M is a Jacobi manifold
then the pair (A =TM xR, ¢y = (0,1)),(A* =T*M xR, Xy = (—F,0))) is
a Jacobi bialgebroid. As a kind of converse, we prove that a Jacobi structure
can be defined on the base space of a Jacobi bialgebroid. After this, we show
an interesting characterization of Jacobi bialgebroids which was proved by
Grabowski and Marmo in [33], namely, if (A, ¢y) and (A*, X,) are a pair
of Jacobi algebroids in duality then ((A,¢o), (A%, Xy)) is a Jacobi bialge-
broid if and only if the X,-differential of A* is a derivation with respect to
(@rD(ARA), [, ]'?°), where @, '(A*A) is the space of multi-sections of A and
[, %0 is the modified ¢-Schouten bracket which is defined by

[P.QI" = (—-1)""'[P.Q]™,

for P e T'(APA) and @ € T'(A*A).

If ((A, o), (A%, Xo)) is a Jacobi bialgebroid and the 1-cocycles ¢y and X
vanish then the pair (A4, A*) is a Lie bialgebroid. This and other interesting
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examples, such as triangular Jacobi bialgebroids (which generalize triangular
Lie bialgebroids [83]) and the Jacobi bialgebroid associated with an exact
Poisson structure, are described in Section 3.4, showing in each case which
is the induced Jacobi structure on the base space M.

It is well-known that the product of a Jacobi manifold M with R, endowed
with the Poissonization of the Jacobi structure, is a Poisson manifold (see
[74] and Section 1.1.6). We show a similar result for Jacobi bialgebroids.
Namely, we prove that if ((4, ¢o), (A%, X)) is a Jacobi bialgebroid over M
then it is possible to define a Lie bialgebroid structure on the dual pair of
vector bundles (A x R, A* X R) over M x R, in such a way that the induced
Poisson structure on M X R is just the Poissonization of the Jacobi structure
on M (Theorem 3.29 in Section 3.5). Using this result, we deduce that the
Jacobi bialgebroids satisfy a duality theorem, that is, if ((A, ¢g), (A%, X)) is
a Jacobi bialgebroid, so is ((A*, Xo), (A, ¢0)).

Finally, in the last section of Chapter 3 (Section 3.6), we obtain a charac-
terization of Jacobi bialgebroids in terms of Jacobi algebroid morphisms (see
Theorem 3.34). As a consequence, we deduce that Lie bialgebroids may be
characterized in terms of Lie algebroid morphisms. This characterization was
proved by Mackenzie and Xu [83].

The purpose of Chapter 4 is to study Jacobi bialgebras, that is, Jacobi bialge-
broids over a single point. We start the Chapter, in Section 4.1, considering
several aspects of algebraic Jacobi structures, an algebraic version of the
concept of Jacobi structures. Among the examples of algebraic Jacobi struc-
tures we find locally conformal symplectic Lie algebras (a generalization of
symplectic Lie algebras [76]) and contact Lie algebras. For this last type of
structures, we give a direct proof of a result which was proved by Diatta
[25]. In fact, we show that if g is a compact Lie algebra endowed with an
algebraic contact structure, then g is isomorphic to the Lie algebra su(2) of
the special unitary group SU(2). In addition, we describe all the algebraic
contact structures on su(2).

In Section 4.2, we deal with a Jacobi bialgebra ((g, ¢o), (g%, Xo)). In parti-
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cular, we have that the Xy-differential dX° of g* is a 1-cocycle with respect
to a certain representation of the Lie algebra g on A%g. Motivated by this
fact, we propose a method to obtain Jacobi bialgebras where dX° is a 1-
coboundary (see Theorem 4.8). This method is a generalization of the Yang-
Baxter equation method for Lie bialgebras and, moreover, allows us to obtain
Jacobi bialgebras from algebraic Jacobi structures. To illustrate the theory,

we present some examples of Jacobi bialgebras.

Several authors have devoted special attention to the study of compact Lie
bialgebras and an important result in this direction is the following one [81]
(see also [86]): every connected compact semisimple Lie group has a nontri-
vial Poisson Lie group structure. In Section 4.4, we describe the structure of a
Jacobi bialgebra ((g, ¢0), (g%, Xo)), g being a compact Lie algebra and ¢y # 0
or Xy # 0 (see Theorems 4.18 and 4.20). In particular, we deduce that, apart
from the abelian Lie algebra of even dimension, the only nontrivial example
of compact Jacobi bialgebra ((g, ¢o), (g*, Xo)) is obtained when g is the Lie
algebra u(2) of the unitary group U(2).

We finish the Memory introducing, in Chapter 5, Jacobi groupoids as a
generalization of Poisson and contact groupoids and, in such a way that
Jacobi bialgebroids may be considered as the infinitesimal invariants of Jacobi
groupoids. As in the case of contact groupoids, we start with a Lie groupoid
G = M, a Jacobi structure (A, F) on G and a multiplicative function o :
G — R. Then, as in the case of Poisson groupoids, we consider the vector
bundle morphism #  g) : TG xR — T'G'xR induced by the Jacobi structure
(A, E). The multiplicative function o induces, in a natural way, an action of
the tangent groupoid T'G' = T'M over the canonical projection m; : TM X
R — T'M obtaining an action groupoid TG x R over TM x R. Thus, it is
necessary to introduce a suitable Lie groupoid structure in 7*G xR over A*G.
In fact, we prove that if AG is the Lie algebroid of an arbitrary Lie groupoid
G = M, o0 : G — R is a multiplicative function, 7¢ : TG x R — G is
the canonical projection and 7ng is the canonical contact 1-form on 7*G x R

then (T*G x R = A*G,ng,0 o Tg) is a contact groupoid in such a way
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that the Jacobi structure on A*G is just the homogeneous Jacobi structure
(A(a=c.00), Eaxc,ey)) induced by the Lie algebroid AG and the 1-cocycle ¢
which comes from the multiplicative function o (see Theorems 5.7 and 5.10).

Motivated by the above results, in Section 5.2, we introduce the definition
of a Jacobi groupoid as follows. Let G = M be a Lie groupoid, (A, E) be
a Jacobi structure on GG and 0 : G — R be a multiplicative function. Then,
(G = M, A\, E, o) is a Jacobi groupoid if the map # g) : T*G xR — TG xR
is a Lie groupoid morphism over some map ¢g : A*G — TM x R. In this
Section, we also obtain the main properties of this kind of groupoids. On the
other hand, Poisson and contact groupoids are Jacobi groupoids. These and
other interesting examples, such as locally conformal symplectic groupoids or
Jacobi groupoids over a single point (called Jacobi-Lie groups), are treated

in Section 5.3.

In the last section of Chapter 5 (Section 5.4), we prove that Jacobi bialge-
broids are the infinitesimal invariants of Jacobi groupoids. For this purpose,
we proceed as follows. If (G = M, A, E,0) is a Jacobi groupoid then, using
some results about coisotropic submanifolds of a Jacobi manifold obtained
in Section 5.4.1, we show that the vector bundle A*G admits a Lie algebroid
structure and the multiplicative function o (respectively, the vector field E)
induces a 1-cocycle ¢q (respectively, Xg) on AG (respectively, A*G) in such
a way that ((AG, ¢y), (A*G, Xy)) is a Jacobi bialgebroid (see Theorem 5.25).
Several examples illustrate this result.

We also prove a converse of the above statement. Namely, let ((AG, ¢y),
(A*G, Xp)) be a Jacobi bialgebroid, where AG is the Lie algebroid of an
a-connected and a-simply connected Lie groupoid G == M. Then, there is
a unique multiplicative function ¢ : G — R and a unique Jacobi struc-
ture (A, F) on G that makes (G = M,A,E, o) into a Jacobi groupoid
with Jacobi bialgebroid ((AG, ¢o), (A*G, Xo)) (see Theorem 5.33). The two
previous results generalize those obtained by Mackenzie and Xu [83, 85]
for Poisson groupoids. As another application, we show that given a Ja-

cobi manifold (M, Ay, Ey) there always exists, at least locally, a contact
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groupoid (G = M,n, o) such that AG is isomorphic to the 1-jet Lie al-
gebroid T*M x R — M. This result was first proved in [23] (see also [2]).
On the other hand, in the particular case of an integrable triangular Jacobi
bialgebroid, we give an explicit expression of the Jacobi structure (A, E) on
the corresponding Jacobi groupoid.

We finish this Memory with the references that we have mentioned through-
out it, as well as with some other references in where some of the results that
we have obtained here are included or others which have relation with this
Memory.



CHAPTER 1

Jacobi structures, Lie algebroids and Lie groupoids

1.1 Local Lie algebras and Jacobi manifolds.
Examples

This first Section of Chapter 1 contains some generalities about Jacobi mani-
folds: definition, examples and the description of the characteristic foliation
of a Jacobi manifold.

1.1.1 Local Lie algebras and Jacobi manifolds

A Jacobi structure on a manifold M is a pair (A, E), where A is a 2-vector
and F is a vector field on M satisfying the following properties:

A =2EAA, [BA] =0. (1.1)

A manifold M endowed with a Jacobi structure is called a Jacobi manifold.
If (M,A,FE) is a Jacobi manifold then a bracket of functions (the Jacobi
bracket) is defined by

{f?g}(A,E) = A(dof,dog) + fE(g) — gE(f), for f,g € C*(M,R). (1.2)

17
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This bracket is R-bilinear and satisfies the following properties:

i) Skew-symmetry: {f, g}nr = —{9, [}p), for all f,g € C*(M,R).

i) It is a first-order differential operator on each of its arguments with
respect to the ordinary multiplication of functions, that is,

{fif2, 9} ) = [i{fo, b amy) + fof1 9t ) — fifoAl g} am), (1.3)
for fi, fa, g € C°(M,R).
iii) Jacobi identity:
g hy ey e +19: 0 From e + {0 A, aham boam = 0,
for f,g,h € C*(M,R).

Property i) can be replaced by the following relation between the supports
of the functions:

i4’) support{f, g}.m C (support f) N (support g), for f,g € C°(M,R).

Properties 1), i) y iii) guarantee that the Jacobi bracket defines a local Lie
algebra structure in the sense of Kirillov [57] on the space C*°(M,R). Con-
versely, a local Lie algebra structure on C*° (M, R) defines a Jacobi structure
on M (see [39, 57]).

If the vector field E identically vanishes then, from (1.2), { , }a0 =1{, }ais
a derivation in each argument and, therefore, { , } 5 defines a Poisson bracket
on M. In this case, (1.1) reduces to [A,A] = 0 and (M, A) is a Poisson
manifold. Jacobi and Poisson manifolds were introduced by Lichnerowicz
[73, 74] (see also [3, 24, 39, 72, 110, 115]).

1.1.2 Examples of Jacobi manifolds

In this Section, we will present some examples of Jacobi manifolds.
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1.- Poisson manifolds. A Poisson structure on a manifold M is a 2-vector II
on M such that
[IT, I1] = 0.

We have seen in the previous Section that Poisson manifolds is a particular
example of Jacobi manifolds. Some particular examples of Poisson manifolds
are the following ones.

la.- Symplectic manifolds. A symplectic manifold is a pair (M, §2), where M
is an even-dimensional manifold and 2 is a closed non-degenerate 2-form on
M. We define a Poisson 2-vector IT on M by

(g, v) = QO (p),b~" (v)), (1.4)

for p,v € QYM), where b : X(M) — QYM) is the isomorphism of
C>°(M,R)-modules given by b(X) = ix(2 (see [73]).

Using the classical theorem of Darboux, around every point of M there exist

canonical coordinates (¢',...,¢™,p1,...,pm) on M such that
Q=Y dog" Adopi, II= -\ —.
; 0q' A dop 2 " o
1b.- Lie-Poisson structures. Let (g,[, ]g) be a real Lie algebra of dimension
n with Lie bracket [, |5 and denote by g* the dual vector space of g. Given

two functions f,h € C*(g*,R), we define {f,h} as follows. For a point
x € g*, we linearize f and h, namely, we take the differential of f and h at z,
(dof)(z) and (doh)(x), and identify them with two elements f, h € g. Thus,
[f, h]y € g, and we define

{fv h}(l’) = <‘T’ [f: iL]g>
{, } is the so-called Lie-Poisson bracket on g* (see [110, 115]).

If 1, is the corresponding Poisson 2-vector on g* and (v;) are global coordi-

nates for g* obtained from a basis, we have that

0 0
Hg* = Cijvka_vi VAN a—vj, (15)

<j k
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cfj being the structure constants of g with respect to the basis.
From (1.5), it follows that

(Lo)a,. Ty = —TI, (1.6)

where Ay is the radial vector field on g*. Note that the expression of Ag-

with respect to the coordinates (v;) is

- 0
Ag* = ZUZ% (17)
i=1 v

2.- Contact manifolds. Let M be a (2m + 1)-dimensional manifold and 7 be
a 1-form on M. We say that n is a contact 1-form if n A (dgn)™ # 0 at every
point. In such a case, (M, n) is termed a contact manifold (see, for example,
[4, 72, 74]). If (M,n) is a contact manifold, we define a 2-vector A and a
vector field £ on M as follows

Alp,v) = don(~" (1),5" (),  E=b""(n), (1.8)

for all u,v € QY (M), where b : X(M) — QY M) is the isomorphism of
C>°(M,R)-modules given by b(X) = ix(don) + n(X)n. Then, (M,A, E) is a
Jacobi manifold (see [74]). The vector field E is just the Reeb vector field of
M and it is characterized by the relations

ipn =1, ip(don) =0. (1.9)

Using the generalized Darboux theorem, we deduce that around every point

of M there exist canonical coordinates (¢,q',...,¢™, p1,...,pm) such that

(see [4, 72, T4])

L LNV B N )

7

3.- Locally conformal symplectic manifolds. An almost symplectic manifold
is a pair (M, ), where M is an even-dimensional manifold and € is a non-

degenerate 2-form on M. An almost symplectic manifold is said to be locally
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conformal symplectic (l.c.s.) if for each point x € M there is an open neigh-
borhood U such that dy(e=/2) = 0, for some function f : U — R (see, for
example, [39, 57, 109]). So, (U,e /) is a symplectic manifold. If U = M
then M is said to be a globally conformal symplectic (g.c.s.) manifold. An
almost symplectic manifold (M, ) is 1.(g.)c.s. if and only if there exists a

closed (exact) 1-form w such that
Ao = w A Q. (1.11)

The 1-form w is called the Lee 1-form of M. It is obvious that l.c.s. manifolds
with Lee 1-form identically zero are just symplectic manifolds.

In a similar way that for contact manifolds, we define a 2-vector A and a
vector field £ on M which are given by

AMpr) =067 (Wb ), E=b"w), (1.12)

for u,v € QYM), where b : X(M) — QY(M) is the isomorphism of
C*(M,R)-modules defined by b(X) = ixQ. Then, (M,A, E) is a Jacobi
manifold (see [39]).

Using the classical theorem of Darboux, around every point of M there exist

canonical coordinates (¢',...,¢™, p1,...,pm) and a local differentiable func-
tion f such that

m

Qzefzdoqi/\dopu w=dof = Z(
i=1 -

AZ@fZ;(azi/\aii)’ EZQfZ(@piaq g;ai)'

=1

1.1.3 The characteristic foliation of a Jacobi manifold

Let (M, A, E) be a Jacobi manifold. Define a homomorphism of C*° (M, R)-
modules #, : QY (M) — X(M) by

(#a () (v) = Ap, v), (1.13)
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for u, v € QY(M). This homomorphism can be extended to a homomorphism,
which we also denote by #,, from the space Q%(M) to the space V¥(M) by
putting:

A = f #alw)(pas ) = (=) p(#a (), - #a (i), (1.14)
for f € C°(M,R), u € Q¥(M) and puy,. .., ux € QH(M).

Remark 1.1 i) If M is a contact manifold with Reeb vector field £, then
#a(p) = —b7Yp) + w(E)E, for all p € Q' (M). In particular, n(#a (1)) = 0.

i) If (M, Q) is a l.c.s. manifold with Lee 1-form w then #(u) = —b~*(p),
for all 4 € QY(M). In particular, #,(w) = —F.

If f is a C*°-differentiable real-valued function on a Jacobi manifold M, the
vector field H;A’E) defined by

HM = #a(dof) + fE (1.15)

is called the hamiltonian vector field associated with f. It should be noticed
that the hamiltonian vector field associated with the constant function 1 is
just E. A direct computation proves that (see [74, 87])

(ME) 1/ (AE)] _ 4 (AE)
M HMP = HGE (1.16)

which shows that the mapping C*(M,R) — X(M), [ — H}A’E), is a
homomorphism between the Lie algebras (C*(M,R), {, },g) and (X(M),
[ D

Now, for every x € M, we consider the subspace ]:JEA’E) of T,,M generated
by all the hamiltonian vector fields evaluated at the point z. In other words,
FM = (#0)(T2 M) + (E,). Since FAE) i involutive and finitely gene-
rated, one easily follows that F*F) defines a generalized foliation in the sense
of Sussmann [106], which is called the characteristic foliation (see [24, 39]).
Moreover, the Jacobi structure of M induces a Jacobi structure on each leaf.
In fact, if L, is the leaf over a point x of M and E, ¢ Im(#,), (or, equiva-
lently, the dimension of L, is odd) then L, is a contact manifold with the
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induced Jacobi structure. More precisely, if y is a point of L, and n*= is the
contact structure on L, then T,(L,) = {H;A’E)(y) / f € C®(M,R)} and

™ () (H () = f(y). (1.17)

If E, € Im(#4). (or, equivalently, the dimension of L, is even) then L, is a

l.c.s. manifold and the l.c.s. structure (L=, wl=) on L, is given by

QL (y) (K (), B () = Ay)(dof(y), dog(y)) + f(y)E(y)(g)
—9W)E(y)(f), (1.18)

W= () (H P () = —E(y)(1).

fory € L, and f,g € C*°(M,R) (for a detailed study of the characteristic
foliation, we refer to [24, 39]). In the particular case when M is a Poisson
manifold then, from (1.13) and (1.15), we deduce that the characteristic
foliation of M is just the canonical symplectic foliation of M (see [110, 115]).

Remark 1.2 For a symplectic, contact or l.c.s. manifold M there exists a
unique leaf of its characteristic foliation: the manifold M. Conversely, if M
is a transitive Jacobi manifold, that is, if FME) - T,.M, for all x € M, then
M is a contact or l.c.s. manifold (see [24, 39, 57]).

1.1.4 Conformal changes of Jacobi manifolds and con-
formal Jacobi morphisms

Let (M, A, E) be a Jacobi manifold and a € C*°(M, R) be a positive function.
Let us consider the 2-vector A, and the vector field E, on M given by

A, = aA, E, = HgA’E) = #x(doa) + a E.

Then, the pair (A,, E,) is a Jacobi structure on M. The Jacobi brackets
{ }(A,E) and {, }(Aa,Ea) are related by

1
{f7 g}(Aa,Ea) = E{a f7 ag}(A,E)v

for f,g € C>(M,R).
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In this case, we say that the Jacobi structures (A, E) and (A,, E,) are con-
formally equivalent (see [24, 39, 74]).

Let ¢ : (My, A1, E1) — (Ms, Ay, Ey) be a differentiable mapping between
the Jacobi manifolds (Mi, Ay, Ey) and (M,, Ay, E»). Suppose that {, }a, m)
(respectively, {, }(a,,E2)) is the Jacobi bracket on M (respectively, My).

The mapping v is said to be a Jacobr morphism if

{for 92} aomy 00 = {fa 0, g2 0V} (a1 20,

for fy, go € C°°(Ms,R). Equivalently, ¢ is a Jacobi morphism if

Al(l/)*N? ¢*V) = A2(M7 V) © ¢7 Q/}*El = E27
for p,v € QY (Ma).

Now, if a is a positive function on M; the pair (¢, a) is called a conformal
Jacobi morphism if the mapping 1 is a Jacobi morphism between the Ja-
cobi manifolds (M, (A1)a, (E1)a) and (Ma, A, E5). The conformal Jacobi
isomorphisms are the conformal Jacobi morphisms (¢, a) such that v is a

diffeomorphism (see [24]).
1.1.5 Coisotropic submanifolds

In this Section, we will give a definition which will be useful in the following.

Definition 1.3 Let S be a submanifold of a manifold M and A be an arbi-
trary 2-vector. S is said to be coisotropic (with respect to A) if

#a((1:5)°) C 1.5,
forx €S, (T,S)° being the annihilator space of T..S.

Remark 1.4 If IT (respectively, (A, E)) is a Poisson structure (respectively,
a Jacobi structure) on M then we recover the notion of a coisotropic sub-
manifold of the Poisson manifold (M, II) [72, 117] (respectively, coisotropic
submanifold of a Jacobi manifold (M, A, E) [43]) .
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1.1.6 The Poissonization of a Jacobi manifold

Let (A, E') be a 2-vector and a vector field on a manifold M. Then, we can

consider the 2-vector II on M x R given by

H:e_t(A—l—%/\E), (1.19)

where ¢ is the usual coordinate on R. The 2-vector II is homogeneous with

0
respect to the vector field Er that is,

In fact, if Il is a 2-vector on M x R such that [%, I1] = —II then there exists a
2-vector A and a vector field £ on M such that IT is given by (1.19). Moreover,
(A, E) is a Jacobi structure on M if and only if I defines a Poisson structure
on M x R (see [74]). The manifold M x R endowed with the structure II is
called the Poissonization of the Jacobi manifold (M, A, F).

Examples 1.5 1.- The Poissonization of a Poisson manifold.
Let (M, A) be a Poisson manifold. We have seen that it can be considered as
a Jacobi manifold, where £ = 0. In this case, the Poissonization of (M, A)

is again a Poisson structure IT = e *A.

2.- The Poissonization of a contact structure.

Let 1 be a 1-form on a manifold M of dimension 2m + 1. If we consider on
the product manifold M x R, the 2-form Q given Q = €' (don + dot A n),
it follows that 7 is a contact 1-form on M if and only if €2 is a symplectic
2-form on M x R (see, for instance, [72]).

We denote by (A, E) the Jacobi structure associated with 7 and by IT the
Poisson structure coming from the symplectic form 2. A direct computation,

0
using (1.4) and (1.8), shows that IT = e™* (A""E/\E)‘ Thus, the Poissoniza-
tion of a contact manifold (M,n) is the symplectic manifold (M x R, ).
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1.2 Lie algebroids. Examples

A category with close relations to Poisson and Jacobi geometry is that of Lie
algebroids. In this Section, we will recall the definition of a Lie algebroid
and of the differential calculus associated to them. Moreover, we illustrate
the theory with several examples.

1.2.1 Lie algebroids

A Lie algebroid A over a manifold M is a vector bundle A over M together
with a Lie bracket [, ] on the space I'(A) of the global cross sections of
A — M and a bundle map p: A — T'M, called the anchor map, such that
if we also denote by p : I'(A) — X(M) the homomorphism of C*°(M,R)-

modules induced by the anchor map then

[X, /YT = FIX YT+ (p(X) ()Y,

for XY € I'(A) and f € C°(M,R). The triple (4,[, ], p) is called a Lie
algebroid over M (see [82, 99]).

Remark 1.6 If (A, [, ],p) is a Lie algebroid over M then the anchor map
p:T'(A) — X(M) is a homomorphism between the Lie algebras (I'(A), [, ])
and (X(M), [, ).

If (A, ], ],p) is a Lie algebroid, the Lie bracket on I'(A) can be extended
to the so-called Schouten bracket [, ] on the space T'(A*A) = @,['(AFA) of
multi-sections of A in such a way that (®x[(A*A),A,[,]) is a graded Lie
algebra. In fact, the Schouten bracket satisfies the following properties

[P, Q] € T(APTa—1A),

[X, T = p(X)(f),

[P, Q] = (=1)"[Q, P1, (1.20)
[P.QAR] =[P.QI AR+ (-1)""VQ AP, R],

(=D"IP, QL Bl + (=) [[R, P, Q] + (=1)"[[Q, R], P] = 0,



1.2.1. Lie algebroids 27

for X € T'(A), f € C*(M,R), P € I'(\*A), Q € I'(A7A) and R € ['(A\"A)
(see [110]).

Remark 1.7 The definition of Schouten bracket considered here is the one
given in [110] (see also [3, 73]). Some authors (see, for instance, [61]) de-
fine the Schouten bracket in another way. In fact, the relation between the
Schouten bracket [, ]" in the sense of [61] and the Schouten bracket [, ] in
the sense of [110] is the following one:

[[Pv Q]]/ = (_1)p+1 [[P7 Q]]a
for P € I'(APA) and Q € ['(A*A).

On the other hand, imitating the de Rham differential on the space Q* (M),
we define the differential of the Lie algebroid A, d:T(AFA*) — T(AFA%), as
follows:

k

du(Xo, ..., X)) = Z(—l)ip(Xi)(,LL(XO,...,Xi,...,Xk))

=0
+ Y (D)X X X, X X X,

i<j
for u € T(A*A*) and X, ..., X}, € T(A).

Moreover, since d?> = 0, we have the corresponding cohomology spaces. This
cohomology is the Lie algebroid cohomology with trivial coefficients (see [82]).

Using the above definitions, it follows that a 1-cochain ¢q € T'(A*) is a 1-
cocycle if and only if

Po[ X, Y] = p(X)(90(Y)) — p(Y)(d0(X)), (1.22)

for all X,Y € I'(A).

In addition, if X € I'(A), we can define the Lie derivative of a multi-section of
the dual bundle A* as the commutator of the differential and the contraction
by X, that is, Lx =doix +1x od.
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1.2.2 Examples of Lie algebroids

Next, we will consider some examples of Lie algebroids.

1.- Real Lie algebras of finite dimension

Let g be a real Lie algebra of finite dimension. Then, it is clear that g is a
Lie algebroid over a single point. The differential (respectively, the Schouten
bracket) on g is just the algebraic differential (respectively, the algebraic
Schouten bracket) on g.

2.- The tangent bundle

Let T'M be the tangent bundle of a manifold M. Then, the triple (T'M, [, |,
Id) is a Lie algebroid over M, where Id : TM — TM is the identity map. In
this case, the differential (respectively, the Schouten bracket) of T'M is just
the de Rham differential dy on Q*(M) = ®,QF(M) (respectively, the usual
Schouten-Nijenhuis bracket on V*(M) = @&, V*(M)).

3.- The Lie algebroid (TM x R,[ , ], 7)
If M is a differentiable manifold, we will exhibit a natural Lie algebroid
structure on the vector bundle TM x R — M. First, we will show some

identifications which will be useful in the sequel.

Let A — M be a vector bundle over M. Then, it is clear that A x R is the
total space of a vector bundle over M. Moreover, the dual bundle to A x R
is A* x R and the spaces I'(A"(A x R)) and I'(A¥(A* x R)) can be identified
with T(A"A) @ T(A"LA) and T'(A¥A*) @ T'(A*~1A*) in such a way that

(Pv Q)((:ulafl) (,urafr))

Plu’lv"'u,uT +Z ’L+1fl ,ula"'u,ai?"":ur)a

(1.23)
(1 v)((X1,91), - - (Xk,gk))

:M<X1a'~-7 +Z H_l Xl,...,X,...,Xk),

for (P,Q) € T(NA) @ T(A"HA), (p,v) € T(N'A*) @ T(AN"TAY), (i, fi) €
['(A*) @ C*®(M,R) and (Xj,g;) € [(A) @ C>®(M,R), with i € {1,...,r} and



1.2.2. Examples of Lie algebroids 29

Jjed{l,... .k}
Under these identifications, the contractions and the exterior products are
given by
i) (P, Q) = (i,P+14,Q,(—1)*,Q), if k<,
Z'(MV)(P, Q) = 0, if k> r,
ipo) (1, V) = (ipp+igv, (—1)"ipv), if r <k, (1.24)
ir@) (1 V) = 0, if r >k,
(PQAP,Q) = (PAPLQAP +(~1yPAQ),
() N(SV) = (A p v A+ (=1 Ay,

for (P',Q") e T(A"A) & T(A"1A) and (i, 1) € T(AM A*) @ T(AF'~1A%).

Now, suppose that A is the tangent bundle T'M. Then, the triple (A x R =
TM x R,[, ],m) is a Lie algebroid over M, where 7 : TM x R — TM is
the canonical projection over the first factor and [ , ] is the bracket given by
(see [82, 94])

[(X7 f)? (Y7 g)] = ([Xv Y])X(g) - Y(f))v (1'25)

for (X, f),(Y,g9) € X(M) x C*(M,R) = I'(TM x R). In this case, the
dual bundle to TM x R is T*M x R and the spaces I'(A"(T'M x R)) and
D(AR(T*M x R)) can be identified with V"(M) @ V'~}(M) and Q*(M) &
QF1(M). Under these identifications, the differential dy of the Lie algebroid

1S

do(p, v) = (dopt, —dov) (1.26)

and the Schouten bracket [, | is given by

[(P7 Q)? (P/7Q/>] = ([P, P/], (_1)T+1[P7 Q/] - [Q7P/]>7 (127>

for (u,v) € QF(M) @ QF1(M), (P,Q) € V'(M) ® V'Y M) and (P',Q’) €
V(M) @ V"= (M). Thus, (u, f) € Q' (M) x C®(M,R) is a 1-cocycle if and
only if p is a closed 1-form and f is a constant function. In particular, the
pair (0,1) € QY(M) x C°°(M,R) is a 1-cocycle.
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4.- The Lie algebroid (T*M x R, [, ]](A,E)JZ/L(A,E)) associated with a Jacobi
manifold (M, A, E)

If A — M is a vector bundle over M and P € ['(A%A) is a 2-section of A, we
will denote by #p : A* — A the bundle map given by

ve(#p(pa)) = P(2) (e, Va), (1.28)

for pu,, v, € A%. We will also denote by #p : I'(A*) — I'(A) the corresponding
homomorphism of C*°(M, R)-modules.
Then, a Jacobi manifold (M, A, E) has an associated Lie algebroid (T*M x

R, [, .z, %z(A,E))? where ([, ]](A,E),%E(A,E)) are defined by

[[(:ua f)? (V7 g)]](A,E)
=((Lo)#at? = (Lo)gawyt—do(A(p, v)) + f(Lo) ev —g(Lo) ppt
—ip(i A V), AW, 1) +#a (1) (9) — #a (W) (F)+ FE(g)—gB(f),  (129)

#wne) (i, f) = #alp) + fE,

for (i, f), (v,g) € QM) x C=(M,R) (see [56]). For this Lie algebroid, the
differential d, is given by (see [66, 67])

d.(P,Q) = (—[A,P]+kEANP+ANQ, [N, Q] — (k—1)EANQ+[E, P]), (1.30)

for (P,Q) € V¥(M) ® V*"Y(M). Thus, (X, f) € X(M) x C*(M,R) is a
1-cocycle if and only if

(Lo)xA=ENX+ A #aldof) = —[E,X].

Therefore, the pair (F,0) € X(M) x C*(M,R) is a 1-cocycle.

In the particular case when (M,A) is a Poisson manifold we recover, by
projection on the first factor, the Lie algebroid (T*M, [, Ja, #4), where [, ]a
is the bracket of 1-forms defined by (see [3, 14, 30, 110]):

[, v]a = (Lo)gaw? — (Lo)gawikt — do(A(p, v)), (1.31)
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for p, v € Q(M). For this Lie algebroid, the differential is the operator given
by

d.P =—[A, P], (1.32)
for P € V¥(M). This operator was introduced by Lichnerowicz in [73] to
define the Lichnerowicz-Poisson cohomology.

Remark 1.8 Let M be a smooth manifold. If € Q'(M) and f € C*(M,R),

we will denote by (u, f) the 1-form on M x R given by

(1, f) = €' (u+ f dot).

Now, suppose that (A, F) is a Jacobi structure on M and that IT is the
Poissonization on M x R of the Jacobi structure (A, E). Then, a direct

computation, using (1.29) and (1.31), proves that

[Ces 1) (v, @) = [(ws 1), (v, 9] 4, ) (1.33)
for (u, f), (v,g) € QYM) x C*(M,R).

5.- The Lie algebroid associated with a Nijenhuis operator

Let (A,[, ],p) be a Lie algebroid over M and N : A — A be a vector
bundle morphism over the identity Id : M — M. Let us also denote by
N :T(A) — I'(A) the corresponding homomorphism of C°°(M, R)-modules.
We say that N is a Nijenhuis operator on (A,[, ],p) if it has vanishing
Nijenhuis torsion 7 (N), where 7 (N) is defined by

TN)(X,Y) = [NX,NY] - N[NX,Y] - N[X,NY] + N?[X,Y],

for X,Y € I'(A). Note that for the usual Lie algebroid structure on the
tangent bundle of an arbitrary manifold M, we recover the usual notion of a
Nijenhuis operator on M.

If N is a Nijenhuis operator on (A, [, ], p) then there exists a deformed Lie
algebroid structure ([, Ja, par) on A — M, where [, [ and py are given by
(see [36, 64])

[X, Vv = IVX, Y] + [X, NY] - NX, Y],

N (1.34)
pn=poN.
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The differential dy of the Lie algebroid (A, [, [, pa) is
dy =iy od—doiyy, (1.35)

in : [(AFA*) — T(A*A*) being the contraction by N defined by

k
() (X1, X)) =D (X, NXG LX), (1.36)

i=1
for v € T(A*A*) and X,..., Xy € ['(A).

On the other hand, denote by N* : T'(A*) — I'(A*) the adjoint operator of
N :T(A) — I'(A) and by in+ : T(A"A) — T'(A"A) the natural extension of
N to the space I'(A"A) defined by

(iN*R)(/JJh e ,,ur) = ZR(/,[/:[, ce ,N*,Mi, R ,MT),
=1

for R € T(A"A) and py, ..., pu € T'(A*). Then, the Schouten bracket [, [
of the Lie algebroid (A, [, |, par) is given by

[P, Qly = [in-P, Q] + [P, in+Q] — in-[P, @I,
for P € I'(APA) and @ € ['(A2A).

6.- Action of a Lie algebroid on a smooth map
Let (A, [, ],p) be a Lie algebroid over a manifold M and 7 : P — M be a
smooth map. An action of A on 7 : P — M is a R-linear map

x:['(A) - X(P), Xel(A)— X" eX(P),
such that:

(fX>* = (f O7T>X*7 [[X7 Y]]* = [X*>Y*]7 WP(X*<p)) - p(X(ﬂ'(p))),

*

for f € C*(M,R), X,)Y € T'(A) and p € M. If x : I'(A) — X(P) is an
action of Aonm: P— M and 7: A — M is the bundle projection then the
pullback vector bundle of A over T,

A= {(a,p) € Ax P/7(a) =7(p)},
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is a Lie algebroid over P with the Lie algebroid structure ([, |, pr) which is
characterized by

[[XvYHW:[[va]]OW7 pW(X)(p)ZX*(pL

for X,Y € I'(A) and p € P. The triple (7*A, [, ], px) is called the action
Lie algebroid of A on 7 and it is denoted by A X m or A X P (see [42]).

7.- The Lie algebroid of an exact Poisson structure

An ezxact Poisson manifold (M,11, Z) is a Poisson manifold (M,II) with a
vector field Z such that [Z, 1] = —II (see [24]). We may consider the Lie
algebroid structure ([, [, #n) on the vector bundle T*M — M induced by
the Poisson structure IT (see (1.31)) and the Lie algebroid structure ([, ]z, pz)
on the vector bundle M x R — M induced by the vector field Z, that is,
[, ]z and pz are defined by

Lf.9lz=92(f)— fZ(g9), pz(f)=~fZ,

for f,g € C*(M,R) =2 T'(M x R).

Moreover, using the homogeneous character of I1 with respect to Z, one can

introduce a Lie algebroid structure ([, ]](HVZ), #,z)) on the vector bundle
T*M x R — M, where [, [,7) and #(H,Z) are given by

[Ces £)5 (v 9)])m,2)
=((Lo) #r(uy? — (Lo)gnyp—do(IL(p, v)) = f((Lo) zv — V)
+9((Lo)zp — ), #u(p)(9) —#uW)(f)+9 Z(f)—f Z(g)),

#azn( f) = #alpw) - fZ,

for (i, f), (v,g) € QM) x C°(M,R) X T(T*M x R) (see [113]).

(1.37)

In addition, using (1.37), we deduce that (T*M, [, Ju, #n) and (M xR, [, ]z,
pz) are Lie subalgebroids of (T*M xR, [, J1,2), #m,2)). In fact, (T*M, [, ],
#n) and (M xR, [, |z, pz) form a matched pair of Lie algebroids in the sense
of Mokri [93].
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For the Lie algebroid (T*M x R, [, [ 1,2y, #1,2)), the differential d, is given
by

for (P,Q) € V¥(M) ® VF"'(M). Thus, (X,f) € X(M) x C®(M,R) =
['(TM x R) is a 1-cocycle if and only if

(Lo)xIT =0, #n(dof) = [Z, X] + X.

In particular, the pair (0,1) € X(M) x C*(M,R) is a 1-cocycle.

8.- The Lie algebroid associated with a linear Poisson structure

Let 7 : A — M be a vector bundle on a manifold M. Then, it is clear
that there exists a bijection between the space I'(A*) of sections of the dual
bundle 7* : A* — M and the set L(A) of real functions on A which are linear

on each fiber
DA% = L(A), e

For any section u € I'(A*) the corresponding linear function fi on the vector
bundle A is given by i(X,) = u(p)(X,), for X, € A,. Note thatif f: A - R
is a smooth real function then

f is basic & A4(f) =0,

(1.39)
fis linear & A4(f) = f,

where A 4 denotes the Liouville (Euler) vector field on A.

On the other hand, a 2-vector Il on A is linear if and only if the induced
bracket {, }y is closed on linear functions, that is, if u, v € T'(A*) then

{i, 7 = idopndom ]

is again a linear function. If II is a linear 2-vector field on A and f/, gas :
M — R are real smooth functions then

{1, far o T} is a basic function and {fy o 7, gpr 0 T} = 0. (1.40)
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Using the above facts, it is easy to prove that

IT is linear < II is homogeneous with respect to Ay

(1.41)
<~ (EO)AAH = —IL

Now, suppose that II is a linear Poisson structure on A* with Poisson bracket

.} From (1.40), one may define a Lie algebroid structure ([, ]%, p') on
{3 y g p

7 : A — M which is characterized by

[[Xv Y]] T = {Xaff}ﬂa

P X)(fur) o7 ={X, faro 7},

for X,Y € I'(A) and fy; € C®°(M,R), 7" : A* — M being the canonical
projection (see [14, 15]). Conversely, if A is a vector bundle over M which

(1.42)

admits a Lie algebroid structure ([, ], p) then one may define a linear Poisson
structure I14- on the dual bundle A* in such a way that (1.42) holds.

The local expression of I1 4« is given as follows. Let U be an open coordinate
neighbourhood of M with coordinates (z',...,2™) and {e;}i—
basis of sections of 7: A — M in U. Then, 7=}(U) is an open coordinate

» a local

-----

neighbourhood of A with coordinates (z%,v;) such that v; = €;, for all j. In
these coordinates the structure functions and the components of the anchor
map are

m

0 .
leis €] Zcmek, p(e;) :Zpi-%, i,je{l,...,n}, (1.43)

1=1
with cfj, pt € C°°(U,R), and the Poisson structure T4 is given by

Iy = Zchk /\——l—Zpla 8xl (1.44)

1<j

Note that the Liouville vector field is given by

~ 0
1=1
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Remark 1.9 Let (A, [, ], p) be a Lie algebroid and ¢, be a section of the
dual bundle A* to A. Then, one may consider the vertical lift ¢y € X(A*) of
¢o and, using (1.42) and the fact that

Py (X) = ¢o(X) o 7", for X € T(A),
we deduce that
((Lo)gyIla-)(do X, doY) = —do(X,Y) 0 77,

for X,Y € I'(A), d being the differential of the Lie algebroid (A, [, ], p).
Thus,
(Eo)g%rHA* =0 < ¢ is a 1-cocycle. (1.46)

Examples 1.10 1.- Let (g, [, |5) be a real Lie algebra of dimension n. Then,
g is a Lie algebroid over a point. Moreover, if Il is the linear Poisson
structure on g*, using (1.5) and (1.44), we have that Il is the well known

Lie-Poisson structure.

2.- Let (T'M, ], ],1d) be the trivial Lie algebroid. From (1.43) and (1.44), it
follows that the linear Poisson structure Ilp«y, on T*M is just the canonical
symplectic structure, that is,

"9 0
Hpepr = Z A )
i1 d¢*  Op;

(¢',...,q™, p1,...,pm) being fibred coordinates on T*M.

3.- Let (M, II) be a Poisson manifold and (T*M, [, Ju, #u) be the associated
cotangent Lie algebroid. From (1.31), (1.43) and (1.44), we obtain that the
induced Poisson structure on T'M is the complete lift 11° to T M of 11 (see
15)).

4.- The triple (TM x R,[ , ],7) is a Lie algebroid over M, where 7 : TM X
R — TM is the canonical projection over the first factor and [ , | is the
bracket given by (1.25). In this case, the Poisson structure Ips ;g on T M X
R is just the canonical cosymplectic structure of T*M x R (see [1, 7]), that

is, Hp«prxr = Hpepy.
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5.- Let (M, A, E) be a Jacobi manifold and (T*M x R, [, [a,r), %E(AE)) the
associated Lie algebroid. A direct computation, using (1.29), (1.43) and
(1.44), shows that the Poisson structure Iy g is

9
Hrarce = A° = 1AY = BY A Agys + 5 A B,

where A¢ and E° (respectively, AY and EVY) are the complete (respectively,
vertical) lift to TM of A and E and ¢ is the usual coordinate on R.

6.- Let (A, [, ], p) be a Lie algebroid over a manifold M and N be a Nijenhuis
operator on A. Denote by ([, |, pa) the Lie algebroid structure on A given
by (1.34), by T4+ the linear Poisson structure on A* associated with the Lie
algebroid (A, [, ], p) and by Ja«(N) the vector field on A* defined by

Ta N (p) = N (1)),

for p, € A}, where N*: A* — A* is the adjoint operator of N and v : AS —
T,,(Ay) is the vertical lift. Then,

Y. = (Lo) 7, wylax,

ITY. being the linear Poisson structure on A* associated with the Lie algebroid
structure ([, [, o) (see [36]).

7- Let (M,II,Z) be an exact Poisson manifold and (T*M x R, [, Ja1,z2),
#1,7)) be the associated Lie algebroid. From (1.37), (1.43) and (1.44), we
obtain that the linear Poisson structure Il7p/«p on TM x R is

Hppxr =+ (Z° — Arar) A %
9.- The tangent Lie algebroid
Assume that 7 : A — M is a Lie algebroid over a manifold M and that
p: A* X3y A — R is the natural pairing. Then, TA and T A* are vector
bundles over T'M and p induces a non-degenerate pairing TA* x 7y, TA — R.
Thus, we get an isomorphism between the vector bundles TA — T'M and

(TA*)* — TM. Therefore, the dual bundle to TA — T'M may be identified
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with the vector bundle TA* — TM. On the other hand, denote by Il4« the
linear Poisson structure on A* induced by the Lie algebroid A. Then, it is
easy to prove that the complete lift II. of 114+« to T'/A* is a linear Poisson
structure on the vector bundle T'A* — T'M. Consequently, the vector bundle
TA — TM is a Lie algebroid which is called the tangent Lie algebroid to A
(for more details, see [16, 37, 83]).

1.2.3 Lie algebroid morphisms

Let (A, [, ], p) (respectively, (A’ [, ], p')) be a Lie algebroid over a manifold
M (respectively, M') and suppose that ¥ : A — A’ is a vector bundle
morphism over the map Vg : M — M’'. Then, the following diagram is

commutative

A - A
Uy
M - M’
Now, if X € I'(A) then
VoX =Y fi(X]oW), (1.47)

for suitable f; € C*°(M,R) and X| € I'(A"). We refer to a relation (1.47) as
a W-decomposition of X.
The pair (¥, W) is said to be a Lie algebroid morphism if

p oV =TV;o0p, (1.48)

Vo Zfzgj LY]] 0 W) +Zp Y/ 0 W)

_Zp (K 0 ), (1.49)
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for X, Y € I'(A), where TV, : TM — TM' is the tangent map of ¥, and

\IJOX:Zfi(Xz{O\IJO)a \Ijoyzzgj(y}lolp()))
i J

are W-decompositions of X and Y, respectively. The right-hand side of equa-
tion (1.49) is independent of the choice of the W-decompositions of X and Y
(for more details, see [42]).

If M = M', U, is the identity map and X € I'(A) then o X is a section of
A" and (1.49) is equivalent to the condition
Uo[X,Y]=[ToX,UoY], (1.50)

for X, Y € I'(A).

1.3 Lie groupoids. Examples

The global objects corresponding to Lie algebroids are Lie groupoids. In this
last Section of Chapter 1, we recall the definition of a Lie groupoid and some
generalities about them are explained. We also discuss some examples which
will be interesting in the sequel.

1.3.1 Lie groupoids

A groupoid consists of two sets G and M, called respectively the groupoid and
the base, together with two maps a and 3 from G to M, called respectively
the source and target projections, a map € : M — G, called the inclusion, a
partial multiplication m : G® = {(g,h) € G x G/a(g) = B(h)} — G and a

map ¢ : G — G, called the inversion, satisfying the following conditions:
i) a(m(g, h) = a(h) and Bm(g, b)) = B(g), for all (g, h) € G,

ii) m(g,m(h,k)) =m(m(g,h), k), for all g, h, k € G such that a(g) = (h)
and a(h) = B(k),

iii) a(e(x)) =z and B(e(x)) =z, for all z € M,
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i) m(g,€e(a(g))) = g and m(e(B(g)), g) = g, for all g € G,

v) m(g,u(g)) = €(B(g)) and m(1(g),g) = e(alg)), for all g € G.
A groupoid G over a base M will be denoted by G = M.
If G and M are manifolds, G = M is a Lie groupoid if:

i) a and [ are differentiable submersions.
ii) m, € and ¢ are differentiable maps.

From i) and i), it follows that m is a submersion, € is an immersion and ¢ is

a diffeomorphism. In fact, ¢? = Id.

From now on, we will usually write gh for m(g, h) and g=* for «(g). Moreover,
if z € M then G, = a~!(z) (resp., G* = 37!(z)) will be said the a-fiber
(resp., the (-fiber) of x. Furthermore, since € is an inmersion, we will identify
M with e(M).

Next, we will recall some notions related with Lie groupoids which will be

useful in the following (for more details, see [82]).

Definition 1.11 Let G = M be a Lie groupoid over a manifold M. For
U C M open, a local bisection (or local admissible section) of G on U
is a smooth map IC : U — G which is right-inverse to 3 and for which
aoK :U — a(K(U)) is a diffeomorphism from U to the open set a(K(U))
in M. IfU =M, KC is a global bisection or simply a bisection.

The existence of local bisections through any point g € G is always guaran-
teed.

If £: U — G is a local bisection with V' = (a o K)(U), the local left-
translation and right-translation induced by K are the maps Lx : 374(V) —
B (U) and R : a1 (U) — a=1(V) defined by

Lic(9) = K((a o K)"'(B(9))) g, Ri(h) = hK(a(h)), (1.51)

for g € (V) and h € o= }(U).
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Remark 1.12 If yo € U and K(yo) = go, @(go) = xo then the restriction of
Li to G™ is the left-translation by go

Lo : G™ = G”, h— Lgo(h) = goh.
In a similar way, the restriction of R to G, is the right-translation by go
Ry : Gyy = Gag, 9 = Rgy(9) = 990

A multivector field P on G is said to be left-invariant (respectively, right-
invariant) if it is tangent to the fibers of 5 (respectively, ) and P(gh) =
(Li)"(P(h)) (respectively, P(gh) = (Rx)%(P(g))) for (¢,h) € G? and K :
U — G any local bisection through h (respectively, g). If P and @ are
two left-invariant (respectively, right-invariant) multivector fields on G then

[P, Q)] is again left-invariant (respectively, right-invariant).

Now, we will recall the definition of the Lie algebroid associated with a Lie
groupoid.

Suppose that G = M is a Lie groupoid. Then, we may consider the vector
bundle AG — M, whose fiber at a point © € M is A,G = T, G". 1t is easy
to prove that there exists a bijection between the space I'(AG) and the set
of left-invariant (respectively, right-invariant) vector fields on G. If X is a
section of AG, the corresponding left-invariant (respectively, right-invariant)
vector field on G will be denoted by X (respectively, Y) Using the above
facts, we may introduce a Lie algebroid structure ([, ], p) on AG, which is

defined by
X Y]=1X.Y], po(X)(x)=a(X(x)), (1.52)
for X,Y € I'(AG) and = € M.

Remark 1.13 There exists a bijection between the space I'(AF(AG)) and
the set of left-invariant (respectively, right-invariant) k-vector fields. If P is
a section of A*(AG), we will denote by P (respectively, ?) the corresponding
left-invariant (respectively, right-invariant) k-vector field on G. Moreover, if

P,@Q € I'(A*(AG)), we have that
[P.Ql=[P. Q. [P.Ql=-[P.Q], [P.Q]=0. (1.53)
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Given two Lie groupoids G = M and G' = M’, a morphism of Lie groupoids
is a smooth map ® : G — G’ such that if (g, h) € G® then (®(g), ®(h)) €
G'® and ®(gh) = ®(g9)®(h). A morphism of Lie groupoids ® : G — G’
induces a smooth map ®y : M — M’ in such a way that o/ o ® = ®4 0
Bod =050 and Poe=¢€ody, a,F and € (resp., o, 3" and €') being the
projections and the inclusion in the Lie groupoid G = M (resp., G' = M’).
If (&, ®g) is a morphism between the Lie groupoids G = M and G’ = M’ and
AG — M (respectively, AG' — M') is the Lie algebroid of G (respectively,
G’) then (¥, ®j) induces, in a natural way, a morphism (A(®P), ®y) between
the Lie algebroids AG and AG’ (see [42, 82]).

1.3.2 Examples of Lie groupoids

1.- Lie groups
Any Lie group G is a Lie groupoid over {e}, the identity element of G. The
Lie algebroid associated with G is just the Lie algebra g of G.

2.- The banal groupoid

Let M be a differentiable manifold. The product manifold M x M is a Lie
groupoid over M in the following way: « is the projection onto the second
factor and 3 is the projection onto the first factor; e(x) = (z,x) for all x € M
and m((x,y), (y,2)) = (z,2). M x M = M is called the banal groupoid. The
Lie algebroid associated with the banal groupoid is the tangent bundle T'M
of M.

3.- The direct product of Lie groupoids
If G; = M; and Gy = M, are Lie groupoids, then G; x Gy = M; X Ms is a
Lie groupoid in a natural way.

4.- Action groupoids
Let G = M be a Lie groupoid and m : P — M be a smooth map. If
PxG ={(p,g) € PxG/n(p) = P(g)} then a right action of G on 7 is a

smooth map

P*G—>Pa (pmg)'_)pg)
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which satisfies the following relations

m(p-g) = alg), for all (p,g) € P*G,
(p-g)-h=p-(gh), forall (g,h) € G® and (p,g) € P * G,
p-€(m(p)) =p, for all p € P.

Given such an action one constructs the action groupoid P x G = P by

defining
a(p,g)=p-9. B9 =0,

m'((p,g), (g, h)) = (p,gh), if ¢g=p-g,
é(p) = (p.e(n(p)), d(p,g) = 9,97").
Now, if p € P, we consider the map p-: G™®) — P given by

p-(9)=p-9
Then, if AG is the Lie algebroid of G, the R-linear map
x: ['(AG) — X(P), X el'(AG)+— X* e X(P),

defined by
X*(p) = () "X (7 (p))), (1.54)
for all p € P, induces an action of AG on 7 : P — M. In addition, the

Lie algebroid associated with the Lie groupoid P x G = P is the action Lie
algebroid AG x 7 (for more details, see [42]).

5.- The tangent groupoid
Let G = M be a Lie groupoid. Then, the tangent bundle T'G is a Lie
groupoid over TM. The projections o, 37, the partial multiplication ®p¢,

the inclusion €’ and the inversion " are defined by
o(X,) = ad(X,), for X, € T,G,
ﬁT(Yh) = ﬁf(yh), for Y, € ThG,
X, @ra Yo = mPM (X, Y3), if oT(X,) = 87(Ys), (1.55)
ef'(X,) = €%(X,), for X, € T,M,
J(X,) = (X)), for X, € T,G.
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In [120] it has been given an explicit expression for the multiplication @7g.
If x = a(g) = B(h) and o”(X,) = 87 (X},) = W, € T, M, then

Xy @16 Yi = (L)t (Ya) + (Ry)2(Xy) = (La)*(Ry) ™ (e1(W2))),  (1.56)

where X, are any (local) bisections of G with X(z) = g and Y(x) = h. If
AG — M is the Lie algebroid of G = M, then the tangent Lie algebroid
TAG — TM is just the Lie algebroid associated with the tangent groupoid
TG = TM (for more details, see [83]).

Remark 1.14 If G is a Lie group then, from (1.56), it follows that
Xy @16 Y = (Lg)! (Vi) + (Rn)2(Xy), (1.57)
for X, € T,G and Y, € T),G.

6.- The cotangent groupoid

Let G = M be a Lie groupoid. If A*G is the dual bundle to AG then the
cotangent bundle T*G is a Lie groupoid over A*G. The projections & and
3, the partial multiplication @7«¢, the inclusion € and the inversion i are
defined as follows,

(1) (X) = 1y ((Lg) (X)), for py € T7G and X € Ay G,
Bun) (V) = v (R) "™y — el (0P (v)))),

for v, € T;:G and Y € Aﬁ(h)G,
(g Brec vn)( Xy Bre Yan) = pg(Xy) + vn(Ya),

for (Xg,Yh) c T(g,h)G(z),
&) (X)) = ta(Xey — €57 (X)),

for My € A;G and Xe(x) c TE(I)G,
Hptg) (Xg1) = —pg (19 (X41)), for p, € T;G and X1 € Ty G.

(1.58)

Note that €(A*G) is just the conormal bundle of M = ¢(M) as a submanifold
of G.

On the other hand, since A*G is a Poisson manifold, the cotangent bundle
T*(A*G) is a Lie algebroid. In fact, the Lie algebroid of the cotangent Lie
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groupoid T*G =% A*G may be identified with 7*(A*G) (for more details, see
(14, 83]).

Remark 1.15 If G is a Lie group and p, € T;G, vy, € T; G satisfy a(py) =
B(vy,) then, from (1.57), it follows that

1

o @6 vn = 5{ (B )2 ) + (L2 ) . (159)
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CHAPTER 2

Jacobi algebroids, homogeneous Jacobi structures
and its characteristic foliation

In this Chapter, we consider a particular class of Jacobi structures on vector
bundles which includes homogeneous (linear) Poisson structures. We obtain
a correspondence of this type of structures with Jacobi algebroid structures,
a class generalizing Lie algebroid structures. We also discuss some examples
and applications. Finally, we prove that the leaves of the characteristic foli-
ation of this type of Jacobi structures on a vector space are the orbits of an

action of a Lie group on the vector space and we describe such an action.

2.1 Homogeneous Jacobi structures

In this Section, we will describe a particular class of Jacobi structures on

vector bundles and we will give some of its properties.

Definition 2.1 Let 7 : A — M be a vector bundle and (A, E) be a Jacobi
structure on A. (A, E) is said to be homogeneous if A and E are homogeneous

with respect to Liouville vector field A 4, that is,
(Lo)a, A =—A, (Lo)a, B =—F.

47
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(A, E) is said to be linear if the Jacobi bracket of linear functions is again a

linear function.

Now, we prove the following characterizations.

Theorem 2.2 A Jacobi structure (A, E) is homogeneous if and only if the
first-order differential operator D = Ay, — Id acts as a derivation of the
corresponding Jacobi bracket, that is,

D({f,9}ar) ={D(f), 9} .p) +{f D(9)}rE),
for f,g € C*(M,R).
Proof: A direct computation proves that

D({fag}(A,E)) - {Df7 g}(A,E) - {f7 Dg}(A,E)
= ((Lo)a, A+ A)(dof, dog) + f((Lo)a, B+ E)g) — 9((Lo)a, B+ E)(S),

which implies the result. QED

Before characterizing homogeneous Jacobi structures in terms of linear brack-
ets we consider the canonical family V(A) = {XV /X € I'(A)} of vertical lifts
of sections of A. We note that XV is always a homogeneous vector field with
respect to Ay, for all X € T'(A). In fact, if (z!,...,2™) are local coordinates

on an open subset U of M and {ey,...,e,} is a local basis of sections of A in

U such that X = ZXiei then (2%, v; = €;) are local coordinates on 77(U)
i=1
and

v - 7 a
X'=>X T (2.1)
=1

Theorem 2.3 Let (A, E) be a Jacobi structure on a vector bundle A. Then,

the following statements are equivalent:

i) (A, E) is homogeneous;
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ii) The Jacobi structure (A, E) is linear and the bracket of a linear function

and the constant function 1 is a basic function;

iii) E € V(A) and there exists a linear Poisson structure 114 on A such
that
A=1I4+ ENAy. (2.2)

Proof: i) = i) If pu, v are sections of A* then, from (1.39) and Theorem 2.2,
it follows that

D({iv}ap) =0,

which implies that {fi, 7} g) is linear.

On the other hand, since E' is homogeneous, we obtain that
A4(E()) =0
and thus E(fi) = {1, i} (a,g) is a basic function (see (1.39)).
i1) = i1i) Let f be a basic function. If 4 is a section of A*, then the functions
{1, i} a.m), {1, fiitey = E(f)+ f{L, i} am)

are basic. Therefore, E(f) = 0. Consequently, E € V(A) (note that E(j1) is
a basic function, for all u € I'(A*)).
Next, we will prove that A is linear. For u,v € I'(A*), we have

{it, v} = Mdoft, dov) = {1, v} a5y — R E(W) + v E(f1)

and, since E(ji) and F(7) are basic functions, we conclude that A(dyfi, dop)
is a linear function. This implies that (see (1.41))

(Lo)a,A=—A
and thus, since E € V(A), we deduce that

[A—ENAAN—ENAL =0,
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that is, IIy = A — E A A, is a Poisson structure on A. Finally, from (1.41)
and using that A is linear and the fact that E € V(A), we obtain that T4 is
a linear 2-vector on A.

iii) = 1) If £ € V(A), it is clear that E is homogeneous. Therefore, from
(1.41) and (2.2), we have that A is also homogeneous.

Remark 2.4 That condition of linearity of the Jacobi structure does not
necessarily imply that it is homogeneous is illustrated by the following simple
example. Let M be a single point and A* = R? endowed with the Jacobi
structure (A, E), where A = xyf% A 8% and F = xa%. It is easy to prove
that the Jacobi structure is linear. However, the Jacobi bracket of a linear

function and the constant function 1 is not, in general, a basic function.

2.2 Homogeneous Jacobi structures and Ja-
cobi algebroids

Let 7 : A — M be a vector bundle and A* the dual bundle to A. Suppose
that 7* : A* — M is the canonical projection. It is well-known that there
exists a one-to-one correspondence between Lie algebroid structures ([, ], p)
on A and homogeneous (linear) Poisson structures on A* (see [14, 15] and
Section 1.2.2). Next, we will show an extension of the above results to the
Jacobi setting.

Theorem 2.5 Let 7 : A — M be a vector bundle over M and (A, E) be a
homogeneous Jacobi structure on the dual bundle A*. Then, (A, E) induces
a Lie algebroid structure ([, &%), p™F)) on A and a 1-cocycle ¢y € T'(A*)

for this structure characterized by the following relations
[X.Y]®5 = (X V),

pAENX) () o 7 = {X o Tham — (o THX gy (29)

do(X) o = {X, 1} aE),
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for X, Y € I'(A) and fyy € C(M,R), where {, }(a,g) is the Jacobi bracket
associated with the Jacobi structure (A, E).

Proof: From Theorem 2.3, we have that £ € V(A) and there exists a linear
Poisson structure 114+ on A* such that

Using the results in Section 1.2.2 (see Example 8), we deduce that 14« in-
duces a Lie algebroid structure ([, [™4*, p™4*) on A and, from (1.39), (1.42)
and (2.4), it follows that

[X. Y] = (X, }am), 25)
P (X) (fur) o 7 = {X, fu o T }ap) — (far 0 TNX 1wy,

for X,Y € I'(A) and fy € C®°(M,R). Thus, the Lie algebroid structure
([ 15, pB)) s Just ([, [Me, pMar).

On the other hand, using Theorem 2.3, we have that E € V(A) and, therefore,
there exists a unique section ¢y of A* such that £' = —¢g. This implies that

(X, 1} am = —E(X) = ¢o(X) o 77,

for X € I'(A). Finally, from (2.5), we obtain that ¢y € I'(A*) is a 1-cocycle
for the Lie algebroid (A, [, ), p2)), QED

Motivated by Theorem 2.5, we introduce the following definition.

Definition 2.6 A Jacobi algebroid structure on a vector bundle 7 : A — M
is a pair (([, ], p), ¢o), where ([, ], p) is a Lie algebroid structure on A and
oo € T'(A*) is a 1-cocycle.

Now, we will prove a converse of Theorem 2.5.

Theorem 2.7 Let 7 : A — M be a vector bundle and (([, ], p), o) a Ja-

cobi algebroid structure on A. Then, there is a unique Jacobi structure
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(A(ax,60)> Ea=,60)) on A* with Jacobi bracket which we will denote by {, }(a= ¢y
satisfying
{X7 ?}(A*,Qﬁo) - [[X7 Y]]v
{X, far 0 T} av g0) = (0(X) (far) + Go(X) far) 0 7%, (2.6)
{faro7, g0 0T a5 00 = 0,
for X, Y € I'(A) and frr, gur € C°(M,R). The Jacobi structure is homoge-
neous and it is given by

A(A*’%) =4« + Ags A QZSE)’, E(A*,¢0) = —gb& (27)

[I4+ being the linear Poisson structure on A* induced by the Lie algebroid

AL T p)-

Proof: Denote by A4 4,) and E(4« 4,) the 2-vector and the vector field on
A* given by (2.7).

From (1.46), we obtain that ¢y is an infinitesimal automorphism of the Pois-

son structure Il4«, that is,
(£O)¢3’HA* = 0. (2.8)

Thus, using (1.41), (2.8) and since ¢f is a homogeneous vector field, it follows
that (A(ax,g); E(ax,0)) is @ homogeneous Jacobi structure on A*. In addition,
from (1.40), (1.42) and (2.7), we deduce that (2.6) holds.

Finally, it is clear that if (A, E) is a Jacobi structure on A* which satisfies
(26) then A = A(A*,(Z)O) and F = E(A*,(ﬁo)'

Remark 2.8 If (([, ], p), ¢o) is a Jacobi algebroid structure on a vector bun-
dle 7: A — M and (A, E) is a Jacobi structure on A* such that

{X, Y/}(A,E‘) = [[Xa Y]]7 {Xa 1}(A7E) = ¢0(X) o T*7

for X,Y € T'(A), then, using Theorems 2.3 and 2.7, we deduce that A =
Agargo) and B = Ear g,).
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Let M be a differentiable manifold and 7 : A — M be a vector bundle.
Denote by JA and HJ the following sets: J.A is the set of Jacobi algebroid
structures on A and ‘H.J is the set of the homogeneous Jacobi structures on
A*.

Then, using Theorems 2.5 and 2.7, we obtain

Theorem 2.9 The mapping ¥ : JA — HJT between the sets JA and HJT
given by
([, 1 p), ¢0) = (Aa=60)» Eas,60))

s a bijection.

Note that W(LA) = LP, where LP is the subset of the Jacobi structures of
‘H.J which are Poisson and LA is the subset of J A of the pairs of the form
(([, 1, p),0), that is, LP is the set of linear Poisson structures on A* and £.A
is the set of Lie algebroid structures on A. Therefore, from Theorem 2.9, we
deduce a well known result (see [14, 15] and Example 8 in Section 1.2.2): the
mapping ¥ induces a bijection between the sets LA and LP.

2.3 Examples and applications

In this Section we will present some examples and applications of the results

obtained in Section 2.2.

1.- Let (g, [, |5) be a real Lie algebra of dimension n. The resultant Poisson
structure Il on g* is the well known Lie-Poisson structure (see Examples
1.10). Thus, if ¢y € g* is a 1-cocycle then, using Theorem 2.7, we deduce
that

A(g*,¢o) = Hg* + Ag* A C¢07

Egg0) = —Coy

is a homogeneous Jacobi structure on g*, where Ay is the radial (Liouville)

vector field on g*.

2.- Let (T'M, [, ], Id) be the trivial Lie algebroid. In this case, the linear Pois-
son structure [I7«;; on T* M is the canonical symplectic structure. Therefore,
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if ¢g is a closed 1-form on M, then the pair

ANersngo) = Hpeps + Aqpeps A @, (2.9)

Eremp) = — 95,
is a homogeneous Jacobi structure on T*M. Furthermore, it is easy to
prove that the map #x ., : QYT*M) — X(T*M) is an isomorphism
of C*°(M,R)-modules. Therefore, (T*M, A¢rrr,60), Errrs0)) is a transitive
Jacobi manifold which implies that it is a l.c.s. manifold (see Remark 1.2).
In fact, if Apsy, is the Liouville 1-form on T*M and Qp«p; = —doAr«ps is the
canonical symplectic 2-form then, using (1.12) and (2.9), we have that the
lL.c.s. structure Q(r«pr,4,) and the Lee 1-form w(r«ns,¢,) on T*M are given by

Q(T*M«ﬁo) = Qry + WXJ(QZ)O) A Apsars
W M,go) = Tar(Po),

ma  T*M — M being the canonical projection. This l.c.s. structure was
first considered in [40].

3.- Let (M, II) be a Poisson manifold and (7*M, [, Ju, #n) be the associated
cotangent Lie algebroid. The induced Poisson structure on T'M is the com-
plete lift TI° to TM of II (see Examples 1.10). Thus, if X € X(M) =T'(TM)
is a 1-cocycle, that is, X is a Poisson infinitesimal automorphism of II
((Lo)xI1 = 0), we deduce that

Armxy =1° + Ay A XY,
E(TM,X) = _Xv’

is a homogeneous Jacobi structure on T'M.

4.- The triple (TM x R,[ , ],7) is a Lie algebroid over M, where 7 :
TM x R — TM is the canonical projection over the first factor and [ , ]
is the bracket given by (1.25). In this case, the linear Poisson structure
[T« p«r on T*M x R is the canonical cosymplectic structure on T*M x R,
that is, Uz« yxr = Hpeps and the pair ¢ = (0, —1) € QY (M) x C=(M,R) =
[(T*M x R) is a l-cocycle of the Lie algebroid (TM x R,[ , ],m) (see
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Example 3 in Section 1.2.2). Moreover, using Theorem 2.7, we have that
the homogeneous Jacobi structure (A«arxRr,e0): Er-mxrgo)) on T*M x R
is the one defined by the canonical contact 1-form ny. We recall that if
m T*M xR — T*M and w9 : T*M x R — R are the canonical projections
then 7y is the 1-form on T*M x R given by (see [72])

v = 7 (dot) — 75 (Arsar) (2.10)

and that the local expressions of the Poisson structure Ilr«,, and the Jacobi
structure associated with 7, are

-0 0
HT*MXR = Z g /\ )
i1 ¢ Opi

(2.11)

i 0 0 0 0
A= xR, po) = Z <8qi +p¢&> A o B pxR,g) = 5
i=1 v

(', ..., ™, p1, .-, Pm,t) being fibred coordinates on T*M x R.
5.- Let (M, A, E) be a Jacobi manifold. Then, the vector bundle T*M x

R — M admits a Lie algebroid structure ([, ]](A,E),%E(A,E)) and the pair
oo = (—E,0) € X(M) x C*(M,R) = I'(TM x R) is a 1-cocycle for this
Lie algebroid (see Example 4 in Section 1.2.2). Moreover, using Examples
1.10 and Theorem 2.7, we deduce that the homogeneous Jacobi structure

(A(TMXR’%), E(TMxR,¢O)) on TM x R is given by

0 0
A(TMX]R,qu) = A+ E N E¢ — t(Av + a VAN Ev),

Ermxre) = EY,

where A€ and E° (resp. AY and EV) is the complete (resp. vertical) lift to T'M
of A and E, respectively. We remark that in [43] the authors characterize the
conformal infinitesimal automorphisms of (M, A, E) as Legendre-Lagrangian
submanifolds of the Jacobi manifold (7'M x R, A« .g0), E(rmxR,e0))-

6.- Let (([,],p),¢0) be a Jacobi algebroid structure on a vector bundle
A — M. Denote by A the product A x R and by Il ;. the Poissonization
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of the homogeneous Jacobi structure (Aiax o), E(ax.g,)) (see (1.19)). From
(1.19) and Theorem 2.7, it follows that I14. is a linear Poisson structure
on the vector bundle A* = A* x R — M x R. Thus, the vector bundle
A=AxR — M x R admits a Lie algebroid structure ([, ], p%0). Note
that the space I'(A) can be identified with the set of time-dependent sections
of A — M. Under this identification and using (1.2), (1.19), (1.42) and

Theorem 2.7, we deduce that

[X,V]# = et (IX. V] 4+ 60(X)( e~ ¥) — oY) (o~ X)

7(8) = e (o) + n(X)2),

for all X,Y € I'(A), where %—f (resp., 88_};) is the derivative of X (resp.,
Y') with respect to the time. Note that if ¢ € R then the sections X and Y
induce, in a natural way, two sections X; and Y; of A — M and that [X, Y]
and p(X) are the time-dependent sections of A — M given by [X,Y](z,t) =
[X:,Y:i](z) and the vector field p(X) on M x R defined by p(X)(z,t) =

p(X)(z), for all (z,t) € M x R.

2.4 The characteristic foliation of a homoge-
neous Jacobi structure on a vector space

Let g be a real vector space of finite dimension and I3 be a linear Poisson
structure on g*. The Poisson structure I induces a Lie algebra structure on
g. Denote by GG a connected and simply connected Lie group with Lie algebra
g. Then, the leaves of the symplectic foliation associated with Il are the
orbits of the coadjoint representation associated with G. In this Section we
will obtain the corresponding result in the Jacobi setting.

First of all, we must replace the terms linear and Poisson by the terms homo-
geneous and Jacobi, respectively. So, suppose that (A, E) is a homogeneous

Jacobi structure on the dual vector space g* of a real vector space g. Then,
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from Theorems 2.5 and 2.7 (see also Example 1 in Section 2.3), we deduce
that there exists a Lie algebra structure [, |; on g and a 1-cocycle ¢y € g* of
(9.1, ]) such that

A=Tlg +Ap ACyy,  E=—Cy,. (2.13)

Moreover, if f € C*(g*,R) and HECA’E) is the hamiltonian vector field of f
with respect to (A, £') then the mapping

_H(A,E) g — x<g*>’ Y s _H(A,E) (Y) _ _Hg\,E)

is a Lie algebra anti-homomorphism (see (1.16) and (2.13)). However, E ¢
—HME)(g) because the constant function 1 is not a linear function on g*.

The way of solving this problem is the following one. Consider the semi-direct
Lie algebra structure on g = g x R given by

[(Yv >‘)7 (Zv 7)]@ = ([Yv Z]977¢0(Y> - /\¢0<Z>>7

for (Y, \),(Z,v) € g = g x R. Now, using (1.16) and (2.13), we obtain that
the mapping

Y
is a Lie algebra anti-homomorphism. Thus, under the canonical identification
T,g" = g*, for all u € g7, it follows that ® defines a linear representation of

g on g* which we will also denote by ® : g x g* — g*. In fact, using (1.15)
and (2.13), we deduce that

(Y, \), p) = coadyp + ¢o(Y )it + A do,

for (Y,;\) € g and p € g*, where coad? : g x g* — g* is the coadjoint
representation associated with g.
On the other hand, if F¥) is the characteristic foliation on g* associated

with the Jacobi structure (A, E), it is clear that

FME = {O((Y,N\),p) €g" = T,g" /(Y. \) € g =g x R}
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Next, we consider a connected and simply connected Lie group G with Lie
algebra (g, [, ]3). Since ® : g x g* — g* is a linear representation, there exists
a linear representation of G on g*

Coad : G x g* — ¢,

such that the associated linear representation of g on g*, coad : g x g* — g*,
is just ®. Consequently,

Theorem 2.10 Let g be a real vector space of finite dimension and (A, E) be
a homogeneous Jacobi structure over g*. Then, the leaves of the characteristic
foliation associated with the Jacobi structure (A, E) are just the orbits of the

linear representation Coad : G X g* — g*.

In the following, we will give an explicit description of the Lie group G and
the linear representation Coad.

Let GG be a connected and simply connected Lie group with Lie algebra g.
Since ¢q is a 1-cocycle, then there exists a unique multiplicative function
0o : G — R such that

(dooo)(e) = ¢o. (2.14)

We recall that og : G — R is multiplicative if o¢(gh) = oo(g) + oo(h), for
g,.h €q.

Thus, using the results in [112], the Lie group G is isomorphic to the product
G x R and the multiplication in G = G x R is given by

(91,t1)(g2,t2) = (9192, t1 + €U°(gl)t2)a (2.15)

for all (g1,t1), (go,t2) € G = G x R, that is, G is the semi-direct product Lie
group G Xy, R, associated with the linear representation ¢y, : G x R — R,
(g,1) = teml).

Next, we will describe the linear representation Coad : G X g* — g*.

Theorem 2.11 Let g be a real vector space of finite dimension and (A, E) be

a homogeneous Jacobi structure over g*. Then, the leaves of the characteristic
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foliation associated with (A, E) are the orbits of the linear representation

Coad : G x g* — g* given by
Coady (1) = "9 C’oad?,u + too, (2.16)

for (g,t) € G =G xR and © € g*, where Coad® : G x g* — g* is the

coadjoint representation associated with G.

Proof: Using (2.15), we obtain that the coadjoint representation associated

with G, Coad” : G x §* — §*, is given by
Coadgt) (u,y) = (CoadgGu + e~ 709 gy, ye 709, (2.17)

for all (9,t) € G =G x R and (u,7) € §* = g* x R.

From (2.17), it follows that the action Coad : G’ x §* — §* of G on g* defined
by

Coad g (1, 7) = €@ Coadf; , (11,7) (2.18)

satisfies

Coad (g (1, 1) € g* x {1},
for all (g,t) € G = G x R and p € g*. In addition, the restriction to
g* x {1} = g* of the infinitesimal generator of (Y,;\) € g = g x R with
respect to Coad, (Y, )\)goad, is just (Y, \), that is,

(v, nSoady | — (v, n).

Consequently, the restriction to g* x {1} = g* of (Egé/d(g,t) is just Coadg,y),
for all (¢g,t) € G. Finally, using (2.17) and (2.18), we obtain (2.16).  [QED

Theorem 2.11 allows us to describe the Jacobi structure on the leaves of the
characteristic foliation of a homogeneous Jacobi structure on a vector space.

Theorem 2.12 Let g be a real vector space of finite dimension and (A, E)
be a homogeneous Jacobi structure on g*. Consider u € g* and L, the leaf

of the characteristic foliation over the point p associated with (A, E).
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i) If E(n) & #a(Tig") and v € L, then
T, L =< {%, = Y,E (1) 1 60(Y) Ag () bye 67(0) >
and (A, E) induces a contact structure n* on L, defined by
e @)(Y,) =—v(Y),  nt@)(eyv)) = -1,

forallY € g.

i) If E(u) € #a(T,;9%) and v € L,, then
T, L =< {%, = Y,E (1) 1 60(¥) A () by >
and (A, E) induces a l.c.s. structure (Q% w™) on L, defined by
Qbe(w) (Yo, Z,) = v([Y,Z]y),

wLH(V)<YV) - _gbO(Y)a
forallY, Z € g.

Proof: If (Y,\) € g= g xR and v € g* is a point of L, then

HE§+?)(1/) = —coad((Y;\),v)
= =Y () — 4y (V)Age(v) = ACy, (),

where A+Y is the function on g* given by (A+Y)(v) = A+v(Y), for v € g*.
Thus, using (1.17) and (1.18), we deduce the result.
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Jacobi structures and Jacobi bialgebroids

In this Chapter, we introduce the notion of a Jacobi bialgebroid (a gener-
alization of the notion of a Lie bialgebroid) in such a way that a Jacobi
manifold has associated a canonical Jacobi bialgebroid. Furthermore, some
properties of Jacobi algebroids are proved, the relation with Lie bialgebroids
is discussed and several examples of Jacobi bialgebroids are given. In the
last part of the Chapter, a characterization of Jacobi bialgebroids in terms
of Jacobi algebroid morphisms is obtained.

3.1 Differential calculus on Jacobi algebroids

In this Section, we will develop a differential calculus for Jacobi algebroids.

3.1.1 ¢,-differential and ¢y -Lie derivative

Let (([, ], p), ¢o) be a Jacobi algebroid structure on a vector bundle 7: A —
M. Using (1.22), we can define a representation p?® of the Lie algebroid
(A, [, ], p) on the trivial vector bundle M x R — M given by

P (X)f = p(X)(f) + do(X) [, (3.1)

61
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for X € T'(A) and f € C>°(M,R). Thus, one can consider the standard
cohomology complex associated with the vector bundle M x R — M and
the representation p? (see [82]). The cohomology operator d*° : T'(AFA*) —
(AR A*) of this complex will be called the ¢o-differential of A. If d is the
differential of the Lie algebroid (A4, [, |, p) then we have that

d*p = dp + ¢o A s, (3.2)
for u € T(AFA").

Remark 3.1 If ¢q is a closed 1-form on a manifold M then ¢q is a 1-cocycle
for the trivial Lie algebroid (7'M, [, |, Id) and we can consider the operator
d?. Some results about the cohomology defined by d® were obtained in
[39, 66, 108]. These results were used in the study of locally conformal
Kahler and locally conformal symplectic structures.

If £ > 0and X € I'(A), we can also define the Lie derivative (associated
with the representation p?) with respect to X, £ : ['(AFA*) — T(AFA*),
as follows (see [82]):

LY = d™ oix +ixod®. (3.3)
It is called the ¢g-Lie derivative with respect to X. A direct computation
proves that if £ is the usual Lie derivative of the Lie algebroid (A, [, ], p)
then

LY = Lxp+ do(X)p, (3.4)
for any p € T(AFA*) .

Remark 3.2 i) If we consider the Lie algebroid (TM x R,[ , ],m) then
do = (0,1) € QM) x C°(M,R) 2 T(T*M x R) is a 1-cocycle (see Example
3 in Section 1.2.2). Thus, we have the corresponding representation 7% of
TM x R on the vector bundle M x R — M which, in this case, is defined by

V(X f),9) = X(9) + fg, (3.5)

for (X, f) € X(M) x C*°(M,R) and g € C°(M,R). From (1.24), (1.26) and
(3.2), we obtain that the ¢g-differential cz(()o’l) is given by

A (1, v) = (dops, pr — dov), (3.6)
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for (p,v) € Q¥(M) @ QF1(M) 2 T(A¥(T*M x R)). Moreover, using (1.24),
(3.3) and (3.6), we deduce that

(L5 )0y (11, v) = (o) x4 dof Av+ f i, (Lo)xv + f ), (3.7)

for (X, f) € X(M) x C°(M,R) = T(TM x R), where £ is the ¢o-Lie
derivative of (TM xR, ([ , ],m),(0,1)).

i1) Assume that (A, E') is a Jacobi structure on M. Then, we may consider
the 1-jet Lie algebroid (T*M x R, [, ]](A7E),%E(A7E)) and the corresponding
homomorphism of C*°(M,R)-modules # gy : I(T*M x R) = Q'(M) x
C®(M,R) - I'(TM x R) = X(M) x C*(M,R). Furthermore, a long com-
putation, using (1.23), (1.24), (3.6) and (3.7), shows that the Lie algebroid
bracket [, J(a,z) and the anchor map #(A, g) can be written in terms of the
homomorphism # s gy : [(T*M x R) — [(TM x R) and the operators £
and cz(()o’l) as follows

[ ), (v 9]y = (L) tin o) (2 9) — (LS

9) = (L) 0y 000 (115 )
4 (A B) (. £). (v,9)))
= g (@0 (19) = i pwa () (1, 1)) (3.8)
+d5™ (A B) (1. ), (,9))).
Foap = ToHwm-

Compare equation (1.31) with the above expression of the Lie algebroid
bracket [, [(a,g)-

iii) Let (A, ([, ], p), ¢o) be a Jacobi algebroid over M. The homomorphism
of C*°(M,R)-modules (p, ¢g) : ['(A) — X(M) x C°(M,R) given by

X = (p(X), do(X)), (3.9)

induces a Lie algebroid homomorphism over the identity between the Lie
algebroids (4, [, ],p) and (TM x R,[ , ],7), that is, m o (p, o) = p and

(p; 90)[X, Y] = [(p, ¢0)(X), (p, d0) (Y], (3.10)
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for X, Y € I'(A). Moreover, if (p, ¢o)* : Q'(M) x C°(M,R) — T'(A*) is the
adjoint homomorphism of (p, ¢g), then

(pv ¢0>*(07 1) = gbO'
As a consequence,

(0, 90)* (A F) = (p, d0)* (dof, f) = d* f,
(p, d0)*(dof,0) = df,

(3.11)
for f € C(M,R).

3.1.2 ¢p-Schouten bracket

In [3], a skew-symmetric Schouten bracket was defined for two multilinear
maps of a commutative associative algebra § over R with unit as follows. Let
P and P’ be skew-symmetric multilinear maps of degree k and k', respec-
tively, and fi,..., fraw—1 € §. If A is any subset of {1,2,...,(k+ k" — 1)},
let A’ denote its complement and |A| the number of elements in A. If |A| =1
and the elements in A are {iy,...,4} in increasing order, let us write f4 for
the ordered k-uple (fi,..., fi,). Furthermore, we write ¢4 for the sign of
the permutation which rearranges the elements of the ordered (k + k' — 1)-
uple (A’JA), in the original order. Then, the Schouten bracket of P and P,
[P, P O 'is the skew-symmetric multilinear map of degree k + k' — 1 given
by
[P, P1OV (1, frw—1)

= > eaP(P'(fa), fa) + (=)™ D esP'(P(f3), fo)-
|A|=Fk |B|=k
One can prove that if P and P’ are first-order differential operators on each of
its arguments, so is [P, P’] O 1y particular, if M is a differentiable manifold

and § = C*°(M,R), we know that a k-linear skew-symmetric first-order
differential operator can be identified with a pair (P, Q) € V¥(M) @ V(M)
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(that is, a k-section of TM x R — M) in such a way that
(P,Q)(frs-- - fr)

K
= P(dofr,- . dofi) + Y (=) i Qo fr, .. Jdofi . dofi),
=1

for fi,..., f € C°(M,R). Under the above identification, we have that
(P, Q), (P, Q)™
- ([P, P+ (1) (k — )PAQ — (K — 1)QAP', (3.12)
(“D)MP.Q) = Q. P+ (-1 (k = )QAQ'),
for (P,Q) € VF(M) @ V¥ (M) and (P, Q') € V¥'(M) @ V-1 (M). If [, ] is

the Schouten bracket of the Lie algebroid (TM x R, [, ],7), an easy compu-
tation, using (1.24), (1.27) and (3.12), shows that

[(P,Q), (P, Q" =[(P,Q), (P, Q)]+ (1) (k — 1)(P,Q)A 313
(i (P, Q)= (K = 1)(ipn(P,Q)) NP, Q).

Remark 3.3 i) Note that a 2-section of the vector bundle TM x R — M
defines a Jacobi structure on M if and only if

[(A, B), (A, B)]OY =0 (3.14)
(see (1.1) and (3.12)).

i1) Suppose that (A, E) is a Jacobi structure on M. Then, the vector bundle
T*M xR — M is a Lie algebroid and Xy = (—FE,0) € X(M) x C*°(M,R) =
[(TM x R) is a 1-cocycle of this Lie algebroid (see Example 4 in Section
1.2.2). Moreover, if d, is the differential of T*M x R, using (1.30) and (3.12),
we have that the X-differential dX0 = a0 s given by

dPO(P.Q) = ~[(A, ), (P,Q)] Y, (3.15)

for (P,Q) € VE(M)®V**(M). Compare equation (3.15) with the expression
of the differential of the Lie algebroid associated with a Poisson manifold (see

(1.32)).
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Suggested by (3.13), we prove the following result.

Theorem 3.4 Let (A, ([, ],p), ¢0) be a Jacobi algebroid over M. Then,
there exists a unique operation [, % : T(A*A) x T(A*A) — T(A*A) such
that

[P, P'[* € T(AMF14), (3.16)

[X, f]7 = p™(X)(f), (3.17)

[[X’Y]]%:[[va]]’ ( )

[P, P = (1) ¥ 1P, I (3.19)

[P,P'AP"]% = [P,P]%AP"+ (=1t P AP, P"]%

—(igyP) A P' A P,

for f € C*(M,R), X,Y € T(A), P € T'(A\FA), P' € T(A\FA) and P" ¢
D(AF"A). This operation is given by the general formula

(3.20)

[P, P')% = [P, Pl + (=1)""(k = )P A (ig P') — (K = 1)(ig, P) A P".
Furthermore, it satisfies the graded Jacobi identity

(_1)kkHMP7 P/]]d)O?PH]]% + (_1)’6%”[[[})”7P]]¢07P/]]¢>0 391
+(=1)*[[P', P"]?, P]% = 0. (320)

Proof: We define the operation [, %0 : [(A*A) x T(A*A) — ['(A*A) by
[P, P]% =[P, PT+ (=1)"" (k= 1)P A (ig, ') = (K' = 1) (i, P) A P', (3.22)

for P € T'(AFA) and P' € T'(AF A). Using (3.22) and the properties of the
Schouten bracket of multi-sections of A, we deduce (3.16), (3.17), (3.18),
(3.19) and (3.20).

To prove the graded Jacobi identitity, we proceed as follows. If d is the
differential of the Lie algebroid A and p € T'(A*) is a 1-cocycle, we have that

i,[X, P'] = [X,i,P'] — daqux) P,
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for X € I'(A) and P’ € T'(A¥ A). Using this relation and the fact that
k
[Xi A AX PT=> (D)X A AX A A X AN [XG P
i=1
for Xq,..., X € T'(A), it follows that
i[P, P'] = =[i,P, P'] + (—1)**'[P,i, P, (3.23)
for P € T(A*A). From (3.22) and (3.23), we deduce that
i¢0([[P7 Pl]]d)o) = _[[i%P’ Pl]]% + (_1)k+1[[P’ ifbopl]](bo' (324)
On the other hand, we have that
[P, f1% = i(aeo ) P, (3.25)
for f € C°(M,R). From (3.23), (3.24) and (3.25), we obtain that
[£, [P, P1%]% + [If, P']*, P"]* + (=1)M [P, [f, P"[*]* = 0. (3.26)

This proves (3.21) for k = 0.

On the other hand, if X € I'(A), using (3.23) and the properties of the

Schouten bracket [, ], it follows that

[[X7 [[P/’PN]]%]]% = MXv P/]]%?P”]]% + [[P,7 [[Xv P,/]]¢O]]¢O'

(3.27)

We must show that (3.21) holds, for £ > 1. But, this is equivalent to prove
that (3.21) holds for P’ € T'(A¥ A), P" € T'(AF"A) and P = P AY, with

PeT(AF1A) and Y € T'(A).

We will proceed by induction on k. From (3.27), we deduce that the result

is true for £ = 1. Now, assume that

(~D)EDFQ AY, P%°, P']%° + (=D)F¥[[P",Q AY]%, P]%+

(~D)EKP, P, QA Y] =0,

for Q € T(AFA), with k < k — 2.
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Then, we have that
(_1)];]6”MQ7 P/]]Cf)o’ Pl/]]¢0 + (_1)klk//[[[[P//’ Q]]¢07 P’]]¢0
_i_(_l)];k’[HIP/, Pl/]]¢0’ Q]](f)o — 07
for Q € D(AFA), with k < k — 1.
Using this fact, (3.24) and (3.27), we conclude that
( )kk"MP A Y, P’]]¢0,P”]]¢0 + (—1)k/ku[[[[P”,P A Y]]¢O,P’]]¢O
(=) [[P', P"]%, P AY]?% = 0.
Finally, if [, ]7: T(A*A) x T'(A*A) — T'(A*A) is an operation which satisfies
(3.16)-(3.20), then it is clear that [, "= [, ]¢.
The operation [, ]? is called the ¢g-Schouten bracket of (A, ([, ], p), ¢o)-
Remark 3.5 The ¢p-Schouten bracket of the Jacobi algebroid (A, ([, [, p),
¢o) can be characterized as follows. The product manifold A = A x TR is
a vector bundle over M x R and one may define a Lie algebroid structure
([, 1,p) on A, where [, ] is the obvious product Lie bracket and p = p x
Id : A — TM x TR. The direct sum I'(A¥A) @ T'(AF"1A) is a subspace
of I'(A*A) and we may consider the monomorphism of C°(M, R)-modules
Ugo : T(AFA) — T(AFA) given by Uy, (P) = (e=*=DtP e=(*=Dtj, (P)). Then,
it is easy to prove that Uy, ([P, P']?) = [Ug,(P), Uy (P")]; for P € T(AFA)
and P’ € I'(A¥ A) (see [33]). Here, [, ] denotes the usual Schouten bracket
of the Lie algebroid (4, [, |, p)

Now, if (A, ([, ], p), o) is a Jacobi algebroid, X € T'(A) and P € T'(A*A),
we can define the ¢g-Lie derivative of P by X as follows

LY(P) = [X, P]™. (3.28)
Then, from Theorem 3.4, we deduce

Proposition 3.6 Let (([, ],p),¢0) be a Jacobi algebroid structure on T :
A— M. If f € C*(M,R), X € T'(A), P € T(A*A) and P' € T(A¥ A), we

have

LY(PAP)=(LLP) AP +PALLP)) —dpo(X)PAP,  (3.29)



3.2. Jacobi structures and Lie bialgebroids 69

LBAP) = fFLL(P) — X NigP. (3.30)
Finally, using (3.4), (3.18), (3.28) and (3.29), we obtain that
L(.P) = ip (LLw) + i (£2(P)) + (b = D)oo X)iLP,

for w € T(A*A*), P € T(AFA) and X € T'(A).

3.2 Jacobi structures and Lie bialgebroids

Let (A,[, ],p) be a Lie algebroid over a manifold M such that its dual
bundle A* — M also admits a Lie algebroid structure ([, ]«, px). Then the
pair (A, A*) is said to be a Lie bialgebroid if

d.[X,Y] = [X,d.Y] - [V,d. X], (3.31)

for X,Y € I'(A), where d, denotes the differential associated with the Lie
algebroid structure ([, ], p«) on A* (see [83]).

Examples 3.7 1.- Let (M,II) be a Poisson manifold and (T*M, [, |u, #n)
be the associated Lie algebroid (see Example 4 in Section 1.2.2). If on T'M we
consider the trivial Lie algebroid structure then, using (1.32) and the proper-
ties of the Schouten-Nijenhuis bracket, we deduce that the pair (TM,T*M)
is a Lie bialgebroid (see also [83]).

2.- It is obvious that if g is a Lie algebra, (3.31) reduces to Drinfeld’s cocycle
condition for the pair (g, g*) to be a Lie bialgebra [27].

3.- If IT" is a 2-vector on a manifold M, we will denote by [, v the skew-
symmetric bracket defined by

[, VI = (Lo) ey (¥ — (Lo) sty it — do(T' (1, 1)),
for u,v € QY(M).

Now, suppose that II is a Poisson structure on M and that N : TM — TM
is a Nijenhuis operator on T'M. Assume also that

Nod#n =#noN7, (3.32)
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N*:T*M — T*M being the adjoint operator of N. Then, one may consider
the 2-vector II; on M characterized by the condition #p, = #n o N* and
the concomitant C(IT, N') of I and N, that is, C'(II, V) is the tensor field of
type (2,1) defined by

C(H,N)(u, V) = [[:ua I/]]Hl - [[N*Na V]]H - [[:uaN*V]]H +N*[[M7V]]Ha

for p, v € Q' (M). The pair (IT, V) is said to be a Poisson-Nijenhuis structure
on M if (3.32) holds and C(II, N) identically vanishes (see [64]). In [62], it
was proved that (I, V) is a Poisson-Nijenhuis structure on M if and only if
the pair (7'M, T*M) is a Lie bialgebroid, when T'M (respectively, T*M) is
equipped with the deformed Lie algebroid structure ([, |-, N) (respectively,
the cotangent Lie algebroid structure ([, |, #1m))-

In [61], it was given an equivalent definition of a Lie bialgebroid in terms of
derivations of graded Lie algebras. Let (A, A*) be a pair of Lie algebroids
in duality. If d, is the differential of (A* [, ]«, p«) and [, ]’ is the modified
Schouten bracket of A (see Remark 1.7), one can show that (A4, A*) is a Lie
bialgebroid if and only if d, is a derivation with respect to (®,'(A*A), [, ]'),
that is,
d.[P, Q) = [d.P,Q) + (-1)""'[P,d.QI'

for P € I'(APA) and Q € T'(A*A).

Next, suppose that (M, A, E) is a Jacobi manifold. We consider the 1-jet Lie
algebroid (T*M x R, [, [a,g) #(A,E)) associated with the Jacobi structure
(A, E) and the 1-cocycle (—E,0) € X(M) x C>*(M,R) = I'(TM x R). As
we know, the dual bundle 7'M x R admits a Lie algebroid structure ([ , ], 7)
and the pair (0,1) € Q'(M) x C*°(M,R) X T'(T*M x R) is a 1-cocycle (see
Examples 3 and 4 in Section 1.2.2).

For the above Jacobi algebroids, we deduce

Proposition 3.8 i) If (X, f),(Y,g) € X(M) x C*(M,R) = I'(TM x R),
then

ATEOLX ), (Y, 9)) = [ 1), dE0 (Y g)) 0 = [ g), d PO (X, 1)
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i) If L, denotes the Lie derivative on the Lie algebroid (T*M x R, [, J(a.r),

#A,B)), then
(LEEN) 0 (P, Q) + (£5Y) 5oy (P.Q) =0,
for (P,Q) € VE(M) @& VE"Y(M) 2 T(AM(TM x R)).

Proof: i) It follows from (3.15), (3.19) and (3.21).
it) Using (1.24), (1.30), (3.3), (3.12) and (3.28), we have that

(LN o (P,Q) + (L£E)(p0) (P, Q)
= dTP0(Q,0) + i ( AP+ (k—1DEAP+AANQ, A, Q]

—(k—2)EAQ+[E, P]> — ([E, Pl.[E, Q]> —0.
QED

Remark 3.9 If (M, A, E) is a Jacobi manifold and on TM xR (respectively,
T*M x R) we consider the Lie algebroid structure ([ , |,7) (respectively,
([, lea,m)s #(A,E))) then, from Proposition 3.8, we deduce that the pair (7'M x
R, T*M x R) is not, in general, a Lie bialgebroid (see also [111]).

3.3 Jacobi bialgebroids

Let A be a vector bundle over M and A* the dual bundle to A. Suppose that
(([,1,p), p0) (respectively, (([, ]+, p«), Xo)) is a Jacobi algebroid structure
on A (respectively, A*). Then, we will use the following notation:

e d (resp. d,) is the differential of (A, [, [, p) (resp. (A* [, ]+, p«))-

o d% (resp. dX9) is the ¢g-differential (resp. Xo-differential) of A (resp. A*).
e L (resp. L) is the Lie derivative of A (resp. A*).

o L% (tesp. LX0) is the ¢o-Lie derivative (resp. Xo-Lie derivative).

o[, ]% (resp. [, ]X°) is the ¢o-Schouten bracket (resp. Xy-Schouten bracket)
on (A, ([, ],p), éo) (resp. (A", ([, s, p+), Xo)).

o p% : T'(A) x C°(M,R) — C®(M,R) (resp. pXo : T(A*) x C°(M,R) —
C>°(M,R)) is the representation given by (3.1).
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* (p,¢o) - T(A) — X(M) x C*(M,R) (resp. (p., Xo) : T'(A") — X(M) x
C>°(M,R)) is the homomorphism of C*°(M,R)-modules given by (3.9) and
(p, o) : QYM) x C®(M,R) — T'(A*) (resp. (p«, Xo)* : QH(M) x C°(M,R)
— I'(A)) is the adjoint operator of (p, ¢o) (resp. (p«, Xo)).

Now, Proposition 3.8 suggests us to introduce the following definition.

Definition 3.10 The pair ((A, ¢o), (A*, Xo)) is said to be a Jacobi bialge-
broid over M if

dX[X, Y] = [X,dXY]? — [Y,dXo X]%, (3.33)
(LX)g P+ LLP =0, (3.34)

for all X, Y € T(A) and P € T(A*A).

Using (3.1), (3.4), (3.18), (3.28) and (3.29), we obtain that (3.34) holds if
and only if

d0(Xo) =0, p(Xo) = —pul(co), (3.35)
(£)00X + [Xo, X] = 0, for X € T(A). (3.36)

Note that (3.35) and (3.36) follow applying (3.34) to P = f € C®(M,R) =
[(A°A) and P = X € I'(A), respectively.

Next, we will see that the base space of a Jacobi bialgebroid carries an induced

Jacobi structure.

First, we will prove some results.

Proposition 3.11 Let ((A, ¢o), (A%, Xo)) be a Jacobi bialgebroid. Then,

(L5)go0 X = [X, d2° f], (3.37)
Jor X € T(A) and f € C=(M,R).
Proof: Using (3.2) and the derivation law on Lie algebroids, we obtain that
&0 (X fY]) = (@) AIX Y]+ FEO[X,Y] = fXo A X, Y]
FAX (XN DAY + p(X)()RY = p(X)(H)XoNY.
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for X, Y € T'(A) and f € C>*(M,R).
On the other hand, from (3.2), (3.29), (3.30) and (3.33), we deduce that

([, Y]) = LL@E(Y)) = L3 (@20(X))
= (L@ D) AY + (@X0f) ALYY
—6o(X)(dXF)AY + FLL(AXY) + p(X)(f)d2oY
—F(LRXo AY + X ALRY = 60(X)Xo A Y)
—p(X) ()Xo NY = FLY(dF0X) = igg(dXX) AY.
Thus, using again (3.33), it follows that
OO AY = (LA = oo(X)dX0f = FLY X
+F$u(X) Xo — gy (X0 X)) AY,

and so
A (p(X)(f)) = LLAXf + ¢o(X)dX f + FLY X
— [$0(X)Xo +igr(dX°X) =0,
which, by (3.2), (3.3) and (3.36), implies (3.37). QED

Corollary 3.12 Under the same hypothesis as in Proposition 3.11, we have

df-dXg+d®g-dXf =0, for all f,g € C(M,R). (3.38)

Proof: First of all, we claim that

[4X0g, dX0 f] = 40 (d*f - dvg), (3.39)

for f,g € C*°(M,R). In fact, if Jg]’l) is the operator defined by (3.6) then,

from (3.1), (3.3), (3.4), (3.9), (3.11) and Proposition 3.11, we get that
[@0g, X0 f] = (£39) 0 (d¥0g) = X0 (£ 0,(9)
= dX(p20(d f)(9)) = a0 (dVg - (p., Xo)(d* f))
= & (d - (oo, Xo) (dyg)) = a0 (d0f - dog).
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Moreover, using (3.6), (3.9) and (3.11), it follows that

anf-dog = A ((p,00) 0 (pe Xo)" ) (A5 )
o (3.40)
= 7OV (((p, d0) © (ps, X))y g). ).

where 70D : (X(M) x C®°(M,R)) x C®°(M,R) — C=(M,R) is the repre-
sentation given by (3.5).

Now, it is clear that (3.38) is equivalent to the condition
df-dXf =0, for all f € C®(M,R). (3.41)
In order to prove (3.41), we first show that

401+ (9, @0) 0 (pe X)) (0,1))

) 3.42
= —déo’l)l . <((p7 ¢0) o ()0*7X0)*>(d0f7 O))? ( )

for f € C>*(M,R). We have that (see (3.6), (3.9) and (3.35))

a7 F - (((p,60) 0 (pes Xo))(0.1)) = (dof. ) - (p(X0),0)
= p(Xo)(f) = —pu(¢0)(f).
On the other hand, from (3.9) and (3.35), we deduce that

A1 (((p,60) © (o Xo))dof,0)) = =60 - (pey Xo)"(dof,0)

Thus, we deduce (3.42). Therefore, using (3.6), (3.40) and (3.42), we obtain
that

anf-d¥of = (((p60)e (pe X)) (dof,0)) - (dof, 0. (3.43)

Now, we will prove that

(((0.60) o (01 X0)")dof 0)) - (d,0) = 0.
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From (3.2), (3.39), (3.40) and (3.43) it follows that dX* (s, 6o) © (ps, Xo)")
(d0f27 0) - (don, O)) = 0. Then,

0 = (((p00) © (P Xo)")(dof,0) - (dof,0) ) (&2 12 = J2X,y)
= (9 90) © (P X0)") (Ao ,0) - (do,0) ) . f? (3.44)
= 2f(((p,60) © (o, X0))(do . 0) - (do . 0) ) f.

On the other hand, in general, d.g = (p«, Xo0)*(dog,0). Thus, using (3.44),

£(((0:60) © (9o X0))(dof, 0) - (o, 0)) =0, for all f.
This implies that
(((p. 90) © (p2: X0)" (Ao, 0)) - (dof, 0) =0,
as we wanted to prove. Therefore, we conclude that d® f - dXo f = 0, for all
f € C*(M,R), that is, (3.38) holds. QED

Next, we will show that if ((A, ¢o), (A*, X)) is a Jacobi bialgebroid over M,
then M carries an induced Jacobi structure.

Theorem 3.13 Let ((A, o), (A%, Xo)) be a Jacobi bialgebroid. Then, the
bracket of functions {, }o : C°(M,R) x C*°(M,R) — C*(M,R) given by

{f,g9}o = d™f-d¥g, for f,g € C*(M,R),
defines a Jacobi structure on M.

Proof: First of all, from Corollary 3.12 we obtain that the bracket {, }¢ is

skew-symmetric.

From (3.2) and since d*1 = ¢y, we deduce that {, }, is a first-order differen-
tial operator on each of its arguments with respect to the usual multiplication
of functions.

Now, let us prove the Jacobi identity. Using (3.39), we have that

dh - [dig, d° f] = d®h - dX°({f, g}o).
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Thus, from (3.10) and (3.11), we deduce that

A"V (0, 60) (s X0) (45 9)). (0, 60) (e Xo) (45 )]
= d®h- X ({f, g}o)

or, equivalently,

7D ([((p, 60) © (pu X)) (9)), (01 60) © (0, X))y ()], )
= dh- dX({f,g}0)-

Consequently, since 7(®Y is a representation of the Lie algebra (X(M) x

C>®(M,R),[ , ]) on the space C*>°(M,R), this implies that (see (3.40))
{f7 {gv h}0}0+{ga {ha f}0}0+ {h'7 {f7 g}O}O = 0.
From (3.2) and (3.35), we have that

{f,9}0 =df - dug — fp(Xo)(g) + gp(Xo)(f), (3.45)

for f,g € C°(M,R). Since the differential d is a derivation with respect to
the usual multiplication of functions we have that the map (f, g) — df - d.g,
for f,g € C°(M,R), is also a derivation on each of its arguments. Thus, we
can define the 2-vector Ay € V?(M) characterized by the relation

No(dof,dog) = df - dog = —dg - d. f, (3.46)
for f,g € C*(M,R), and the vector field Ey € X(M) by
Ey = —p(Xo) = pu(¢0). (3.47)
From (3.45), we obtain that
{f:9}0 = Aoldof, dog) + fEo(9) — 9Eo(f),

for f,g € C°(M,R). Therefore, the pair (Ao, Ep) is the Jacobi structure
induced by the Jacobi bracket {, }o.
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Finally, we will present an interesting characterization of Jacobi bialgebroids
which was proved by Grabowski and Marmo in [33].

For this purpose, we will use the following notation. If (([, ], p),¢0) is a
Jacobi algebroid structure on A and [, ]% is the ¢o-Schouten bracket, we
will denote by [, ]’% the bracket defined by

[P, Q" = (=1)""'[P,Q]™,
for P € I'(APA) and @ € ['(A*A).
Then, we have that

Theorem 3.14 [33] Let (A, ([, ], p), ¢o0) be a Jacobi algebroid. Assume also
that the dual bundle A* admits a Jacobi algebroid structure (([, ]+, p«), Xo)-
Then, ((A, ¢o), (A*, X)) is a Jacobi bialgebroid if and only if dX° is a deriva-
tion with respect to (BxT(AFA), [, ]'?), that is,

EO[P, QY™ = [P, Q)™ + (P[P RQ*  (3.48)
for P € I'(APA) and Q € T'(A*A).
Proof: Let us set
D(P,Q) = &X*[P, Q)" — [aX°P.QI'" — (=1)""'[P.dZ*Q]'™,
for P e I'(APA) and Q € T'(A*A).

Using (3.1), Theorem 3.4 and the properties of the Xy-differential, we deduce
that

D(Q? P) = _(_1)([)—1)(!1—1)D(P’ Q)>
D(P,Q AR) = D(P,Q)AR + (=1)MQAD(P,R) — D(P,1)A QAR,
for P € T(APA), Q € T(A9A) and R € T(A*A).

(3.49)

Now, suppose that dX° is a derivation with respect to (®x['(AFA), [, ]'°) or,
equivalently, that D identically vanishes. Then, it is clear that (3.33) holds.
Moreover, from (3.25), we have that

[R,1]"% = (=1)""iy R, for R € T(A"A).
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Thus, using (3.3), (3.28) and (3.48), we deduce (3.34).
Conversely, assume that ((A, ¢o), (A*, Xo) is a Jacobi bialgebroid. Then,
from (3.25) and Corollary 3.12, we obtain that

D(f,g) =0, for f,g € C*°(M,R). (3.50)
Furthermore, using (3.3), (3.25) and Proposition 3.11, it follows that
D(X, f)=0, for X e I'(A) and f € C*(M,R). (3.51)
On the other hand, from (3.33), we deduce that
D(X,Y) =0, for X,Y € ['(A). (3.52)

Finally, using (3.49)-(3.52), we conclude that D identically vanishes, which
implies that dX° is a derivation with respect to (©xT(AFA), [, ]'%).

3.4 Examples of Jacobi bialgebroids

3.4.1 Lie bialgebroids

Suppose that the pair ((A4, ¢o), (A*, X)) is a Jacobi bialgebroid where both
1-cocycles vanish, that is, ¢g = 0 and X = 0.

In this particular case, (3.33) and (3.34) are equivalent to the condition
(3.31). Thus, the pair ((A4,0),(A*0)) is a Jacobi bialgebroid if and only if
the pair (A, A*) is a Lie bialgebroid.

If (A, A*) is a Lie bialgebroid then, by the previous result and Theorem
3.13, a Jacobi structure (Ao, Fy) can be defined on the base space M. Since
¢o = 0 and Xy = 0, from (3.47) we deduce that Ey = 0, that is, the Jacobi
structure is Poisson, which implies a well known result (see [83]): given a
Lie bialgebroid (A, A*) over M, the base space M carries an induced Poisson

structure.
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3.4.2 The Jacobi bialgebroid associated with a Jacobi
structure

Let M be an arbitrary manifold. As we know, the vector bundle TM xR —
M admits a Lie algebroid structure ([ , ],7) and ¢9 = (0,1) € Q'(M) x
C®(M,R) = T'(T*M x R) is a 1-cocycle of this Lie algebroid (see Example
3 in Section 1.2.2).

Now, suppose that (M, A, E) is a Jacobi manifold. We consider the 1-jet Lie

algebroid (T*M x R, [, J(a,r), #,5)) associated with the Jacobi structure
(A, E) and the 1-cocycle (—FE,0) € X(M) x C*(M,R) =ZI'(TM x R).
Using Proposition 3.8, we deduce that the pair ((TM x R, (0,1)),(T*M x
R, (—F,0))) is a Jacobi bialgebroid.

Moreover, from (1.26), (1.30), (3.46) and (3.47), we obtain that the Jacobi
structure (Ao, Ey) on the base space M is just (A, E).

3.4.3 Jacobi bialgebroids and strong Jacobi-Nijenhuis
structures

Assume that A’ and E’ are a 2-vector and a vector field on a manifold M.
Since I'(A*(TM x R)) may be identified with the product V(M) x X(M), the
pair (A, E') may be considered as an element of I'(A?(T'M x R)) and thus
we have defined the corresponding homomorphism # s gy : T'(T*M x R) =
QY M) x C*(M,R) —» T'(TM x R) 2 X(M) x C>°(M,R) which is given by

#w,en (i f) = (Fa(n) + FE, —p(E") = (e (1, £), —p(E"), (3.53)
for (u, f) € QY(M) x C>°(M,R).
On the other hand, we will denote by [, [(a.g) : (2 (M) x C*(M,R))* —
QYM) x C*(M,R) the skew-symmetric bracket defined by

[ £), (v, Do)
=((L0)#p (V= (Lo) gyt —do(N (1, V) + f(Lo) v —g(Lo) pr
—ip (A V), N (v, ) +#a (1) (9) —#a W) (f)+FE"(9)—gE'(f)),
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for (u, f), (v,g) € QY(M) x C>*(M,R).

Now, suppose that (A, F) is a Jacobi structure on M. Then, we may consider
the Lie algebroid (T*M x R, [, [a.5), #(A,E)) and the pair Xo=(—F,0) is a
1-cocycle of this Lie algebroid. On the other hand, the pair (0,1) € Q'(M) x
C>®(M,R) is a l-cocycle of the Lie algebroid (T'M x R,[ , ],7) and the
(0, 1)-differential J(()O’l) of TM x R is given by (3.6).

Thus, using (1.24), (1.28), (1.29), (3.6), (3.22) and (3.53), it follows that the
Xo-Schouten bracket [, ]]( A i) satisfies the following relations:

[ £, 9100 5y = do Vg - (Ham (dg™ £)), (3.54)

[ 0), A5V F10 ) = Ldo ™ (1), F1 ) + s ([ B, 130 ), (3.55)
[y (e, h), di D F10 gy = —dS™ (LG (b, 130 ) (3.56)
for (u,h) € Q' (M) x C>°(M,R) and f,g € C°(M,R).

Next, we consider a Nijenhuis operator AV on the Lie algebroid (T'M x
R,[ , ], 7). Therefore, we obtain the corresponding Lie algebroid (T'M x
R,[, ]y, mn) (see (1.34)). Denote by N* : T*M x R — T*M x R the
adjoint operator of A and by ¢q the section of T*M x R — M given by

¢o =N7*(0,1).
Since N is a Nijenhuis operator on (TM x R, [ , ], 7), it follows that

Gol(X, f), (Y, 9)ly = (0, IN(X, ), N (Y, g)],

for (X, [),(Y,g9) € X(M) x C*(M,R) = I'(TM x R), and consequently,
using that (0,1) is a 1-cocycle of (T'M x R,[ , ],7), we obtain that ¢, is a
I-cocycle of (I'M x R, [, ]y, 7). Moreover, if dj{? is the ¢o-differential of
the Jacobi algebroid (([ , ] 7ar), ¢o), then, from (1.24), (1.35), (1.36) and
(3.6), we have that

A2 f = NV, (3.57)

A9 (. h) = in(dy"P (1, 1)) — dy "N (i, ), (3.58)
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dipdy ™ f = —dy VN ), (3.59)
for (u,h) € Q1(M) x C>°(M,R) and f € C*(M,R).

On the other hand, suppose that (A, F) and N satisfy that

No#wmp =#wnpoN" (3.60)

In this case, we can define the pair (Ag, Ey) formed by the 2-vector Ay and
the vector field Ey characterized by

#(roEo) = F(aE) ON T (3.61)

We say that the pair ((A, E),N) is a strong Jacobi-Nijenhuis structure if
and only if (3.60) holds and the concomitant of (A, E) and N, C((A, E),N),
identically vanishes, where C'((A, E),N) is given by

C((A E),N) (1 1), (v,9))
:[[(Mv f)7 (Vv g)]](Ao,Eo) o [[N*(u, f)ﬂ (Vv g)]](A,E) (362)
—[[([L, f):N*(Vv Q)H(A,E) +N*ﬂ(:u7 f)7 (Vv g)]](A,E)a

for (u, f), (v,g) € QYM) x C>*(M,R).

Remark 3.15 In [88] is introduced the notion of a Jacobi-Nijenhuis struc-
ture imposing weaker conditions than we have adopted here. Moreover, in
(97, 98] are established some local models of Jacobi-Nijenhuis manifolds and
a reduction theorem is obtained. In a different direction, in [114] is given
another relation between Jacobi structures and Nijenhuis operators. In ad-
dition, the author compares both approaches (see [114]).

Example 3.16 Suppose that (M,n) is a contact manifold with associated
Jacobi structure (A, E') and that (Ao, Ep) is a Jacobi structure on M compa-
tible with (A, E'), that is, (A+ Ao, E+ Ej) is a Jacobi structure (see [44, 95]).
Since the homomorphism # gy given by (3.53) is, in this case, an isomor-
phism, let us consider the C*°(M,R)-linear map N = #x, 5,) © (#n,m)) "
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Then, using the results in [88], we deduce that ((A, E), ) is a strong Jacobi-
Nijenhuis structure. An explicit example of the precedent construction is the

following one.

Let M be the product manifold 7*Q) x R, where @) is a smooth manifold of
dimension m. Denote by 7¢ the canonical contact 1-form on 77 xR given by
(2.10), by IIy the canonical cosymplectic structure on 7@ x R and by (A, E)
the Jacobi structure on 7%Q) x R associated with 7g. Then, from (2.11),
we obtain that the Jacobi structure (A, E) and the Poisson structure II,
are compatible. Therefore, the pair ((A, E),N) is a strong Jacobi-Nijenhuis
structure, where N : X(M) x C*°(M,R) — X(M) x C>®°(M,R) is the map
defined by
N = #(110,0) © (#(A,E))_l-

Moreover, using (2.11), it follows that

0
N =1d = (.0) ® (dot,0) = (~A1-q, 1) @ (0. 1),

Arp-g being the Liouville vector field of 7%@Q).

Next, we relate strong Jacobi-Nijenhuis structures and Jacobi bialgebroids
in the following result.

Theorem 3.17 Let (A, E) be a Jacobi structure on a manifold M and N be
a Nijenhuis operator on TM xR. Consider on TM xR (respectively, T* M x
R) the Lie algebroid structure ([ , ]\, mar) (respectively, ([, ]](AE),%E(A,E))).
Then, ((A, E),N) is a strong Jacobi-Nijenhuis structure if and only if the pair
((TM xR, ¢g),(T*M xR, Xy)) is a Jacobi bialgebroid, where ¢y (respectively,
Xo) is the 1-cocycle on TM xR (respectively, T* M xR ) given by ¢og =N*(0, 1)
(respectively, Xo=(—F,0)).

Proof: Let us set
D((1,7), (1',7")) = dT(m ), (A gy
A (7). (1) (3.63)

(= 1)F L 7). AR (DI gy
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for (11,7) € QM) ® Q"1 (M) and (i',7') € Q (M) & Q*~H(M).
Using (3.6) and (3.49), we deduce that D = 0 if and only if

D(f,9) =0, D(dy"f.g)=0, D(dy""f.dy""g) =0 (3:64)
for f, g € C*°(M,R). Note that if (i, ) € QF(M) ® QF~1(M) then for every
point z of M there exists an open subset U of M, x € U, such that on U

(1,7) = D FidPV By A A (dg ) f,
=1

with f; € C*(U,R), for all i and j.

Now suppose that f and g are real C'*°-differentiable functions on M. Then,
using (1.29), (3.1), (3.17), (3.53), (3.57) and (3.63), we get that

D(f,9) = d\"Vg - (#nm o N* = N o m)dy " f). (3.65)

On the other hand, from (3.54), (3.55), (3.57), (3.59), (3.62) and (3.63), we
have that

DYV f,g) = C((A, E), YAV £,dVg) +dV(D(f, ). (3.66)
Finally, using (3.55), (3.56), (3.58), (3.59) and (3.63), we obtain that
D(d>V £,d3V g) = =P (C((A, B),N)(dy £,d3g)). (3.67)

Therefore, from (3.65), (3.66), (3.67) and Theorem 3.14, we conclude the
result.

Remark 3.18 Theorem 3.17 was proved, independently, by Nunes da Costa
in [96] by using other techniques.

As a consequence of Theorem 3.17, we recover a result obtained, with weaker
hypotheses, in [88, 98].

Corollary 3.19 Let ((A, E),N) be a strong Jacobi-Nijenhuis structure on a
manifold M. Then the 2-vector Ay and the vector field Ey characterized by
(5.61) define a Jacobi structure on M.
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Proof: Since ((TM xR, ¢y), (T*M x R, Xj)) is a Jacobi bialgebroid, we can
define a Jacobi bracket {, }o on M given by

{f.g}o= dji?f -d¥og,
for f,g € C*°(M,R) (see Theorem 3.13). Using (3.57), we deduce that
{figlo = NV dfog =g g - (Honm o N (A" )))

= Ao(dof,dog) + fEo(9) — gEo(f).

Therefore, we conclude our result.

3.4.4 Triangular Jacobi bialgebroids

Let (([, ], p), o) be a Jacobi algebroid structure on 7 : A — M. Moreover,
let C be a ¢g-canonical section, that is, C € T'(A2A) and

[C,C]? = 0. (3.68)

We shall discuss what happens on the dual bundle A* — M. Remark 3.2
i) and Remark 3.3 i) suggest us to introduce the bracket [, J.c on I'(A*)
defined by

[ vle = LY,y = LE, n = d®(Clp,v) (3.69)
= e (A%V) — ige()(d®p) +d* (Cp,v)),
for p,v e T'(A*).

Theorem 3.20 Let (A, ([, ],p), o) a Jacobi algebroid over M and C be a

¢o-canonical section of A. Then:

i) The dual bundle A* — M together with the bracket defined in (3.69)
and the bundle map p.c = po #c : A* — TM 1is a Lie algebroid.

i) Xo=—#c(do) € I'(A) is a I-cocycle of (A*, [, J«c, psc)-

iii) The pair ((A, o), (A%, Xo)) is a Jacobi bialgebroid.
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Proof: First of all, define a linear map of degree 1 on the space I'(A*A) =
d.Q = —[Q,C]” + (i4,C) A Q, (3.70)

for Q € T'(A*A).

From (3.19) and (3.20), we deduce that d, is a derivation with respect to

(®x(AFA), A). Moreover, using (3.20), (3.21), (3.24) and (3.68), we obtain
that d> = 0. Thus, the results in [64, 121] claim that the equations

P (1) (f) = pldif),
[, V]« (X) = pu(p) (V(X)) = pu(v) (1(X)) — du X (1, v),

for p,v € I'(A*), X € I'(A) and f € C*(M,R), define the anchor map and
the Lie bracket of a Lie algebroid structure on A*.

A simple computation, using (3.4), (3.25), (3.69), (3.70) and the fact that

(Le? = Lyewyp — d(Cp, v)))(X)
= [C, X1, v) + p(#e () (W(X)) = p(#c(v)) (1(X)),

for u,v € T(A*) and X € T'(A), shows that [, . = [, J«c and p. = pic.

Thus, we have 7).

Moreover, from (3.21), (3.24), (3.70) and Theorem 3.14, we conclude that
Xo = —ig,C is a 1-cocycle of (A", [, J«c, p«c) and the pair ((A, ¢o), (A%, Xo)
is a Jacobi bialgebroid. QED

Let (A, ([, ], p), #0) be a Jacobi algebroid. Suppose that (([, ], p«), Xo) is a
Jacobi algebroid structure on A*. Moreover, assume that ((A, ¢o), (A*, Xo))
is a Jacobi bialgebroid. Then, the pair ((A, ¢o), (A*, X)) is said to be a
triangular Jacobi bialgebroid if there exists a ¢g-canonical section C of A
such that

[[7 ]]* = [[7 ]]*C7 Px = Pxcs XU - _#C(¢0>

Let ((A, ¢o), (A*, Xo)) be a triangular Jacobi bialgebroid over M and C the
corresponding ¢p-canonical section of A. If (Ag, Ep) is the induced Jacobi
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structure on M, using (3.46), (3.47) and Theorem 3.20, it follows that

Ao(dof,dog) = C(df,dg), Eo = p(#c(90)), (3.71)
for f,g € C>(M,R).

Examples 3.21 1.- Note that a triangular Jacobi bialgebroid ((A, ¢o), (A%,
Xo)) such that ¢y = 0 is just a triangular Lie bialgebroid (see [83]).

2.- If (M, A, E) is a Jacobi manifold then, using Remarks 3.2 and 3.3, we
deduce that the pair (TM x R,¢g = (0,1)),(T*M x R, Xy = (—FE,0)))
is a triangular Jacobi bialgebroid. Note that, in this case, the ¢g-canonical

section of TM x R — M is just the Jacobi structure (A, E).

3.- Let (M, A, E) be a Jacobi manifold. Suppose that there exists a closed
I-form 6 such that #,(0) = E. Then, 0 is a l-cocycle of the trivial Lie
algebroid (T'M, [, ], Id) and we may consider the §-Schouten bracket [, ]°.
Moreover, from (1.1) and Theorem 3.4, we deduce that

[A,A]? = [A,A] — 2 (igA) A A = 0.

Thus, A is a #-canonical section of A. Therefore, using Theorem 3.20, we
obtain that the pair ((T'M,0), (T*M, —F)) is a triangular Jacobi bialgebroid,
where the Lie algebroid structure ([, J(a,z,0), #(a,50) on T*M is given by
[l = (Lo)gatnv = (Logawk — do(Ap; v))
#(A,E,@) (1) = #alp),
for u,v € QY (M).

Since ((T'M,0), (T*M,—E)) is a Jacobi bialgebroid over M, M carries an
induced Jacobi structure. In fact, using (3.71), we deduce that this Jacobi
structure is just (A, E).

Remark 3.22 i) If (M, Q) is a l.c.s. manifold with Lee 1-form w and (A, E)
is the associated Jacobi structure on M, we have that #x(w) = —FE (see
(1.12), (1.13) and Remark 1.1).



3.4.5. Exact Poisson structures 87

ii) Let (A, E) be a Jacobi structure on M and 6 be a closed 1-form on M
such that #,(0) = E. It is clear that

Now, denote by ([, J(a,5), #(A,E)) (respectively, ([, ia,e.0), %E(A,Eﬁ))) the Lie
algebroid structure on T*M x R (respectively, T*M) given by (1.29) (res-
pectively, (3.72)) and by W : T*M x R — T*M the epimorphism of vector
bundles (over the identity Id : M — M) defined by

U (g, A) = gy + A0y, for (pg, A) € ToM x R.

Then, using (1.29), (3.72), (3.73) and the fact that 6 is a closed 1-form, we
deduce that the pair (¥, Id) is an epimorphism between the Lie algebroids

(T*M xR, [, [a,p), %‘Z(A,E)) and (T*M, [, |(a,e.0), %L(A,E,Q))-

3.4.5 The Jacobi bialgebroid associated with an exact
Poisson structure

Let M be an arbitrary manifold. We have seen that the triple (T'M x
R,[ , ],7) is a Lie algebroid over M (see Example 3 in Section 1.2.2). Evi-
dently, we have that ¢y = (0,0) € QY(M) x C*°(M,R) X T'(T*M X R) is a
1-cocycle for this Lie algebroid.

In addition, suppose that there exists an exact Poisson structure on M, that
is, there exists a 2-vector II and a vector field Z on M such that

L] =0, [ZI]=-IL

Then, the vector bundle T*M x R — M admits a Lie algebroid structure
([, Jam,2) #1.2)) and Xo=(0,1) € X(M) x C®(M,R) = I'(TM x R) is a
1-cocycle of this Lie algebroid structure (see Example 7 in Section 1.2.2).

Moreover, from (1.24), (1.38) and (3.2), we deduce that the X-differential is
dX*(P,Q) = (-[IL P}, [I,Q] — [Z, P] - (k — 1)P), (3.74)

for (P,Q) € V(M) @ VF=Y(M).
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Next, we will prove that the pair ((TM x R, (0,0)),(T*M x R, (0,1))) is a
Jacobi bialgebroid over M.

First of all, from (1.27), it follows that
(L£3)50(P,Q) + LZ,(P,Q) = [(0,1),(P.Q)]
= ([0, P],—[0,Q] — [1, P]) = (0,0),
for (P,Q) € V¥(M) & V*=1(M), that is, (3.34) holds.

On the other hand, an easy computation, using (1.27), (3.74) and the pro-
perties of the Schouten bracket, shows that

&[(X, ), (V. 9)l = [(X, ), dX (Y, 9)] = [V, 9), d2°(X, ))]*,
for (X, f),(Y,g) € (M) x C(M,R) = T(TM x R).

Finally, since ((TM x R,(0,0)),(T*M x R,(0,1))) is a Jacobi bialgebroid
over M, we know, by Theorem 3.13, that there exists a Jacobi structure
on the base space M. In fact, if {, }o is the Jacobi bracket on M and
f,g € C®(M,R) then (see (1.26) and (3.74))

{f.gto = dof -d¥og=((dof,0),(—[g,11],9 — Z(g)))
= H(doﬂdog),

that is, the Jacobi structure is just the original exact Poisson structure II.

3.5 Lie bialgebroids associated with Jacobi
bialgebroids

In this Section, we will show that it is possible to construct a Lie bialge-
broid from a Jacobi bialgebroid and, as a consequence, we deduce a duality

theorem.
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3.5.1 Time-dependent sections of a Lie algebroid

Let (A, ([, ].p),®0) be a Jacobi algebroid over M and m : M x R — M
be the canonical projection over the first factor. We consider the map * :
['(A) — X(M x R) given by
0

)5

It is easy to prove that * is an action of A on 7 in the sense of Section 1.2.2
(see Example 6 in Section 1.2.2). Thus, if 77 A is the pull-back of A over
71 then the vector bundle 77 A — M x R admits a Lie algebroid structure

X* = p(X) + ¢o(X

([, J%, p%). For the sake of simplicity, when the 1-cocycle ¢y is zero, we will
denote by ([, ], p) the resultant Lie algebroid structure on 7fA — M x R.
On the other hand, it is clear that the vector bundles 1A — M x R and
A= AxR — M x R are isomorphic and that the space of sections I'(A)
of A — M x R can be identified with the set of time-dependent sections of
A — M. Under this identification, we have that [X,Y](x,t) = [X;, Yi](x)
and that p(X)(z,t) = p(X;)(z), for X, Y € I'(A) and (x,t) € M x R. In
addition,

£, 7T = [X, 7]+ 60(X) 5 — 601 2
(3.75)
P(X) = plX) + oK) o

Remark 3.23 i) Denote by d the differentials of the Lie algebroids (A, [, ],
p)and (A, [, ], p). Then, if i € T(AFA*) and (z,t) € M xR, dji € T(AF+1A¥)
and
(dp)(z,t) = (dfie)(x).

We also denote by [, ] the Schouten bracket of the Lie algebroid (4, [, ], p).
ii) For any P € T'(AFA) or @ € T'(AFA*), one can define its derivative with
respect to the time

op

ot

c (A% A), % c T(AFA").
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Thus, we have two R-linear operators of degree zero

8, kA kA a k px* k px*
at.F(A A) = T(A\"A), 8t'F(A A*) = T(APAY),

which have the following properties

2(P/\Q):@/\Qwﬁ/\@,
0 anmy= Uy pn
ot ot BB
d, o~ OP . 0Q
EHP,QH—[{E,QH [ aW]L (3.77)
op\ 9,
d(a) =, (7)., (3.78)

for P € T(A*A), Q € T(A"A), i € T(A*A*) and v € T(A"A").

On the other hand, in Section 2.3 (see Example 6) we proved that the vector
bundle A — M x R admits a Lie algebroid structure ([, ]*%°, p*°) given by
(2.12).

Now, the bundle map © : A — A, (v,t) — (e'v,t), is an isomorphism of

vector bundles and
0% 00 = p%, O[X, Y] =[6eX,eY] .
Thus,
Proposition 3.24 Let (A, ([, ],p), ®o) be a Jacobi algebroid. Then:

i) The triples (A, [, %, p?) and (A, [, %, p%) are Lie algebroids over
M x R.

i) The map © : A — A defines an isomorphism between the Lie algebroids
(A, [, I, p%) and (A, [, 1%, p%).
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Now, let A — M be a vector bundle over a manifold M and suppose that
[,]:T(A) xT'(A) — I'(A) is a bracket on the space I'(A), that p : T'(A) —
X(M) is a homomorphism of C*°(M,R)-modules and that ¢, is a section of
the dual bundle A*.

We can define the bracket [, [ : T'(4) x I'(4) — T'(A) on the space I'(A)
and the homomorphism of C*°(M x R, R)-modules p? : I'(A) — X(M x R)
given by (3.75).

Proposition 3.25 If the triple (A, [, ]9, p?°) is a Lie algebroid on M x R
then the triple (A, ([, ], p), ¢0) is a Jacobi algebroid on M.

Proof: From (3.75), it follows that [X,Y]?% = [X,Y], for X,Y € T(A).
Thus, we have that the bracket [, | defines a Lie algebra structure on I'(A).
On the other hand, if f € C*°(M,R) then, using (3.75) and the fact that
[X, fY] % = fIX, Y] + (p*(X)(f))Y, we obtain that

[X, /Y] = FIX YT+ (p(X) ()Y

Finally, since p®[X,Y] % = [p%(X),p?(Y)], we deduce that ¢ is a 1-
cocycle.
QED

From Propositions 3.24 and 3.25, we conclude

Proposition 3.26 Let A — M be a vector bundle over a manifold M. Sup-
pose that [, ] : T'(A) x T'(A) — I'(A) is a bracket on the space I'(A), that
p: I'(A) — X(M) is a homomorphism of C*°(M,R)-modules and that ¢
is a section of the dual bundle A*. If [,]% : T'(A) x ['(A) — T'(A) and
p% i T(A) — X(M x R) (respectively, [, ] % : T'(A) x T'(A) — T'(A) and
p% : T(A) — X(M x R)) are the bracket on T'(A) and the homomorphism
of C®°(M x R, R)-modules given by (2.12) (respectively, (3.75)) then the fol-

lowing conditions are equivalent:
i) The triple (A, ([, ], p), o) is a Jacobi algebroid.

ii) The triple (A, [, ]"%, p?) is a Lie algebroid.
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iii) The triple (A, [, 7%, p?) is a Lie algebroid.

Remark 3.27 Let (A, ([, ],p), ¢0) be a Jacobi algebroid over M. If d%
(respectively, d%°) is the differential of the Lie algebroid (A, [, [, 5%) (res-
pectively, (A,[,]°%, p?)), and [, ]"® is the Schouten bracket of the Lie al-
gebroid (A, [, ], p?°), then we have that

d°f =df + g—‘fqbo, (3.79)

d®¢ = dp + ¢y A z—f, (3.80)

PP = [P+ () (P4 50) = S GuP) 80
d#F — et (df+ g—{%), (3.82)

g = et (d¢’%z3 + o A %f) , (3.83)

for f € O°(M x R,R), ¢ € ['(A*), X € I'(A) and P € T'(A2A).

3.5.2 Lie bialgebroids and Jacobi bialgebroids

First of all, we will prove a general result which will be useful in the sequel.
Suppose that (A4;, [, [, 0:), i = 1,2, are two Lie algebroids over M such that
the dual bundles A} and A% are Lie algebroids with Lie algebroid structures

([[a ]]1*791*) and (Ha ]]2*702*)7 reSpeCtive]'Y‘

Proposition 3.28 Let & : A, — Ay be a Lie algebroid isomorphism over
the identity Id : M — M such that its adjoint homomorphism ®* : A5y — Aj
is also a Lie algebroid isomorphism. Then, if (A1, AY) is a Lie bialgebroid,
s0 is (Ag, A3).

Proof: Denote also by ® : A¥A; — AFA, the isomorphism between the vec-
tor bundles A¥A; — M and AFAy — M induced by ® : A, — A,. If
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d : T(AFA;) — T(AFAy) is the corresponding isomorphism of C°(M, R)-
modules, we have that

O(P)(jir, 1) = PO pns .., D),

O(XI A AX) =D(X) AL AND(Xy),

for P € T(A*Ay), pa, ..., g € T(A3) and Xy, ..., X € I'(A;). Thus, using
that ® and ®* are Lie algebroid isomorphisms, it follows that

da«(P(X1)) = ®(d1.X1), O[X1, Pi]y = [@(Xy), @(F1)]2, (3.84)

for X; € T'(A;) and P, € T(AFA;), where d, (resp. da.) is the differential of
(ATv [[7 ]]1*’ pl*) (resp. (A;’ [[’ ]]2*>p2*))'

NOW, if XQ, }/2 € F(AQ) then there exist X17 Y1 < F(Al) such that Y; = q)(Xz),
for i = 1,2. Therefore, from (3.84) and since (A;, A}) is a Lie bialgebroid,

we obtain that

dou[Xa, Yoo = dou(P[X1, Y1]1) = ([ X1, d1Yi]1 — [Y1, d1.X1]h)
= [[X27d2*}/2]]2 - [D/éad2*X2]]2'

Consequently, (As, A3) is a Lie bialgebroid.

Next, assume that (M, Ag, Fp) is a Jacobi manifold. Consider on A = TM xR
and on A* = T*M x R the Lie algebroid structures ([ , ],7) and ([, J(ao,z);

#(Ao,E0)), Tespectively. Then, the pair ((A, oo = (0,1)), (A*, Xo = (—FEy,0)))
is a Jacobi bialgebroid.

On the other hand, the map ® : A = A x R — T'(M x R) given by

0
O xv)\ 7t = Ug A= s
((U 0 0) 0) Vg + Oat\to

for zg € M, vy, € T,y M and Ay, typ € R, induces an isomorphism between the
vector bundles AxR — M x R and T (M xR) — M xR. Moreover, using
(3.75), we deduce that ® defines an isomorphism between the Lie algebroids
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(A, [, 7%, 7%) and (T(M x R),[,],Id). Note that if (X, f) is a time-

X, f
dependent section of the vector bundle TM x R — M then ( 82 /) is the
. o o . Of
time-dependent section given by ([a, X], E)

Now, if fi is a time-dependent 1-form on M, X is a time-dependent vector

field and (zo,%o) € M X R then, using the isomorphism T, (M x R) =
Ty M & TR, it follows that
5\ - _ _ 0X
((Lo) ) (worte) = ((Lo)x,, Fito) (o) + M(xo,to><— >d0t|tov (3.85)
8t ‘(LEO,tO)

where L, is the Lie derivative on M x R.

Moreover, (Lo) 2 i is a time-dependent I-form on M and if f € C®(M x

R,R), then (g, f) is a time-dependent section of the vector bundle T*M x
R — M and _
(@, ) of

L
o~ (Lol
A long computation, using (1.29), (1.31), (3.85) and (3.86), shows that
[[(p’a f)v (177 g)]]b)\(g,Eo) = [[q)*(ﬁ + fd0t>7 (V + gdot)]] (Ao,Eo)
= o~ [[ﬂ + fdot, v+g dot]]no, (387)

7; |
kﬁ

9. (3.86)

#(AO,EO) o (ﬂa f) = #(AO,EO) XO((I)* (/1 + det)) = #m, (ﬂ + fdot)v
for i, 7 time-dependent 1-forms on M and f,g € C®°(M x R,R), where
[y =e " (Ag+ % A Ey) is the Poissonization of the Jacobi structure (Ag, Ey)
and ®* : T*(M x R) — A* = A* x R is the adjoint isomorphism of ®.

Therefore, ®* : T*(M x R) — A* = A* x R defines an isomorphism between

—

the Lie algebroids (T*(M xR), [, [n,, #m,) and (A* xR, [, ]]5\(3,150)’ #(Ao,Eo) Xo)
Consequently, using Proposition 3.28, we deduce that, for this particular case,
the pair (A4, A*) is a Lie bialgebroid, when we considir\on A and A* the Lie
algebroid structures ([ , [7%,7%) and ([, ] \° (Ao.Eo)’ #(Ao Fo) \°), respectively.
In this Section, we generalize the above result for an arbitrary Jacobi bial-

gebroid. In fact, we prove
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Theorem 3.29 Let ((A, ¢o), (A%, Xo)) be a Jacobi bialgebroid and (Mg, Ep)
be the induced Jacobi structure over M. Consider on A (resp. A*) the Lie
algebroid structure ([, 7%, 5%) (resp. ([, ]2, p.*°)). Then:

i) The pair (A, A*) is a Lie bialgebroid over M x R.

ii) If o is the induced Poisson structure on M x R then Ily is the Pois-
sonization of the Jacobi structure (Ao, Ep).

Proof: i) Using (3.75) and (3.83), we obtain that

~ Xo

4 [X, Y% = e*t<df0[[

>
|

+
=
5
=

o

|
S

Moreover, applying (3.2), (3.76), (3.77) and (3.78), it follows that

dA*X(’ﬂX,Y]]*‘bO = e*t<dj(0[[X,Y]]+X0/\[[3X V] + Xo A [X, %]

Bt ot
(X) 5 (dXY) = ¢o(Y) §(dF° X)
—po(X)Xo A %—}; + ¢o(Y) Xo A 83—)5
+60(X)Xo A ZF — do(Y) X0 A T
+2(60(X)) Xo A L — & (o(V)) Xo A %X
X0 (60(X)) A 5 — X0 (60(V)) A 55).
On the other hand, from (3.35), (3.76), (3.81) and (3.83), we have that

o~ Xo— _ _ _ .
[[X,d* Oy]]ﬂlso = e_t([[X,di(OY]]% + [[X,Xo A %_5;]]%

+¢O(X)%(di(0f/) + ¢o(X) Xo A %2327

55 N (dX07) + 90(5) %5 A X ).

Therefore, using (3.18) and (3.20) and the fact that 2 (¢o(Z)) = ¢o(2Z2), for
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VIt — e*t<[[)‘< dXoV]% + [X, Xo) A L+ Xo A [X, 2]
—60(X)Xo A 2 4 y(X) t(dfOY) +60(X) X0 A ZF
9X N g (dX0Y) + 2 (o (V) %5 A Xo)-

Finally, from (3.33) and (3.36), we deduce that

(2\* o[[X’}_/]]—zbo — [[X,(E;XOY]]_W _ [[}77(2;)(0)?]]—@50'
i) Using (3.35), (3.79), (3.82) and Theorem 3.13, we obtain that the induced
Poisson structure Il on M x R is given by

~Xo = g

o (dof. o) = & - = e (dg - 0. ] + 2 o(x0)(@) — Do(X0)(1),

for f,g € C=(M x R, R).
On the other hand, using (3.46) and (3.47), we prove that

(ot 2 n B () = e (dg- 4. + D pxa@) - Lot ).

for f,g € C®°(M x R,R). Therefore, Il is the Poissonization of (Ag, Fp).

Now, we discuss a converse of Theorem 3.29.

Theorem 3.30 Let (A, ([, ],p),P0) be a Jacobi algebroid. Suppose that
((T, I+, p+), Xo) is a Jacobi algebroid structure on A*. Consider on A =
A xR (resp. A* = A* x R) the Lie algebroid structure ([, [0, p?) (resp.
([, 1%, 5X0) ). If (A, A*) is a Lie bialgebroid then the pair (A, ¢o), (A*, Xo))
1s a Jacobi bialgebroid.

Proof: Let {, }o be the induced Poisson bracket on M x R. Then, from
(3.79), (3.82) and Theorem 3.13, it follows that

o003 + Zp (o)) + B

{f.gto=¢" <d§ cdof + EEQ%(XO))’
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for f,g € C®(M x R,R). Since {, }; is skew-symmetric, we have that
{t,t}o = 0 which implies that ¢¢(Xo) = 0. As a consequence,

(Foati = (a7 0.7+ L ox0)@) + Lo.on (7).

In particular, if f € C®°(M,R) then, using that {f,t}o = —{t, f}o, we
conclude that p(Xg) = —p.(do).

Now, if X,Y € I'(A), from (3.75), (3.81) and (3.83), we obtain that

41X YT = etdXo X Y,

~ X0

Y%~ [Vd X = g X))V 4 e X dXy ]
—pP(V)(e AR X — e [Y, a0 X
= e_t<[[X7 dfOYﬂd’O —[v, dfOX]]%).

~ X ~ X ~ X

Thus, since d,  [X, Y] = [X,d.” Y] —[Y,d,” X[ %, we deduce (3.33).
Finally, if X € I'(A) then, using the computations in the proof of Theorem
3.29 and the fact that

~ ~ Xo

$IX YT = [X, 4 (V)] — [etY, d, X

Y

for all Y € I'(A), we prove that
implies that

A

[Xo, X] + (£§0)¢0X> AY = 0. But this

[Xo, X] + (£3°)5, X = 0. QED

In [83] it was proved that if the pair (A, A*) is a Lie bialgebroid then the
pair (A*, A) is also a Lie bialgebroid. Using this fact, Propositions 3.24 and
3.28 and Theorems 3.29 and 3.30, we conclude that a similar result holds for
Jacobi bialgebroids.

Theorem 3.31 If ((A, ¢o), (A*, X)) is a Jacobi bialgebroid, so is ((A*, Xo),
(A7 ¢O))
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3.6 A characterization of Jacobi bialgebroids

Let 7 : A — M be a vector bundle over M and 7* : A* — M be the dual
bundle. Then, the cotangent bundle to A, T*A, is a real vector bundle on
A* with vector bundle projection r : T*A — A* defined by

r(1a)(b) = pa(07), (3.88)

for p, € TrA and a,b € A, = 7 !(p), where bY is the vertical lift of b
to ToA, € T, A. Moreover, there exists a canonical isomorphism of vector
bundles R : T*A* — T*A over the identity Id : A* — A*. In fact, suppose
that (', v;) are fibred coordinates in A and that (z*, p;) are the corresponding
coordinates in A*. Then, we may consider the induced local coordinates
(2", v Pyi Do;) (vespectively, (', pj;pai,pp,)) on T*A (respectively, T*A*).

In these coordinates, the local expression of R is

R(", pjs Dai, Pp,) = (2", Ppyi —Pai, D) (3.89)
(for more details, see [83]).

Now, assume that ([, ], p) (respectively, ([, ], p«)) is a Lie algebroid struc-
ture on A (respectively, A*) and denote by I14« (respectively, I14) the as-
sociated linear Poisson structure on A* (respectively, A). Then, one may
consider the vector bundle morphism ¥ = #y, o R : T*A* — T'A over the
map Vo =p,: A* - TM.

Note that the vector bundles T*A* — A* and TA — T M are Lie algebroids
(see Examples 4 and 9 in Section 1.2.2).

Furthermore, Mackenzie and Xu [83] proved that

Theorem 3.32 [83] Let (A,[, ],p) be a Lie algebroid such that the dual
bundle A* to A also admits a Lie algebroid structure ([, |, p«). Then, (A, A*)
is a Lie bialgebroid if and only if the pair (U, W) is a Lie algebroid morphism.

In this Section, we will obtain the corresponding result in the Jacobi set-
ting. For this purpose, we will introduce the definition of a Jacobi algebroid

morphism.
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Definition 3.33 Let (U, W) be a vector bundle morphism between two vec-
tor bundles 7 : A — M and 7' : A" — M'. Moreover, suppose that A (re-
spectively, A') admits a Jacobi algebroid structure (([, ], p), ¢o) (respectively,
([, 1,0),¢)). Then, the pair (¥, Wy) is said to be a Jacobi algebroid mor-
phism f:

i) (U, W) is a Lie algebroid morphism and
ii) ¢ 0¥ = oy,

where gz% : A - R and ¢o : A — R are the linear functions induced by the
1-cocycles ¢y and ¢g, respectively.

Next, we will prove that one may characterize Jacobi bialgebroids in terms

of Jacobi algebroid morphisms.

In fact, assume that (A, ([, ], p), ¢o) is a Jacobi algebroid and that the dual
bundle A* to A also admits a Jacobi algebroid structure (([, J., p«), Xo)-
Then, the pair ([, ], p), ¢o) induces a homogeneous Jacobi structure (A¢ax 4,),
Ea ¢y)) on A* (see Theorem 2.7) and, thus, the vector bundle T%A* x
I% — A* is a Lie algebroid with Lie algebroid structure ([, ]](A(A*,¢0)vE(A*,¢0))7
#(A(A*,%)vE(A*,qbo)))‘ Denote by dAa¢0)Fas00) the differential of this Lie al-

gebroid and by X, : A* — R the linear function induced by the 1-cocycle
Xo € I'(A). We have that (see (1.30))

X, = d(A<A*,¢0>,E<A*,¢0>)()~(O) — (—#A(A*,%)(dof(o)a B4+ 30)(X0))

is, clearly, a 1-coboundary of the Lie algebroid (T*A* xR, [, [

(A= ) Far )+ 11 Particular, this implies that:

Acax p)Eiax,e))

The pair (([, ]](AM*@O),E(A*@O)), #(A(AWO),E(A*’%))),)_(0) is a Jacobi alge-
broid structure on the vector bundle T*A* x R — A*.

Now, we consider the tangent Lie algebroid (T'A, [, Jr, pr) and the corres-
ponding linear Poisson structure II(p4)- on the vector bundle (T'A)* — T'M.
The complete lift gz~58 : TA — R of ¢g : A — R is a linear function in
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TA — TM and, thus, it induces a section of the vector bundle (T'A)* — T'M,
which we will denote by ¢y. Moreover, we may identify the dual bundle to
TA — T M with the vector bundle T A* — T'M and, under this identification,
the Poisson structure II(74)- (respectively, the vertical lift ¢y € X((T'4)*) of
¢y € T((TA)*)) is just the complete lift I1%. of the linear Poisson structure
T4+ on A* induced by the Lie algebroid (A, [, ], p) (respectively, the complete
lift (¢y)¢ € X(TA*) of ¢y € X(A*)).

On the other hand, using (1.46), we have that
(Lo) gy)e Il = ((Lo)gyHax)* =0,

which implies that
(Lo)gyILray- =0,

i.e., ¢o: TA — TM is a 1-cocycle of the tangent Lie algebroid (T A, [, |z, pr)-
Consequently, we have proved that:

The pair ([, Iz, pr), do) is a Jacobi algebroid structure on the vector
bundle TA — TM.

Next, we consider the homogeneous Jacobi structure (A( A,x0)s Ba, Xo)) on
A induced by the Jacobi algebroid structure (([, ]+, p«), Xo) on A* and the
anchor map #(A(A,Xo)vE(A,XO)) : T*A x R — TA of the 1-jet Lie algebroid
T*A xR — A, that is,

#(A(A,Xo)vE(A,Xo))(Ma7 >\) = #A(A,Xo) (Na) + )\ E(A,XO) (a)7 (390)

for (pa, A) € TFXA x R. Furthermore, we will denote by A4« the Liouville
vector field of A* and by In,. : T*A* x R — T*A* x R the isomorphism of
vector bundles over the identity Id : A* — A* defined by

I (ttaxs A) = (far, A — pa= (A= (a"))), (3.91)

for (pe+,\) € T A* x R. In addition, T*A x R is a vector bundle over A*
with bundle projection 7 : T*A x R — A* given by

T(fta, A) = r(pa), for (pq, A) € Tr A* X R,
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and the map (R, —1Id) : T*A* x R — T*A x R defined by
(R, —1Id)(ptax, A) = (R(tta+), —A), for (pa«,\) € THA* x R (3.92)

is an isomorphism of vector bundles over the identity Id : A* — A*.

Now, we will denote by W : T*A* x R — T'A the map given by

V= #(A(A,Xo)vE(A,XO)) © (R7 _[d) © IAA* (393)
and by ¥, : A* — T'M the anchor map of the Lie algebroid (A%, [, |«, p«),
that is, Uy = p,.

Then, from (3.88)-(3.93), it follows that the pair (¥, V) is a vector bundle
morphism between the vector bundles T*A* x R — A* and TA — TM.

Thus, we have the following commutative diagram.

T*A* xR

TA

W
A* ~TM

The aim of this Section is to prove the following result.

Theorem 3.34 Let (A, ([, ].p), o) be a Jacobi algebroid over M such that
the dual bundle A* — M also admits a Jacobi algebroid structure (([, ], ps),
Xo). Then, ((A, ¢o), (A*, Xo)) is a Jacobi bialgebroid if and only if the pair
(U, Wy) is a Jacobi algebroid morphism between the Jacobi algebroids (T* A* x
R? ([[7 ]](A(A*»¢0)’E(A*»¢O))’ #(A(A*«¢O)’E(A*«¢O)))’ XU) and (TA7 ([[7 ]]Tv PT)» qu)

In the proof of this Theorem, we will use the following notation:

e We will denote by II ;. the Poissonization on A* = A* x R of the Jacobi
structure (A(ax ¢0), Erax,g,)), that is,

_ 0
HA* —e t<A(A*7¢O) + a AN E(A*,dm)) . (394)
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As we know, Il 4. is a linear Poisson structure on the vector bundle A* —
M x R and it induces a Lie algebroid structure ([, ]%, %) on the vec-
tor bundle A x R — M x R given by (2.12) (see Example 6 in Section
2.3). Moreover, we may consider the corresponding cotangent Lie algebroid
(T*(A*), [, Ju,.. #u,.) associated with the Poisson structure II 5..

e We will denote by II; the Poissonization on A = A x R of the Jacobi
structure (Aa,x,); Ea,xy)) on A, ie.,

0
Iz = et (A(A,XO) + E A E(A,XO)>, (3.95)

and by ([, [:X°, 5X°) the corresponding Lie algebroid structure on the vector
bundle A* = A* x R — M x R.

o Since (A = A x R,[,]?, %) is a Lie algebroid over M x R we may
consider the tangent Lie algebroid T(A) = T(A x R) — T(M x R). We will
denote by ([, J7%, p2°) the Lie algebroid structure on T(A) — T(M x R).
We recall that

Py =Jo (p™), (3.96)

where J : T(T(M x R)) — T(T(M x R)) is the natural involution and
(p?)T : T(A) — T(T(M x R)) is the tangent map to p* : A — T(M x R)
(see, for instance, [83]). Furthermore, if X and Y are sections of the vector
bundle TA — TM and we denote by X and Y the sections of the vector

bundle T(A) — T(M x R) defined by
X(v,(t,1)) = (X(v), (1), Y(v,(t,8) = (Y(v), (1)),
for v € TM and (t,t) € TR, then (see [83])
[X, Y] (v, (t,1) = ([X. Y]z (0), (t.1)),

that is,
[X, Y] = [X,Y],. (3.97)

e The canonical isomorphism between the vector bundles 7%(A*) — A* and

T*(A) — A* will be denoted by R : T*(A*) — T*(A).
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e As we know (see Proposition 3.24), the isomorphism of vector bundles
©~!: A — A defined by

0 Ya,t) = (e ta,t) (3.98)

induces an isomorphism between the Lie algebroids (A4, [, ]*%°, 5%) and (A,
[, 1%, p%). Thus, if I 1~ is the linear Poisson structure on A* induced by the
Lie algebroid (A, [, ] %, p%), the adjoint map (©71)* : A* — A* is a Poisson
isomorphism between the Poisson manifolds (A*, 11 3.) and (A*, 11 1.). There-
fore, the cotangent map to (©71)*, (©~1)*)T" : T*A* — T*A* defines a Lie
algebroid isomorphism between the cotangent Lie algebroids (T*A*, [, [n,.,
#m,;.) and (T*f:l*, [, ]]ﬁg* , #ﬁg*), associated with the Poisson manifolds (A*,
I z.) and (A*, I 4.), respectively. We will denote by /a . the isomorphism
((©671)*)T". Note that the Poisson structure IT ;. is given by

- 9
i = A + (57 + Ba) A Bt (3.99)

On the other hand, if - denotes the scalar multiplication on T'A* when this
space is considered as a vector bundle over T'M then a direct computation,
using (3.98), proves that

IAA* (Ma* + )\dolf“) = €_t © Mg + ()\ — Mg* (AA* (Cﬁ)))dot‘t, (3100)

for i+ + Adotye € T(’;*’t)(f_l*) = T (A" X R), where et pg+ is the covector
in A* at the point e'a* defined by

(7" prar)(Xetar) = par (€7" - Xetar), (3.101)

fOr Xeta* c Teta*A*-

Proof of Theorem 3.3/: Using Theorems 3.29, 3.30 and 3.32, we deduce that
((A, ¢o), (A*, X)) is a Jacobi bialgebroid if and only if the pair (¥, W) is
a morphism between the Lie algebroids (T*(A*), [, n,., #m,.) and (T(A),
[ 179, p%°), ¥ : T*(A*) — T(A) (respectively, ¥, : A* — T(M x R)) being
the map given by

T = #u, 0 Rola,..
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(respectively, ¥y = pX0).

Thus, we must prove that the pair (U, ¥y) is a Jacobi algebroid morphism be-
tween the Jacobi algebroids (T*A* xR, ([, ]](A(A*y¢0)7E(A*7¢0>)’#(A(A*@o)’E(A*»(Po)))’
Xo) and (TA, ([, |7, pr), o) if and only if the pair (¥, W) is a Lie al-
gebroid morphism between the Lie algebroids (T7(A*), [, Ju,., #mn,.) and
(T(A), [, Is%, p7°)

For this purpose, we will proceed in several steps.

First step: We will show that the following diagram

T*(A*) T(A)
F11 4. ﬁ?}o
(A — 2 e (ar < RY)

is commutative if and only if
(Jo PT){Z’R(um (Aa,xo) (1" (Ha))) — A E(A,Xo)(r*(,ua*))}
= PZ{iua* (A(as 00y (@) + (A + ua*(AA*(a*)))E(A*7¢O)(a*)},
92—50{Z’R(ua*>(A(A,Xo>(7"*(ua*))) - A E(A,X0)<T*<,u,a*))}

= e (Aae ) (@) + O+ e (B (@) B (07) H(Ko),
for (pe=, ) € T A* X R, where J : T(T'M) — T(TM) is the natural involu-
tion and r* : T*A* — A is the bundle projection when T*A* is considered as

(3.102)

(3.103)

a vector bundle over A.

In fact, using (3.89), (3.95), (3.96), (3.100) and (3.101), we deduce that
(P7° © #11; © R)(ttar + Adots)
= et (0 ") [inguen) (Ao (7 (1a))) = A Eaxo(r* ()| }
00 (1)) B+ € [ A (7 (1))

—A E(A,Xo)(r*(:ua*))] (&0)}%@—%(

(3.104)

Bax ) (B(a,x0) (r* (Ha*)))’
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for pig- + Adoty € T(fl*’t)(fl*), t being the usual coordinate on R and (¢,7) the
induced coordinates on TR.

On the other hand, from (2.12) and (3.94), it follows that
(P2 0 #11,.) (Har + Adote)
=l ( e (00 (87)) O s (B (0°)) B g 0°)
—Har (E(ax go) > }
e (a0 (@) N+ e (B (@) B oy (@) (3.105)
e (Bae o) (a7)) A e (a) ] (Xo)
o (Bae o) (@) Ko@) } o o
—Ha (B(ar,00)(@")) 7, + € Har (Bar,p0) (@) pi (@)} -t (0
is the vertical lift of p,(a*) to T(TM) at e *p,(a*).

Moreover, using (3.88), (3.89) and since E(a«4,) = —¢y and Ea, x,) = —X{,
we have that

e —t

+

where p.(a*) -, (4

,ua*(E(A* $0) ( %)) = —do(r*(1tar)),

(3.106)
R(pa ) (Eaxo) (1" (tta=))) = —Xo(a®).
In addition, it is easy to prove that
T * *
Px (AA*(G’ )) = p*(a )V* a*)’
o) (3.107)

A-(a*)(Xo) = Xo(a®).
Thus, using (3.104)-(3.107), we deduce the result.

Second step: If p € QY(A*) and f € C°(A*, R), we will denote by (p, f) the
1-form on A* defined by

(1, f) = €'(p + £ dot).
Note that
(To(u, M@ t) = ira)(Aeaxo (*(ua)))
+H(p(a")(Aa-(a7) = f(a) Eaxo) (r(u(a®)))
—R(p(a*)) (Eaxo) (r* (1(a)))) &
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for (a*,t) € A*. Thus, we may consider a W-decomposition of (y, f) as follows
To(u f) = w(Xiop),

with u; € C*(A*,R) and X; a section of the vector bundle TA — TM,
where

u;i(a*,t) = u;(a*), Xi(v, (t,1)) = (X;(v), t,1),
for (a*,t) € A* and (v, (t,)) € TM x TR = T(M x R).

Now, we have that (¥, ¥,) is a Lie algebroid morphism over pX° if and only

if (3.102) and (3.103) hold and, in addition, for all (y, f), (v,g) € Q*(A*) x
C>*(A*,R)

ol f),(vg ZWJ ([X:, Y;]7%° 0 p0)
+ Z(#ng*m) (@) (Yj0p")  (3.108)
—Z ))(@:) (X 0 52°)
where

Vo (u, f) =D w(Xopl), Tolvg) =) v(Y;0pl)
i J
and u;,v; € C*(A*,R) and X;,Y] are sections of the vector bundle TA —
TM.
Third step: We will prove that (3.102) and (3.103) hold if and only if the

following diagram

T*A* x R TA
#(A(A*,¢>O)7E(A*,¢O)) pT
T
T A* 0 T(TM)

is commutative and
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In fact, the diagram is commutative if and only if

Pf‘f{iua* (Acar,g0) (@) + A E(A*,m)(a*)}
= (70 ") i) (Aa ) (7 1100)) (3.109)
(s (D= (@) = N Ea o) (7 (1)) |
for (pa=, A) € THA* x R.
Now, it is easy to check that conditions (3.102) and (3.109) are equivalent.
On the other hand, using (3.103), it follows that

G0 (1 R(j1pe) (A(a,x0) (T (1ax))))
) i (3.110)
= Ha= (FAue 4y (d0X0)(a")) + o (D a=(a”)) Eax 40 (a”) (Xo),

~0(Eax0) (1" (a))) = E(a+ g0) (") (Xo), (3.111)
for all a* € A* and po+ € T;. A*. From (3.111) and since E(4 x,) = —X{ and
E(4+ 49y = — @5, we obtain that

Eas60)(X0) =0, Eaxo)(do) =0, ¢o(Xo) = 0. (3.112)
Therefore, using (1.29), (3.91), (3.93), (3.110) and (3.112), we conclude that
b0V = X,

Conversely, assume that ) )
by oV = X,.
Then, from (1.29), (3.91) and (3.93), we deduce that

D0 (iR, (Aaxo) (T (Ha)))) + (pas (Aa=(a*)) = N) Ea,xo) (7 (a+)) 3.113
= —ftar (F0 a g) (A0X0) (7)) + X B ) (a7) (Xo), |

for (pg«, A) € THA* X R.
This implies that

—00(E(a,x0) (17 (Ha*))) = E(ar g)(a”)(Xo),
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and thus,

Ea+00)(X0) =0, Baxo)(@0) =0, do(Xo) = 0.
Consequently, using (3.113), we obtain that (3.103) holds.
Fourth step: We will show that (W, ¥y) is a Jacobi algebroid morphism if and
only if (¥, Wy) is a Lie algebroid morphism.
If (i, f), (v, 9) € QY(A*) x C°(A*,R) are such that

o f)= Zuz<Xz 0 Wy), Wo(r,g)=Y v;(Yjoy),

J
with u;, v; € C°(A*, R) and X;, Y] sections of the vector bundle TA — T'M,
then we obtain that
To(u, )= a(X;0p), Wolvg) =Y v;(V;op),

J

where @;, 7; € C*°(A*,R) and X;,Y; are sections of the vector bundle TA —
T (M x R) defined by

u;(a*,t) = u;(a*), vj(a*,t) = v,(a*),
XZ-(’U, (t7t)) = (Xi(v)at>i)7 1_/j(v? (t,t)) = (Y;'(U)ﬂf?i%

for (a*,t) € A* and (v, (t,1)) € TM x TR = T(M x R).
In addition, we have that

(s (12 D) (03) = Fh e i) By (1o ) (05)

(#HA* (y) g))('&l) = #(AM*@O)’E(A*,%))(V’ g) (uz)
Using these facts, (1.33) and (3.97), we conclude that (3.108) holds if and
only if

\Il o [[(N? f)7 (V’ g)]](A(A*ﬁ¢O>’E(A*v¢O))
= uw;([X, Yilr 0 p.)
1,

LD IR N CHICEYS
- Z(%A(A*,%),EW,%)) (v, 9)) (ui)(Xi 0 pu).



3.6. A characterization of Jacobi bialgebroids 109

This ends the proof of the result. QED

Suppose that (A, [, ],p) is a Lie algebroid such that the dual bundle to
A, A*) admits a Lie algebroid structure ([, ]+, p«). Then, the morphism
U:T*A* x R — TA is given by (see (3.93))

\If(p,a*, /\) = #HA (R(Ma*))a

for (pta=, A) € Ti A* x R, I14 being the linear Poisson structure on A induced
by the Lie algebroid (A*,[, ]+, p«). On the other hand, since ¢y = 0 and
XO = 0,

A go) = Naro) =Ha-,  Erar ) = Ea0) =0,

(50 =0, XO =0,
where IT 4« is the linear Poisson structure on A* induced by the Lie algebroid
A. In addition,

[[(/1’7 f)’ (V7 g)ﬂ (A(A*,O)uE(A*,O)) = ([[M? V]]HA*7 _HA* (,LL, V>>7
%'//:(A(A*,O)vE(A*,O))(M’ f) = #HA* (M)7
for (u, f), (v, g) € Q1(A) x C=(A",R).

Thus, using Theorem 3.34, we directly deduce Theorem 3.32.
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CHAPTER 4

Jacobi bialgebras

In this Chapter, we study Jacobi bialgebroids over a single point, that is,
Jacobi bialgebras. We propose a method generalizing the Yang-Baxter equa-
tion method to obtain Jacobi bialgebras and give some examples of Jacobi
bialgebras. Finally, we discuss compact Jacobi bialgebras.

4.1 Algebraic Jacobi structures

In this Section, we will deal with an algebraic version of the concept of Jacobi

structure.

Definition 4.1 Let (g,[, |q) be a real Lie algebra of finite dimension. An
algebraic Jacobi structure on g is a pair (r, X)), with r € A*g and X € g
satisfying

[r,r]g =2X) AT, [X0.7]g =0,

where [, |q is the algebraic Schouten bracket.

Note that the algebraic Poisson structures on g or, in other words, the solu-
tions of the classical Yang-Baxter equation on g are just the algebraic Jacobi

structures (r, Xy) such that X is zero.

111
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Let G be a connected Lie group with Lie algebra g. If s € AFg then we
will denote by ‘5 the left-invariant k-vector field on G defined by 5 (g) =
(Ly).(s), for all g € G. Since [F, T | = <[s,_t]g, for s,t € A*g, the pair (r, X{)
is an algebraic Jacobi structure on g if and only if (7, X’ 0) is a left invariant
Jacobi structure on G.

Examples 4.2 1.- Contact Lie algebras

Let (g,[, ]g) be a real Lie algebra of odd dimension 2k + 1. We say that
n € g* is an algebraic contact 1-form on g if n A (dn)* = nAdnn .F. Adn # 0,
where d is the Chevalley-Eilenberg differential of g (see [25]). In such a case,
(g,m) is termed a contact Lie algebra. If (g,n) is a contact Lie algebra, we
define r € A?g and X/, € g as follows

r(p,v) = dn, (1), byt (v),  Xg="b,"(n), (4.1)

for p,v € g*, where b,: g — g* is the isomorphism of vector spaces given by

by (X) = ix(dn) +n(X)n, (4.2)

for X € g. The vector X| is the Reeb vector of g and it is characterized by
the relations

ixy(dn) =0,  n(Xp) =1 (4.3)

If G is a connected Lie group with Lie algebra g then it is clear that the left
invariant 1-form 97 on G satisfying 7 (¢) = 7 is a contact 1-form. Moreover,
the pair (T,)? 0) is just the Jacobi structure on G associated with 7 (see,
for instance, [24, 39, 74]; see also Section 1.2.2). Therefore, we deduce that
(r, X)) is an algebraic Jacobi structure on g.

Using (4.1), (4.2) and (4.3) (see also Remark 1.1), we find that #,(u) =
—b, (1) + u(Xp)Xg, for p € g*, where #, : g* — g is the corresponding
linear map induced by r.

2.- Locally conformal symplectic Lie algebras
Let (g,[, ]g) be a real Lie algebra of even dimension 2k. An algebraic locally

conformal symplectic (l.c.s.) structure on g is a pair (Q,w), where Q € A2g*,
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w € g* and
QF=Qn FAQ#0, d2=wAQ,  dw=0. (4.4)

The 1-form w is the Lee I-form of the l.c.s. structure.

If (Q,w) is an algebraic l.c.s. structure on g, one can define r € A%g and
Xo € gby
r(uv) = Qbg' (1),0g (v),  Xj=1g' (), (4.5)

for u,v € g*, bg: g — g* being the isomorphism of vector spaces given by
ha(X) = ix(, (4.6)

for X € g. If G is a connected Lie group with Lie algebra g then it is
clear that the left invariant 2-form ¢ defines a locally conformal symplectic
—
structure on G. Furthermore, the pair (7, X'g) is just the Jacobi structure
. . h . .
on G associated with  (see, for instance, [39, 57]; see also Section 1.2.2).

Consequently, we obtain that (r, X{)) is an algebraic Jacobi structure on g.

In this case, using (4.5) and (4.6) (see also Remark 1.1), it follows that
#,(u) = —bgt(u), for u € g*. In particular, #,:g* — g is a linear isomor-
phism.

It is clear that a real Lie algebra g is symplectic in the sense of [76] if and
only if g is l.c.s. and the Lee 1-form is zero. Moreover, if g is a symplectic Lie
algebra then the 2-vector r € A%g given by (4.5) is a solution of the classical

Yang-Baxter equation on g.
Now, we introduce the following definition.

Definition 4.3 Let (g, [, |5) be a real Lie algebra of dimension n and (r, X))
be an algebraic Jacobi structure on g. The rank of (r, X{) is the dimension
of the subspace #.(g*)+ < X >C g.

Equivalently, the rank of (r, X{) is 2k < n (respectively, 2k + 1 < n) if the
rank of 7 is 2k and X, A7k = X, ArA E Ar =0 (respectively, X ArF 2 0).
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If G is a connected Lie group with Lie algebra g then it is clear that the
rank of an algebraic Jacobi structure (r, X)) on g is just the rank of the
Jacobi structure (?,}?’ 0) on G. Thus, the rank of a contact Lie algebra
(respectively, l.c.s. Lie algebra) of dimension 2k+1 (respectively, 2k) is 2k+1
(respectively, 2k). Conversely, using some well-known results about transitive
Jacobi manifolds (see [24, 39, 57]; see also Remark 1.2), one may prove that
if (r, X{) is an algebraic Jacobi structure of rank 2k 4 1 (respectively, of rank
2k) on a Lie algebra g of dimension 2k + 1 (respectively, of dimension 2k)
then the structure (r, X{)) is associated with an algebraic contact structure
(respectively, an algebraic l.c.s. structure) on g. Moreover,

Proposition 4.4 Let (g,[, ]g) be a real Lie algebra of dimension n and
(r, X{) be an algebraic Jacobi structure on g of rank m < n. Then, there
exists an m-dimensional Lie subalgebra b of g such that r € N*h, X} € b, the
pair (r, X() defines an algebraic Jacobi structure on b and:

i) If m is odd, the structure (r, X{) is associated with an algebraic contact

structure on .

i) If m is even, the structure (r, X{) is associated with an algebraic l.c.s.
structure on .

«—

Proof: Let G be a connected Lie group with Lie algebra g and (7, X’y) be
the corresponding left invariant Jacobi structure on G. Denote by F the
characteristic foliation on G associated with the Jacobi structure (77, X’ 0),
that is (see Section 1.1.3), for every g € G, F, is the subspace of T,G defined
by Fy = (#5)(T;G)+ < )(?'o(g) >. It is clear that

T(9) € N°F,, Fy=(Ly)(F), dimF,=dimF,=m,

for all g € G. Thus, h = F, is an m-dimensional Lie subalgebra of g satisfying

the conclusions of the proposition.

In [25], Diatta proved that if G is a Lie group which admits a left invari-

ant contact structure and a bi-invariant semi-Riemannian metric, then G is
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semisimple and thus, from Theorem 5 in [5], he deduced that G is locally
isomorphic to SL(2,R) or to SU(2). Therefore, if b is a compact Lie algebra
endowed with an algebraic contact structure, then b is isomorphic to su(2).
Here, we will give a direct proof of this last assertion, and we will describe
all the algebraic contact structures on su(2).

Proposition 4.5 Let §h be a compact Lie algebra of dimension 2k + 1, with
k > 1. Suppose that (r,X{) is an algebraic Jacobi structure on b which is
associated with an algebraic contact structure. Then, k =1, b is isomorphic
to su(2) and

r=Mey Aes+ Nes Aer + Nep A e, Xy =—(Mep + MNey + Nes),
where (A, A2, \3) € R* — {(0,0,0)} and {e1, ez, e3} is a basis of b such that
le1, 62}5 = ées, [63761]5 = e, [@2763]11 =e1.

Proof: Let n be the algebraic contact 1-form on h associated with the alge-
braic Jacobi structure (r, X{) (see (4.1)). We can consider an ad-invariant
scalar product (, ):h x h — R on h and the vector X, € b characterized by
the relation

n(X) = (X, X,), for X €b. (4.7)

If d is the Chevalley-Eilenberg differential on b then, using (4.7) and the fact
that (, ) is an ad-invariant scalar product, we see that ix, (dn) = 0. This
implies that

Ker(dn) =< X§j >=< X, > . (4.8)

Next, we will prove that the rank of b, as a compact Lie algebra, is 1. Assume
that there exists Y € b such that [X,, Y], = 0. From (4.7), we obtain that
(iydn)(X) = — (X, [Y, X]p) = 0, for all X € g. Thus, using (4.8), we deduce
that X, and Y are linearly dependent.

Therefore, < X, > is a maximal abelian subspace of . This implies that the

rank of b is 1 and b is isomorphic to su(2).



116 Chapter 4. Jacobi bialgebras

Let n be an arbitrary 1-form on h, n # 0, then 7 is an algebraic contact
I-form. If n = pye' + pge? + pzed, where {e!, e?, €3} denotes the dual basis of
{e1, €2, €3}, the algebraic Jacobi structure (r, X)) associated with 7 is given
by (see (4.1))

r=MNeyAes+ Aes Aey + Nep Aey, X = —(Nep 4+ Ney + Nes)

. i i .
with \* = —m, for ¢ < {1,2,3}

4.2 Coboundary Jacobi bialgebras

In this Section, we will deal with a particular class of Jacobi bialgebroids

over a point.

Definition 4.6 A Jacobi bialgebra is a Jacobi bialgebroid over a point, that
is, a pair ((g,¢0), (8%, X0)), where (g,[, |q) s a real Lie algebra of finite
dimension such that the dual space g* is also a Lie algebra with Lie bracket

[, ]lgr, Xo € g and ¢ € g* are 1-cocycles on g* and g, respectively, and

&K, Y]y = [X, a5V — [V, dXX|2, (1.9
$o(Xo) =0, (4.10)
Z¢0(d*X) + [X07X]9 =0, (411)

for all XY € g. Here, d. being the Chevalley-Eilenberg differential of
(g%, [, ]g) (acting on g =N'g C A*g), di° is the Xo-differential of (g*, [, |g+,
Xo) and [, ]30 is the algebraic ¢o-Schouten bracket of g.

Remark 4.7 In the particular case when ¢y = 0 and Xy = 0, we recover the
concept of a Lie bialgebra [27], that is, a pair of Lie algebras in duality (g, g*)
such that d.[X, Y], = [X,d.Y], — [V, d. X],, for X, Y € g (see [61, 83]).

Let g be a Lie algebra, ¢y € g* be a 1-cocycle and ¢ € R. We can introduce
the representation ad(g,,c): g x NEg — AFg of g on AFg given by

ad(gy.e)(X)(s) = [X, s]g— (k= ¢)do(X)s = ad(X)(s) — (k — ¢)¢o(X)s, (4.12)
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for X € g and s € A*g, where [, ], is the algebraic Schouten bracket. It is
clear that if ¢ = 1 then (see (3.22))

adg,1)(X)(s) = [X, s]5°. (4.13)

Now, assume that ((g, ¢o), (g%, Xo)) is a Jacobi bialgebra. Then, from (4.9)
and (4.13), we deduce that dX° is a 1-cocycle on g with respect to the repre-
sentation ad(s, 1): g X A’g — A?g. Next, we will propose a method to obtain
Jacobi bialgebras such that d2° is a 1-coboundary (i.e., there exists r € A%g
satisfying that dX°X = ad (4, 1)(X)(r), for X € g). It is a generalization of
the well-known Yang-Baxter equation method to obtain Lie bialgebras (see,
for instance, [110]).

Theorem 4.8 Let (g, [, |) be a real Lie algebra of finite dimension. Suppose
that ¢y € g* is a I-cocycle and that r € A*g and X, € g are such that

[r,7]g + 2X0o A1 is adgy 1)-invariant, (4.14)
[X07 r]g = 07 (415)
iy (1) + Xo is ad(g, 0)-invariant. (4.16)

If [, |4 is the bracket on g* given by

[, V]ge = coady, (v — coady, wyp — r(p, v)do + ix, (1 A v), (4.17)

for p,v € g*, where coad:g X g* — g* is the coadjoint representation of g
over g*, that is, (coadxp)(Y) = —p[X,Y],, for XY € g, then (g*,[, |g) is
a Lie algebra and the pair ((g, ¢o), (8%, Xo)) is a Jacobi bialgebra.

Proof: From (1.20), (4.12), (4.14) and (4.16), it follows that

[[r,7]g+2Xo A1, slg+2([r,7]g + 2Xo AT) Adgy(s) =0,

(4.18)
[%0 (T) + Xo, 3]9 + (i¢o(r> + XO) A i¢0(8) =0,

for all s € A¥g. Moreover, using (4.16), we obtain that

¢o(Xo) = 0. (4.19)
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Now, we define the R-linear map d, : A*g — A*"lg by
des = —[r, 8|g + 7 A (ig,8) — kXo N s, (4.20)

for s € AFg.

From (1.20), we deduce that d, is a derivation with respect to (& A g, A).
Furthermore, using (1.20), (3.23), (4.15), (4.18) and (4.19), we conclude that
d? = 0. Thus, the equation

[:ua V]g* (X) = _d*X(Ma V),

for p,v € g* and X € g, defines the Lie bracket [, |5~ of a Lie algebra
structure on g*.

A simple computation, using (4.20) and the fact that

(coady, v — coady, o)) (X) = [r, X]g(u, v),

for p,v € g* and X € g, shows that [, |4 is given by (4.17).

Moreover, from (4.15), (4.19) and (4.20), we get that X, is a 1-cocycle of
(g*v [7 ]g*)-

On the other hand, using (3.23), (4.12), (4.16), (4.19) and (4.20), we have
that
Qg (X)) + [Xo, X]g =0, for X € g.

Furthermore, from (4.20), we deduce that
dX°X = —[X,r]2, for X € g.

Thus, using (3.21), we conclude that (4.9) holds. Therefore, the pair ((g, ¢o),
(g*, Xo) is a Jacobi bialgebra.

Remark 4.9 i) From (4.20) we deduce that

dor = —[r,r]g —2Xo AT+ (ig,r) AT (4.21)
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ii) If X € g, it follows that (see (4.17) and (4.20))
e (X) = [Xrly(hsv) = (i v)0(X)
+1u(Xo)v(X) — v(Xo)u(X).
Remark 4.10 Let (g, [, |5) be areal Lie algebra of finite dimension. Suppose

(4.22)

that ¢y € g* is a 1-cocycle and that r € A?g satisfies the following relations
[T> T]g - 2Z‘¢0(7R) Ar =0, [i¢0(r)’ T]g =0,

that is, the pair (r,44,(r)) is an algebraic Jacobi structure (see Definition 4.1).
Then, r is a ¢g-canonical section on g and, using Theorem 3.20, we deduce
that ((g, ¢o0), (g, —ig,(r))) is a triangular Jacobi bialgebroid. In particular,
this implies that ((g, ¢o), (g%, —is,(r))) is a Jacobi bialgebra.

Now, using Theorem 4.8, we have

Corollary 4.11 Let (g,[, |4) be a real Lie algebra of finite dimension. Sup-
pose that ¢g € g* is a 1-cocycle and that v € N*g is such that (r,ig, (1)) is
an algebraic Jacobi structure on g. If [, |g is the Lie bracket on g* given by
(4.17), then (g*,[, |g) s a Lie algebra and the pair ((g, ¢o), (8%, —ig,(7)))
1s a Jacobi bialgebra. Moreover, the linear map #,:¢* — ¢ is a Lie algebra

homomorphism.

Proof: From Definition 4.1 and Theorem 4.8, we deduce that the pair ((g, ¢o),
(g%, —ig,(r))) is a Jacobi bialgebra. On the other hand, if y, v,y € g* then the
equality [r, r|q(p, v, v) = 2(ig, (1) A7) (e, v, 7y) implies that —[p, v]g (#-(7)) =
Y# (1), #T(V)]g and therefore

#T([M? V]g*) = [#T(M)7 #T(V)]g'

QED

Remark 4.12 Let (g, [, |4) be areal Lie algebra of finite dimension. Assume
that (Q,w) is an algebraic locally conformal symplectic (l.c.s.) structure on
g and denote by (r, X) the corresponding algebraic Jacobi structure on g
(see Examples 4.2). Then, using Corollary 4.11 and the fact that X, =
—#,(w), we deduce that the pair ((g, —w), (g*, —Xo)) is a Jacobi bialgebra.
Furthermore, since #,:g* — g is a linear isomorphism, it follows that g* is
isomorphic, as a Lie algebra, to g.
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4.3 Examples of Jacobi bialgebras

First, we will give some examples of Jacobi bialgebras which are obtained
using Theorem 4.8 and Corollary 4.11.

4.3.1 Jacobi bialgebras from contact Lie algebras

Let (g,[, |g) be a Lie algebra endowed with an algebraic contact 1-form n
and let X be the Reeb vector of g (see Examples 4.2). If Z(g) is the center
of g and X € Z(g) then it is clear that ix(dn) = 0. This implies that
X €< X} >. Thus, Z(g) €< X} > (see [25]). Therefore, we have two
possibilities: Z(g) = {0} or Z(g) =< X|, >.

If Z(g) =< X{ > then Diatta [25] proved that g is the central extension
of a symplectic Lie algebra (b, [, |5) by R via the 2-cocycle 2, © being the
algebraic symplectic structure on f. Conversely, if (b, [, ]5) is a symplectic
Lie algebra, with algebraic symplectic 2-form €2, and on the direct product
g = h & R we consider the Lie bracket [, |4 given by

(X, 0), (Y, w)lg = (X, Yy, =X, Y)), for (X, A),(Yip) €9, (4.23)

then n = (0,1) € h* @R = g* is an algebraic contact 1-form on g. Moreover,
since X = (0,1) € h ® R = g, we deduce that Z(g) =< X[ > (see [25]).

Now, suppose that r is the algebraic Poisson 2-vector on h associated with
the algebraic symplectic structure (2 and denote by Xj the vector defined by
Xo = —X{. Then, the pair (r,—Xj) is the algebraic Jacobi structure on g
associated with the contact 1-form 7 (see (4.1), (4.2), (4.5) and (4.6)). Thus,
using Theorem 4.8 and the fact that X, € Z(g), we can define a Lie bracket
[, ]g~ on g* in such a way that the pair ((g,0), (g%, X)) is a Jacobi bialgebra.

On the other hand, from Corollary 4.11 and since r is a solution of the
classical Yang-Baxter equation on b, it follows that there exists a Lie bracket
[, Jp+ on b* in such a way that the pair (h,h*) is a Lie bialgebra. In fact,
the Lie algebras (b, [, ]p) and (h*,[, |5+) are isomorphic and, using (4.17),
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we get that [(1,A), (v,7)]g = ([11,V]y+, 0), for (u, A), (v,7) € h* R = g*.
Consequently, g* is isomorphic, as a Lie algebra, to the direct product h @ R.

We illustrate the preceding construction with a simple example.

Let (h,[, ]p) be the abelian Lie algebra of dimension 2n and € the usual
symplectic 2-form. Then, h & R endowed with the Lie bracket given by
(4.23) is just the Lie algebra h(1,n) of the generalized Heisenberg group
H(1,n) (see [41]) and the 1-form 7 is just the usual algebraic contact 1-form
on h(1,n). In this case, the Lie algebra h(1,n)* is abelian.

Remark 4.13 A complete description of symplectic Lie algebras of dimen-
sion 4 was obtained in [92] (for a detailed study of symplectic Lie algebras,
see also [21, 76]). Thus, one can determine all contact Lie algebras of dimen-
sion 5 with center of dimension 1 and from there, using Theorem 4.8, obtain

different examples of Jacobi bialgebras.

Now, we will give two examples of Jacobi bialgebras ((g, ¢o), (g%, Xo)) asso-
ciated with an algebraic contact structure on g but in both cases ¢y # 0. In
the first example, X, € Z(g). However, X, ¢ Z(g) in the second one.

1.- Let (b, [, ]p) be the nonabelian solvable Lie algebra of dimension 2. We
can find a basis {ej,es2} of h such that [e1,es]y = e1. If we consider on
g = h @ R the Lie bracket given by (4.23), it is easy to prove that ¢y = —e?
is a 1-cocycle of g, {e!,e?} being the dual basis of {ei,es}. We also have
that n = (0,1) € h* @ R = g* is an algebraic contact 1-form on g and
that (r, X{)) is the corresponding Jacobi structure, where r = es A e; and
Xy =1(0,1) € p®R = g. On the other hand, using (4.23), we deduce that
Qg — X 18 adf’%o)—invariant. Thus, from Theorem 4.8, ((g, ¢o), (g*, —X{))
is a Jacobi bialgebra. Note that the Lie algebra (g, [, |4) is isomorphic to the
direct product fh & R and that g* is the abelian Lie algebra of dimension 3
(see (4.17)).

2.- Let (g, [, ]4) be the solvable Lie algebra of dimension 3 with basis {ey, e,
es} such that

le1, 62]9 =0, e, 63]g =e1, |es, 62]9 = €.
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Take r = e3 A (e1 —ez) and X, = e; +ey. It is easy to prove that (r, X{) is an
algebraic Jacobi structure on g which is associated with an algebraic contact
structure. Moreover, if {e!,e? €3} is the dual basis of g* then ¢y = €® is a
1-cocycle of g and i, — X is adfl 60,0 invariant. Therefore, from Theorem
4.8, we deduce that ((g, ¢o), (g%, —X{))) is a Jacobi bialgebra. The Lie bracket

on g* is characterized by

[e!, ey =0, [l e]y =¢*  [e2 €]y = —€.

4.3.2 Jacobi bialgebras from locally conformal sym-
plectic Lie algebras

Suppose that (ry, X)) is an algebraic contact structure on a Lie algebra
(b,[, ]p). If we consider on the direct product of Lie algebras g = h & R
the 2-vector

r=ry+eo A X, (4.24)
where ¢y = (0,1) € h & R = g, then (r, X|) is an algebraic l.c.s. structure
and, using Remark 4.12, ((g, ¢0), (g*, —X{)) is a Jacobi bialgebra, with ¢y =
(0,1) € h* ® R = g*. In addition, the Lie algebras g and g* are isomorphic
(see Remark 4.12).

Remark 4.14 If H is a connected Lie group with Lie algebra h then the
H
pair (7, X'g) defines, on the direct product G = H X R, a left invariant l.c.s.

structure of the first kind in the sense of Vaisman [109].

In the case when Z(h) =< X{ > we have that the pair ((h,0), (h*, —X])) is
a Jacobi bialgebra (see Section 4.3.1). Moreover, from (4.17) and (4.24), we
deduce that the Lie bracket [, | on g* can be described, in terms of the Lie
bracket [, |y of h*, as follows

[(:uv )‘)’ (V7 M)]g* = ([:ua V]b*? _Th(p“7 V))7

for (p, A), (v, 1) € h*@R = g*. Thus, since ry is a 2-cocycle of the Lie algebra
(6%, [, ]p=) (see (4.21)), it follows that g* is the central extension of h* by R

via the 2-cocycle ry.
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On the other hand, in [25], Diatta proved that if (', [, ]i) is an exact sym-
plectic Lie algebra then one can define on the direct product h = h’ B R a
Lie bracket in such a way that b is a contact Lie algebra, with trivial center,
and b’ is a Lie subalgebra of h. Using this construction we can also ob-
tain different examples of Jacobi bialgebras. Next, we will show an explicit

example.

Let s[(2,R) be the Lie algebra of the special linear group SL(2,R). Then,
there exists a basis {e1, €2, e3} of s[(2,R) such that

le1, ealai2R) = 262, [e3, €1]ai2R) = 263,  [e2, €3]a12,R) = €1.

It is clear that s[(2,R) admits exact symplectic Lie subalgebras and, there-
fore, we can apply Diatta’s method in order to obtain algebraic contact struc-
tures on sl[(2,R). In fact, if A', \? and A® are real numbers satisfying the
relation (A')? + 4X2X3 # 0 then the pair (rger), X() given by

Tsi(2,R) = Mey Aes + A% Aeg + Neg Aer, X = —(Mep +2M%ey 4+ 20 %e3),

defines an algebraic Jacobi structure on s[(2,R) which is associated with an
algebraic contact structure. Consequently, since gl(2,R) (the Lie algebra
of the general linear group GL(2,R)) is isomorphic to the direct product
s[(2,R) @ R, we conclude that the pair ((gl(2,R), ¢o), (gl(2,R)*, —X{)) is a
Jacobi bialgebra, where ¢y = (0,1) € sl[(2,R)* ® R = gl(2,R)*.

Finally, we remark that there exist examples of contact Lie algebras with
trivial center which do not admit symplectic Lie subalgebras. An interesting
case is su(2), the Lie algebra of the special unitary group SU(2). We can
consider a basis {ey, €2, €3} of su(2) such that

le1, €a]euz) = €3, [e3,€1]eu2) = €2, [€2,€3]su(2) = €1.

Then, if A\', A and A? are real numbers, (A, A%, A\?) # (0,0,0), we have that
the pair (re2), X;) given by

Tou(2) = Meg Aes+ Nes Aey + Nep Aey,  Xj=—(Mey + Ney + Nes),
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defines an algebraic Jacobi structure on su(2) which is associated with an
algebraic contact structure. Thus, since u(2) (the Lie algebra of the unitary
group U(2)) is isomorphic to the direct product su(2) & R, we deduce that
the pair ((u(2), ¢o), (u(2)*, —XY)) is a Jacobi bialgebra, where ¢y = (0,1) €
su(2)* &R = u(2)".

We will treat again this example in Section 4.4.

4.3.3 Other examples of Jacobi bialgebras

All the examples of Jacobi bialgebras ((g, ¢o), (g%, Xo)) considered in Sec-
tions 4.3.1 and 4.3.2 have been obtained from an algebraic Jacobi structure
(r,—Xp) on g. However, the hypotheses of Theorem 4.8 do not necessarily
imply that the pair (r, —Xj) is an algebraic Jacobi structure on g, as it is

shown in the following simple example.

Let b be the abelian Lie algebra of dimension 3. Take {ej, s, €3} a basis of h
and let {e!,e?, 3} be the dual basis of h*. Denote by ¥ the endomorphism
of h given by ¥ = ley @el +1es @e? +e3 @€ U is a 1-cocycle with respect
to the adjoint representation of h. Thus, we can consider the representation
of R on b given by R x h — b, (A, X) — AU(X), and the corresponding
semi-direct product g = h xy R. We can choose a basis {e1, e, e3,e4} of g

such that
1 1
[es,e1]g = =€1, e, ea]g = =€2, [e4,e3]q = e3,
2 2

and the other brackets are zero. Suppose that {e!, e?, €3, e} is the dual basis
of g*. If r € A%g, X; € g and ¢ € g* are defined by

r=e; Ney —2e3Ney, Xo= —es, ¢0:e4,

then r, Xy and ¢ satisfy the hypotheses of Theorem 4.8. However, [r, 7], +
2Xo A1 = 2e1 Nex Aes # 0 and igr + Xy = ez # 0. Moreover, a direct
computation shows that,

[63764]9* = —et, [ei,ej]g* =0,
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for 1 <i<j<4,(ij)+#(3,4).

Finally, we will exhibit an example of a Jacobi bialgebra ((g,¢0), (g%, Xo))
such that ¢y # 0 and dX° is not a 1-coboundary with respect to the repre-
sentation ad(g, 1y:g X A’g — A%g. On the other hand, all the examples of
Jacobi bialgebras that we have given in Section 4.3 are such that dX° is a

1-coboundary.

Let g be the Lie algebra of dimension 4 with basis {ey, es, €3, €4} satisfying

[647 61],; = ey, [64, 62]9 = éy, [64, 63]9 = €3

and the other brackets being zero. If {e!,e? €3 e!} is the dual basis of g*,
we consider on g* the Lie bracket [, |+ characterized by

[61,62]9* _ 63, [61,64]9* _ 64, [ei,ej]g* — 0’

for 1 <i < j <4, (4,5) # (1,2),(1,4). Then, the pair ((g,¢e*), (g, €1)) is
a Jacobi bialgebra. Moreover, it is easy to prove that there does not exist
r € A%g such that d°X = ad,1)(X)(r), for all X € g.

4.4 Compact Jacobi bialgebras

Several authors have devoted special attention to the study of compact Lie
bialgebras and an important result in this direction is the following one [81]
(see also [86]): every connected compact semisimple Lie group has a nontri-

vial Poisson Lie group structure.

In this Section, we will describe the structure of a Jacobi bialgebra ((g, ¢o),
(g*, Xo)), g being a compact Lie algebra (that is, g is the Lie algebra of a
compact connected Lie group).

If o = 0 and Xy = 0, the pair (g, g*) is a Lie bialgebra. Thus, we will suppose
that ¢9 # 0 or Xy # 0. Note that if ¢o = 0 then X, € Z(g) (see (4.11)).
On the other hand, if ¢g # 0 then we can consider an ad-invariant scalar

product (, ):g x g — R and the vector Y, € g characterized by the relation
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do(X) = (X,Yp), for X € g. It is clear that Y, # 0 and, moreover, using that
¢p is a 1-cocycle and the fact that (, ) is an ad-invariant scalar product, we

obtain that Yy € Z(g) (we remark that ¢o(Y) = 1 with Y = % € Z(g)).
Therefore, if ¢y # 0 or Xy # 0, we have that dim Z(g) > 1. This implies that

a compact connected Lie group G with Lie algebra g cannot be semisimple.
Next, we will distinguish two cases:
a) The case ¢y # 0

Let g be a compact Lie algebra and ¢y € g* a 1-cocycle, ¢y # 0. If § is a Lie
subalgebra of g and (,i4, (7)) is an algebraic l.c.s. structure on § then, from
Corollary 4.11, we deduce that the pair ((g, ¢o), (8%, —is,(r))) is a Jacobi
bialgebra, where the Lie bracket on g* is given by (4.17).

Using the above construction, we can obtain some examples of Jacobi bial-

gebras ((g, @), (g%, Xo)), with ¢y # 0 and g a compact Lie algebra.

Examples 4.15 1.- Compact Jacobi bialgebras of the first kind

Let g be a compact Lie algebra and h an abelian Lie subalgebra of even
dimension. Furthermore, assume that r € A2 is a nondegenerate 2-vector
on h (that is, r comes from an algebraic symplectic structure on h) and
that ¢g € g* is a l-cocycle on g such that ¢g # 0 and ¢g € §°, h° being
the annihilator of §. Then, ((g, ¢0), (g%,0)) is a Jacobi bialgebra. The pair
((g,%0), (g%,0)) is said to be a compact Jacobi bialgebra of the first kind.

2.- Compact Jacobi bialgebras of the second kind

Let (g,[, |q) be a compact real Lie algebra. Suppose that e;,e; € g are
linearly independent and that [eq, e3]g = 0. We consider the 2-vector r and
the vector Xy on g defined by r = Ae; A ey and X = Mep + Ney, with
A€ R—{0} and (A\},)?) € R?* — {(0,0)}. It is clear that (r, X}) is an
algebraic Jacobi structure on g which comes from an algebraic l.c.s. structure
on the Lie subalgebra h =< ey, ey >. Therefore, if ¢y € g* is a 1-cocycle of
g such that i, (r) = X[ (that is, ¢o(e1) = % and ¢p(ey) = —’\71) then
((g, ¢0), (g%, —X{))) is a Jacobi bialgebra. The pair ((g, ¢o), (g%, —X{)) is said

to be a compact Jacobi bialgebra of the second kind.
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3.- Compact Jacobi bialgebras of the third kind
Let (g,[, ]g) be a nonabelian compact real Lie algebra. By the root space
decomposition theorem, we know that there exist eq, ey, €3 € g satisfying

[617 62]g = €3, [637 el]g = €2, [62a 63]9 = €1. <425)

Now, suppose that ¢y € g* is a 1-cocycle on g and that e, is a vector of g such
that ¢g(es) = 1, and [eq, €;]g = 0, for i = 1,2, 3 (note that if Z(g) # {0}, then
the existence of ¢y and e, is guaranteed). Then, we consider the 2-vector r
and the vector X on g defined by

r = /\1(62 VAN es + e VAN 64) + /\2<63 Nep+ e A 64) + )\3(61 N ey + €3 A 64),

X, =—(Ner + Negy + Ney),

with (A, A2, A%) € R® — {(0,0,0)}. A direct computation proves that (r, X})
is an algebraic l.c.s. structure on the Lie subalgebra h =< e, eq,e3, €4 >
(see Section 4.3.2). Moreover, iy (r) = X{. Thus, ((g,¢0), (g%, —X{)) is a
Jacobi bialgebra. The pair ((g, ¢o), (g%, —X{)) is said to be a compact Jacobi
bialgebra of the third kind.

Next, we will show that Examples 4.15 1, 2 and 3 are the only examples of
Jacobi bialgebras ((g, ¢o), (g%, Xo)), with ¢g # 0 and g a compact Lie algebra.

Theorem 4.16 Let ((g, ¢0), (9", X0)) be a Jacobi bialgebra. Suppose that
o0(Yo) =1, with Yy € Z(g). Then, there exists a Lie subalgebra b of g and a
2-vector r € N2 C A%g such that X, € b and:

i) The pair (r,iy,(r)) defines an algebraic Jacobi structure on g which is
associated with an algebraic l.c.s. structure on by. Moreover, i4,(r) =
—Xo.

ii) The Lie bracket |, |g+ on g* is given by (4.17).
Proof: Denote by r the 2-vector on g given by

r = dXY,. (4.26)
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Using (4.10), (4.11), (4.26) and the fact that Yy € Z(g), we have that
igy (1) = —Xo. (4.27)
From (4.9), (4.26) and since Yy € Z(g), it follows that
0=dX°[X,Yolg = [X,r]g — ¢o(X)r + d° X, (4.28)

for all X € g. Therefore, using (4.10), (4.28) and the fact that X, is a
1-cocycle on (g*, [, |g+), we deduce that

[Xo,7]g = 0. (4.29)

On the other hand, using again (4.28) and the properties of the algebraic
Schouten bracket [, |4, we conclude that [, r|y = —dr’ —2XoAr" +1r Nig, (1),
for r' € A%g. Consequently (see (4.26) and (4.27)),

[r,7]g = 2igy (1) AT = —(dur + 1 A Xo) = —dor = 0. (4.30)

Thus, the pair (r,i4,(r)) is an algebraic Jacobi structure on g and the rank of
(7,44,(7)) is even (see (4.27), (4.29) and (4.30)). Therefore, using Proposition
4.4, it follows that there exists a Lie subalgebra b of g such that r € A%h,
Xo = —ig,(r) € b and the pair (r,i4,(r)) is associated with an algebraic l.c.s.
structure on b.

Finally, from (4.22) and (4.28), we deduce that the Lie bracket on g* is given
by (4.17).

Now, we will describe the algebraic l.c.s. structures on a compact Lie algebra.
Theorem 4.17 Let b be a compact Lie algebra of dimension 2k > 2. Sup-

pose that (r, X{) is an algebraic Jacobi structure on by which is associated

with an algebraic l.c.s. structure.

i) If X = 0 then b is the abelian Lie algebra and r is a nondegenerate

2-vector on §y.

i) If X) # 0 and k = 1 then Y is the abelian Lie algebra and r is an

arbitrary 2-vector on b, r # 0.
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iii) If X) # 0 and k > 2 then k = 2, b is isomorphic to u(2) and
r= )\1(62 Nes+ e /\64) +)\2<€3/\€1 +€2/\€4)
+X3(e1 N ea + ez Aey),
X(/) = —()\161 + /\262 + )\363>,

where (A', A2, 2%) € R® — {(0,0,0)} and {ey, e, e3,e4} is a basis of b
such that e, € Z(h) and

le1, €]y = €3, [es,e1]y = €2, [e2, €3]y = €1. (4.31)

Proof: Denote by (€2, w) the algebraic l.c.s. structure on h associated with
the pair (r, X{).

i) If X = 0, we obtain that w = 0 and 2 is an algebraic symplectic structure
on f (see (4.4)). Thus, since b is a compact Lie algebra, i) follows using the
results in [12] (see also [76]).

ii) Tt is trivial.
iii) Suppose that X # 0 and that & > 2. Then, w # 0. Moreover, we can

consider an ad-invariant scalar product {, ):h x h — R and the vector Y, of

b characterized by the relation
w(X) =(X,Yy), for X €b. (4.32)

Using (4.32) and the fact that w is a 1-cocycle, we deduce that Y, € Z(b).
Consequently,
w(Yo) =1, (4.33)

with Yy = X0~ € Z(p).

w(Yo)
On the other hand, if b’ C b is the annihilator of the subspace generated
by w, it is clear that ' is a Lie subalgebra of . In fact, using (4.33) and
since Yy € Z(h) and w is a 1-cocycle, it follows that b is isomorphic, as a
Lie algebra, to the direct product ' & R. In addition, we will show that b’
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admits an algebraic contact structure. For this purpose, we define the 1-form
7 on bh given by
7= —iy, S (4.34)

Using the equality w = ix;(2, we have that
n(X3) = 1. (4.35)
Moreover, from (4.4), (4.33), (4.34) and since Y, € Z(h), we deduce that
0 = Ly, Q = iy, (dQ) + d(iy,2) = Q+w A7 — dn. (4.36)
In particular (see (4.33), (4.34) and (4.35))
i () = vy (d) = 0. (437)

Thus, the condition QF = QA .*. AQ # 0 implies that w A A (df)*' # 0.
Therefore, the restriction n of 77 to b’ is an algebraic contact 1-form on b’.
Furthermore, if (7, X;) is the algebraic Jacobi structure on b’ associated
with the contact 1-form 7 then, from relations (4.33)-(4.37) and the results
in Section 4.1, we obtain that 7 = r + Yy A X and Xo = X{. Consequently,
taking e, = —Y{ and using Proposition 4.5, we prove iii).

Now, suppose that ((g, ¢o), (g*, Xo)) is a Jacobi bialgebra, with ¢y # 0 and g
a compact Lie algebra. Under these conditions we showed, at the beginning
of this Section, that there exists Yy € Z(g) satisfying that ¢¢(Yy) = 1. Then,
using Theorems 4.16 and 4.17, we deduce the following result.

Theorem 4.18 Let ((g, ¢o), (g*, Xo)) be a Jacobi bialgebra, with ¢pg # 0 and
g a compact Lie algebra. If Xo = 0 (respectively, Xo # 0) then it is of the
first kind (respectively, the second or third kind).

b) The case ¢y =0

We will describe the structure of a Jacobi bialgebra ((g,0), (g*, Xo)), g being
a compact Lie algebra and X # 0. First, we will examine a suitable example.

Let (h,b*) be a Lie bialgebra and ¥ be an endomorphism of h, U:h — b.
Assume that ¥ is a 1-cocycle of h with respect to the adjoint representation
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ad’:h x h — b and that ¥* — Id is a 1-cocycle of h* with respect to the
adjoint representation ad”:h* x h* — h*. Here, ¥*:h* — h* is the adjoint
linear map of ¥:h — h. Denote by g = b & R the direct product of the Lie
algebras h and R and consider on g* = h* @ R the Lie bracket [, |4 defined
by

[(1, A), (v, V)]ae = ([ V] = MW" = Td)(v) + (V" = [d)(p),0),  (4.38)

for (u, A), (v,7) € b* @ R = g*. Then, we have that Xo = (0,1) e h R =g
is a 1-cocycle of (g%, [, |g-) and that X, € Z(g). Thus, using (4.38), that
(h,b*) is a Lie bialgebra and the fact that ¥ is a 1-cocycle, we deduce that
the pair ((g,0), (g%, Xo)) is a Jacobi bialgebra. Moreover, it is clear that if b
is a compact Lie algebra then g is also compact.

Next, suppose that b is compact and semisimple. Then, as we know (see
[80]), if ® : h x V' — V is a representation of h on a vector space V, every
1-cocycle € : h — V' is a 1-coboundary, that is, €(X) = ®(X,vg), for some
vg € V. Therefore, if dy- is the Chevalley-Eilenberg differential of h*, it
follows that there exist » € A% and Z € b such that

dp-X = —[X, 7]y, U(X)=[X,Z]y, U*(a)=coadya = Lya, (4.39)

for X € h and o € h*, where coad’: h x h* — h* is the coadjoint representa-
tion. Using (4.39) and the fact that U* — Id is an adjoint 1-cocycle of bh*, we
deduce that

([[X, Zly, ]y + [2, [X, rloly) (1, v) = (die X) (2, v) = =X, 7]y (s, ),

for p,v € b*. Thus, the equality [X, [Z,7]p]s = [[X, Z]p. 71"+ [Z, [X,7]s)s
implies that
X, [Z,r]ply = —[X, 7]y, for all X € b. (4.40)

The compact character of b allows us to choose an ad’-invariant scalar prod-
uct (, ) on h. We will also denote by (, ) the natural extension of (, ) to

A?h. This extension is a scalar product on A%h and, in addition, it is easy
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to prove that ([X, sy, ) = —(s,[X,t]p), for X € b and s,t € A?h. Thus (see
(4.40)),
(12, T]fb Z, r]h) =—(r[Z [, T]b]h> =(r,[Z, T]h> =0,

- [Z,7]y = 0. (4.41)

Then, from (4.39), (4.40) and (4.41), we conclude that the Lie bracket [, |y

is trivial.

Remark 4.19 If b is not semisimple then the Lie bracket [, |p« is not, in
general, trivial. In fact, suppose that Z(h) # {0}. We know that b is
isomorphic, as a Lie algebra, to the direct product b’ & Z(h), where b’ is a
compact semisimple Lie subalgebra of . Therefore, if U:h = §’' @ Z(h) —
h = b’ @ Z(h) is the projection on the subspace Z(h), it follows that ¥ is
an adjoint 1-cocycle of . Furthermore, if on (§’)* we consider the trivial Lie
bracket and on Z(h)* an arbitrary (nontrivial) Lie bracket then the direct
product (h')* @ Z(h)* = h* is a Lie algebra, the pair (b, h*) is a Lie bialgebra
and the endomorphism U* — Id is an adjoint 1-cocycle of h*.

Now, we prove

Theorem 4.20 Let ((g,0),(g*, Xo)) be a Jacobi bialgebra with Xy # 0 and
g a compact Lie algebra. Then:

i) There exists a Lie subalgebra b of g such that g is isomorphic, as a
Lie algebra, to the direct product b & R. Moreover, under the above
isomorphism, §* is a Lie subalgebra of g*, the pair (h,bh*) is a Lie
bialgebra, Xo = (0,1) € h @ R = g and the Lie bracket [, |g on g* is
given by

[(1, A), (v, V)]ae = ([, V] = A(T" = Ld)(v) + (V" = Id)(1), 0),

where U € End(h) is an adjoint 1-cocycle of b and ¥*—1d is an adjoint
1-cocycle of bh*.
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i) If dim Z(g) = 1 then the Lie bracket [, |g+ is trivial and there exists
Z € b such that V(X)) = [X, Z]y, for all X € §.

Proof: i) From (4.11) it follows that X, € Z(g). We consider an ad?-invariant
scalar product (, ) on g and the 1-form 6y € g* defined by 6y(X) = (X, Xo),
for all X € g. We have that 6, is a 1-cocycle of g and we can assume, without
the loss of generality, that 6y(Xy) = 1. Then, using (4.9) and the fact that X
is a 1-cocycle of g*, we deduce that the Lie subalgebra b is the annihilator of
the subspace generated by 6, and that the endomorphism ¥:h — b is given
by ¥(X) = X — iy, (d.X), where d, is the Chevalley-Eilenberg differential of

*

g.

ii) If dim Z(g) = 1 then b is compact and semisimple and the result follows.
QED
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CHAPTER b

Jacobi groupoids and Jacobi bialgebroids

In this last Chapter, we introduce Jacobi groupoids as a generalization of
Poisson and contact groupoids. Then, it is proved that Jacobi bialgebroids

are the infinitesimal invariants of Jacobi groupoids.

5.1 Contact groupoids and 1-jet bundles

In this first Section of Chapter 5, we will discuss contact groupoids, deve-
loping some of its properties. Moreover, we will introduce two Lie groupoid

structures which will be important in the sequel.

First, we will recall the notion of a contact groupoid

Definition 5.1 [56] Let G = M be a Lie groupoid, n € QY(G) be a contact
1-form on G and o : G — R be an arbitrary function. If g is the partial
multiplication in the tangent Lie groupoid TG = TM, we will say that (G =
M,n, o) is a contact groupoid if and only if

n(gh)(Xy Bre Ya) = 1(9)(Xy) + €7 Wn(h)(Ya), (5.1)

for (X,,Y3) € TG®.

135
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Remark 5.2 Actually, the definition of a contact groupoid given in [56] is
slightly different to the one given here. The relation between both approaches
is the following one. If (G = M, 0, k) is a contact groupoid in the sense of
[56] then (G = M,n, o) is a contact groupoid in the sense of Definition 5.1,
where o(g) = k(g™!) for ¢ € G, and 7(g) is the inverse of 6(g~') in the
cotangent Lie groupoid TG = A*G.

If (G = M,n,0) is a contact groupoid then, using the associativity of ®rg,
we deduce that ¢ : G — R is a multiplicative function, that is,

o(gh) = o(g) +a(h), (5.2)

for (g,h) € G®. In particular, if ¢ : M — G is the inclusion then Iy =0
and therefore, using (5.1), it follows that

forx € M and X, € T,M. Thus, if « : G — G is the inversion of G, we
obtain that ¢*n = —e~?n. This implies that GG is a contact groupoid in the
sense of [23]. Using this fact, we deduce the following result.

Proposition 5.3 Let (G = M,n, o) be a contact groupoid and suppose that
dimG =2n+ 1. Then:

i) If g and h are composable elements of G, we have that

(don)(gh)(Xy ©rc Yi, Xy ©ra Vy)
= (don)(9)(Xg, X;) + 7@ (don) (h) (Yi, Yy)

+e79 (X (o)n(h) (V) — X;(U)Tl(h)(Yh))(5 )
Jor (Xg,Y3), (X],Y)) e TG®. |

ii) M = e(M) is a Legendre submanifold of G, that is, €'n = 0 and
dime(M) = dim M = n.
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iii) If (A, E) is the Jacobi structure associated with the contact 1-form n,
then E is a right-invariant vector field on G and E(o) = 0. Moreover,
if Xo € T'(AQG) is the section of the Lie algebroid AG of G satisfying
E = —)?0, we have that

#4(door) = Xo — e Xp. (5.4)

w) If T, BT and €T (respectively, &, B and €) are the projections and the
inclusion in the Lie groupoid TG = TM (respectively, T*G = A*G)
then,

e TH#pro0éoa=c oal o#,, #ro0éoff =€ 0BT o#,.

Proof: Using the results in [23], we directly deduce i), 1) and iii).

Now, we will prove ). Suppose that p, € T,;G. Then, from ) and Remark

1.1, we conclude that

n(e(a(9))) (e #a(E(aluy)))) = nle(a(9)) (€ (@ (#a(ky)))) = 0.
Furthermore, if X4 € Aa(g)G, it follows that (see (1.55))
€2 02(#a1g))) = H(#n(1g)) Er6 #a(1y),
Xatg) = 01,10 Bra (L)< (Xagy)

and consequently, using (1.58), (5.1), (5.3), (5.4), Remark 1.1 and the fact
that o is a multiplicative function, we obtain that

(dom) (e(a(9))) (€2 (a (#a(119))), Xao))
= (don) (e(c(9))) (e "D #A(E((11g)))s Xay))-

On the other hand, from (1.58), 7i) and Remark 1.1, we deduce that

(dom) (e(a(@)) (€2 (a2 (#a(119))), €29 (Vai))
= (don)(e(a(9))) (e "D (E(@1g))), €29 (Yarg)) = 0,
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for Ya(g) S Ta(g)M.

The above facts imply that e’ (o (#(py))) = e 7D (E(@(py))). In a
similar way, one may prove that #4(€(8(1g))) = €” (BT (#a(pg)))- QED

Using again the results in [23], we have that

Proposition 5.4 Let (G = M,n,0) be a contact groupoid and X1,(G) be the
set of left-invariant vector fields on G. Denote by (A, E) the Jacobi structure
on G associated with the contact 1-form n, by Xy € I'(AG) the section of the
Lie algebroid AG of G satisfying E = —)TS and by T : QY (M) x C*°(M,R) —
X(G) the map defined by
I(uo fo) = #ale"a o) — (0" fo) X

_ (5.5)
= e (#ala"mo) = (" o) (Ko — #a(doo))).

Then:

i) T defines an isomorphism of C*(M,R)-modules between the spaces
QY M) x C*(M, R) and X1(G).

ii) The base manifold M admits a Jacobi structure (Ao, Eo) in such a way
that the projection (B is a Jacobi antimorphism and the pair (c,e?) is

a conformal Jacobi morphism, that is,

Ao(alg)) = e Dad(A(g)),  Eo(a(g)) = a2(H""(g)),
Ao(B(9)) = —B2(A(g)), Ey(8(g)) = —BE(9)),

(5.6)

for all g € G, where Hif}’E) 1s the hamiltonian vector field of the func-

tion e” with respect to the Jacobi structure (A, E).

iii) The map T induces an isomorphism between the Lie algebroids (T M x
R, [, ]](Ao,Eo)a #(AO,EO)) and AG.

Remark 5.5 Denote also by Z : T*"M x R — AG the Lie algebroid iso-
morphism induced by the isomorphism of C*°(M,R)-modules Z : Q'(M) x
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C®(M,R) — XL(G). Then, from (5.5) and since o is a multiplicative func-
tion, it follows that

I(uz>7) = #A((ai(x))*(,ux)) - ’VXO(x)v (57)

for (py,v) € T M x R, where (Ozi(x))* 1Ty M — T7,)G is the adjoint map of
the linear map a2® : T.)G — T, M.

Now, let G = M be a Lie groupoid and ¢ : G — R be a multiplicative
function. Then, there exists a natural right action of the tangent groupoid
TG = TM on the projection m; : TM x R — T'M given by

(v2, A) - Xy = (v, Xg(0) + A),

for (vy,\) € T,M x R and X, € T,G satisfying 37 (X,) = m (v, \) (see
Section 1.3.2 for the definition of a right action of a groupoid on a smooth
map). The resulting action groupoid is isomorphic to TG x R = TM x R
with projections (al),, (87),, partial multiplication ®pgxg, inclusion (1),
and inversion (1), given by

(aT)o(Xy, A) = (@T(X,), X,(0) + N), for (X, ) € T,G xR,
(876 (Yn,7) = (B"(Ya),7), for (Ya,7) € ThG x R,
(Xg: A) Braxr (Y, 7)

= (Xy ©rc Yi, A), if (a7)4 (X, A) = (67)5(Ya,7),
(€M)g( X, A) = (e7(X,), N), for (X, \) € T,M xR,
(o (X, N) = (F(X,), X,(0) + ), for (X,,N) € T,G x R.

(5.8)

Now, suppose that (G = M,n, o) is a contact groupoid. Using Remark 1.1,
we deduce that the map #ynn : TG x R — T*G x R given by

#(doman) (Xg> A) = (—ix, (don)(g) — An(g), n(9)(X,)) (5.9)

is an isomorphism of vector bundles. The inverse map of # 4y, is just the
homomorphism #z g) : T"G x R — T'G' X R defined by

#n.5) (g, ) = (Faltg) + 7 E(9), —1g(E(9))), (5.10)
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where (A, E) is the Jacobi structure associated with the contact 1-form 7
(see Remark 1.1).

On the other hand, if A*G is the dual bundle to the Lie algebroid AG then,
since €(M) is a Legendre submanifold of G, the map ¢y : TM x R — A*G
given by

Uo(Xa, A) = (—des(x,) (don) (e(x)) — An(e()))a,6, (5.11)
for (X;,\) € T,M x R, is an isomorphism of vector bundles. Note that

H o (€2(X2), A) = (€(1o(X4, A)),0) and thus the inverse map o : A*G —
TM x R of 1 is defined by

o) = (a5 (#a(E(12))), —ta (B(e(2) — (B9 (E(e(2))))),  (5.12)
€ : A*G — TG being the inclusion of identities in the Lie groupoid T*G =
A*G.

Next, we consider the maps dy, 3, : T*G x R — A*G, &, : A*G — T*G x R
and I, : T*G x R — T*G x R given by

ay = oo (@T)go#nm, Bo =100 (850 #nr),

(5.13)
€0 = H#(don) © () 0o, Io= # (donm) © (t")g 0 #(n,B)

and the partial multiplication ®r+cxr defined as follows. If (14, 7), (vh, () €
T*G xR satisty & (11g,7) = O, (va, ¢) then we have that (D)o (# 5 (1g,7)) =
(B1) o (#a,5) (W4, €)), and we may introduce the partial multiplication

(thg:Y) Brecxr (Vn, C) = #donm) (#(A,E)(Mgﬁ) Draxr F#n,8) (Vn, C))- (5.14)

It is clear ay, BU, €5, Ly and the partial multiplication &7+g«r are the struc-
tural functions of a Lie groupoid structure in 7*G X R over A*G. In addition,
the map # g : T°G x R — T'G x R is a Lie groupoid isomorphism over
o : A*G — TM x R.
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Lemma 5.6 If &, B, DS, € and t are the structural functions of the Lie
groupoid T*G = A*G, we have that

G (f1g,7) = € " D(py), for (ug,7) € T;G X R,
ﬁa(l/ha C) = ﬁ(l/h) - C (dOU)E(B(h))Mg(;L)Ga for (Vha C) c T;:G X R’
((ug,’y) Dreaxr (Vn, C)) = ((ug + 79 (dyo)g) Brec (7D,

T+ eT0C), if Gy 11g7) = By, €).
€ (pe) = (€(1z),0), for p, € A3G,
Lo (g, 7) = (€77 (U 1g) = (doo) g-1), —€~ 7)), for (ug,7) € T;GxR.

Proof: A long computation, using (1.58), (5.1), (5.2), (5.8)-(5.14) and Propo-
sition 5.3, proves the result. QED

(5.15)

Note that the maps a,, 50, €5, Ly and the partial multiplication @7«gxr do
not depend on the contact 1-form 7. In fact, one may prove the following
result.

Theorem 5.7 Let G = M be an arbitrary Lie groupoid with Lie algebroid
AG and o : G — R be a multiplicative function. Then:

i) The product manifold T*G x R admits a Lie groupoid structure over
A*G with structural functions given by (5.15).

it) If ng is the canonical contact 1-form on T*G xR and 7 : T*GXxR — G
is the canonical projection then (T*G xR = A*G, ng,007g) is a contact
groupoid.

Proof: Since o is a multiplicative function, we obtain that
€0 = 0. (5.16)

Moreover, if (g,h) € G® and a(g) = B(h) = x € M then, from (1.58), it
follows that

a((doo)(g)) = B((doo)(h)) = (doo)(e(z))a,c,

(5.17)
(doo)(gh) = (doo)(g) Br+c (doo)(h).
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In addition, using again (1.58) and the fact that o is a multiplicative function,
we have that

&((doo) (€(2))1a,6) = (doo)(e(w)),  i((doo)(9)) = (doo)(g7"),  (5.18)

forx € M and g € G.

Thus, from (5.15)-(5.18), we deduce i).

Now, let G x R = M be the semi-direct Lie groupoid with projections o/,
(', partial multiplication m/, inclusion ¢’ and inversion ¢ defined by

a'(g,7) = alg), for (9,7) € G xR,
B'(h,¢) = B(h), for (h,() € G xR,

m'((9:7), (h,¢)) = (gh, 7 +e79C), if o/ (g,7) = (R, ), (5.19)
€(x) = (e(z), ) for x € M,

/(g,7) = (ug), —e=Wr), for (g,7) € G x R.

Using (5.19), one may prove that the partial multiplication ©7(gxr) in the
tangent Lie groupoid T(G x R) = TM is given by

( +7/f >@Tch)<Yh+S0§t|>

0
= (Xy D1 Ya) + (¥ +¢° g)(<X9(0> * @)a\wmg)c'

(5.20)

Next, we consider the map 7 : TG X R — G x R given by

T (g, v) = (ma(ig); ),

for (ug,v) € T,;G x R, where mg : T*G — G is the canonical projection.
From (5.15) and (5.19), we deduce that 7 is a Lie groupoid morphism over
the map 7y : A*G — M defined by

7‘%O(/vbz> =,

for p, € AXG. Therefore, the tangent map to 7g, T7g : T(T*G x R) —
T(G x R), given by

0

TWG(XMQ —|—w §| ,
~

) = (ma)er (Xy,) + ¢ (5.21)

Oty
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for X, + ¢%w € Tiu,») (G x R), is also a Lie groupoid morphism (over the
map T7g : T(A*G) — TM) between the tangent Lie groupoids T'(T*G x
R) = T(A*G) and T(G x R) = TM.
On the other hand, if ng is the canonical contact 1-form on T*G x R then,
using (2.10) and (5.21), we have that

77G(U97 )‘)<Xug + Qﬂ%M = _)‘T*G(Ng)(Xug) + dOtlv(@D%w)
= —py((ma)i’ (X)) + 0 (5.22)
= (_Mg + doth)(TﬁG<Xug + ¢%|V>>

Thus, using (5.15), (5.20), (5.21), (5.22) and the fact that T7s is a Lie
groupoid morphism, we conclude that

16 ((Hgs ) Dreaxr (Vh, C)) = na(tig, 7) Sr+(r-axr) (€716 (vh, (),

that is, (T*G xR = A*G,nq, d) is a contact groupoid, where € C*°(T*G x
R) is the function given by ¢ = o o 7. QED

Remark 5.8 i) Let G = M be a Lie groupoid and ¢ : G — R be a mul-
tiplicative function. Using the multiplicative function o, one may introduce
the Lie groupoid structure in 7*G over A*G with structural functions &,
3%, ®F.q, € and - given by
a5 (ng) = e *9Wa(uy), for p, € TrG,
B;(Vh) = B(1y), for v, € TrG,
(ttg ©F i i) = g Brec (¢7Dw), if &5 (pg) = B3(v), (5.23)
€5 (Ha) = €(pz), for p, € AZG,
% (1g) = e °9Di(py,), for u, € T, G.
We call this Lie groupoid the o-cotangent groupoid.

In fact, if we consider on T*G x R the Lie groupoid structure over A*G with
structural functions defined by (5.15) then the canonical inclusion

T"G —T°G xR, py € T;Gr (1y,0) € T;G xR,
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is a Lie groupoid monomorphism over the identity of A*G.

it) Let G = M be a Lie groupoid, ¢ : G — R be a multiplicative function
and TGxR = TM xR, T*G xR = A*G be the corresponding Lie groupoids
with structural functions given by (5.8) and (5.15). If o identically vanishes
then we recover, by projection, the tangent and cotangent Lie groupoids
TG = TM and TG = A*G (see (1.55) and (1.58)).

Remark 5.9 i) A Lie groupoid G = M is said to be symplectic if G ad-
mits a symplectic 2-form €2 in such a way that the graph of the partial
multiplication in G is a Lagrangian submanifold of the symplectic manifold
(GXxGxG, Q806 (—Q)) (see [14]). If G = M is an arbitrary Lie groupoid
with Lie algebroid AG and on the cotangent Lie groupoid T*G we consider
the canonical symplectic 2-form Qp.g = —dgAr+g then T*G is a symplectic
groupoid over A*G (see [14]).

ii) Let G = M be a symplectic groupoid with exact symplectic 2-form 2 =
—doA. Then, since R is a Lie group, the product manifold G x R is a Lie
groupoid over M (see Example 3 in Section 1.3.2). In addition, (G x R =
M;n,0) is a contact groupoid, where 7 is the 1-form on G x R given by

= m5(dot) — (), and m; : G X R — G, mg : G x R — R are the canonical
projections (see [70]). In particular, if G = M is an arbitrary Lie groupoid
with Lie algebroid AG then we have that (1"G x R = A*G,7nq,0) is a
contact groupoid, 71 being the canonical contact 1-form on 7*G x R. Note
that, using Theorem 5.7, we directly deduce this result.

Let G = M be an arbitrary Lie groupoid with Lie algebroid AG and o :
G — R be a multiplicative function. From Proposition 5.4, it follows that
the contact groupoid structure on 7*G x R induces a Jacobi structure on the
vector bundle A*G. Next, we will describe such a Jacobi structure. In fact, we
will show the Jacobi structure on A*GG is the homogeneous Jacobi structure
associated with a Jacobi algebroid structure on AG. We recall that a Jacobi
algebroid structure (([, [, p), ¢0) on a real vector bundle A — M induces
a homogeneous Jacobi structure (Aia- ¢y), E(a=4,)) on the dual bundle to A
(see Theorem 2.7).
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Theorem 5.10 Let G = M be a Lie groupoid with Lie algebroid AG and
o : G — R be a multiplicative function. If 1g : T*G xR — G is the canonical
projection, ng is the canonical contact 1-form on T*G x R and (Ao, Ey) is
the Jacobi structure on A*G induced by the contact groupoid (T*G x R =
A*G,ng,0 = 0 o) then

Ao = Maccgo):  Bo= Ea=c.o0, (5.24)
where ¢g € T'(A*G) is the 1-cocycle of the Lie algebroid AG defined by
Po(x)(Xz) = Xa(0), (5.25)
forx e M and X, € A.G.

Proof: Denote by m : T*G x R — T*G the canonical projection onto the
first factor. It is easy to prove that 7 is a Jacobi morphism between the
contact manifold (7*G x R,ng) and the symplectic manifold (T*G, Q).
Thus,

{fom,gom}ty, ={f g}ar.qom, (5.26)

for f,g € C®(T*G,R), {, },. (vespectively, {, }q,..) being the Jacobi
bracket (respectively, Poisson bracket) associated with the contact 1-form

ne (respectively, the symplectic 2-form Q).

Now, suppose that {, }(a,,g,) is the Jacobi bracket associated with the Jacobi
structure (Ao, Ey). From (5.6), it follows that

&;{fA*G7 gA*G}(Ao,EO) = 6_&{6§d;—fA*Gu eﬁ&ZgA*G}nG (5'27)

for face,gac € C®(A*G,R). Thus, if X,Y € I'(AG) and X,Y are the
corresponding linear functions on A*G, then (see (5.15), (5.26) and (5.27))

{X, Y Yo, (@) = (e77{a"(X) om, a*(Y) 0 mi}ye) (g, 7)
= e_a(g){&* (X)7 d*<Y)}QT*G(/’L9>’

for (14,7) € T;G x R. On the other hand, using the results in [14], we have

that

(5.28)

(7a) M (HETE () = K (B),  (ma) M (Home (v) = Y (R),  (5.29)

ar (X a*(Y)
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for h € G and v, € T;G, where Hgf(}?) (respectively, H. *T(*YG) is the hamilto-

nian vector field of the function a*(X) (respectively, @*(Y)) with respect to

the symplectic structure Qr-g. Therefore, (L) HOTG Mg = (Lo) HOTG A=
a*(X) a*(Y)

= 0 and from (5.28) and (5.29), we conclude that

X,V Horo (@ (110:7)) = €7@ (atg) ([HET6 HETE (1)
= e, (IXY](9))
= aamg,w(u Y](a(g))),

[, ] being the Lie bracket on AG. Consequently,

{X7 1~/}(/\O,EO) = [[Xv Y]]' (5'30)
Next, we will show that

{Xv 1}(A07E0) = ¢0(X) ot (5'31)

where 7" : A*G — M is the bundle projection. Using (5.15), (5.26) and
(5.27), it follows that

{X7 1}(A0,E0)<&U(M97 7)) - (6_6{6‘*<X) oy, €77 o ﬂ-l}nc;)(:ug? )
— TG (R, g 1)
= (me)t (M1 8 (1)) (0):
Thus, from (5.25) and (5.29), we obtain that
{ X, 1 (00,80) (G (119, 7)) = (@0(X) 0 7*) (G (119, 7))

This implies that (5.31) holds.
Finally, using (5.30), (5.31) and Remark 2.8, we deduce (5.24).

5.2 Jacobi groupoids: definition and charac-
terization

Motivated by the results obtained in Section 5.1 about contact groupoids,
we introduce the following definition.
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Definition 5.11 Let G = M be a Lie groupoid, (A, E) be a Jacobi structure
on G and o : G — R be a multiplicative function. Then, (G = M, A\, E,0) is
a Jacobi groupoid if the homomorphism # g) : T*G x R — TG x R given

by
#n.m) (g, 7) = (Falug) +7 E(9), —1g(E(g))) (5.32)

is a morphism of Lie groupoids over some map ¢q : A*G — T M x R, where
the structural functions of the Lie groupoid structure on T*G x R = A*G
(respectively, TG x R = TM x R) are given by (5.15) (respectively, (5.8)).

Remark 5.12 Since # g : T°G X R — TG x R is a morphism of Lie

groupoids, we deduce that

o = (a")o 0 #am) 0 = (7)o #a,m) © &
Thus, if p, € AXG, it follows that
Polita) = (05 (H(@1a)), ~ 1 (B(e(2)) = (5 (B(e()))))). (5.33)
A characterization of a Jacobi groupoid is the following one.

Theorem 5.13 Let G = M be a Lie groupoid, (A, E) be a Jacobi structure
on G and o : G — R be a multiplicative function. Then, (G = M, A\, E, o)
1s a Jacobi groupoid if and only if the following conditions hold:

i) The map #a : T*G — TG is a Lie groupoid morphism over some map
Qo : A*G — TM from the o-cotangent groupoid TG = A*G to the
tangent Lie groupoid TG = T M.

ii) E is a right-invariant vector field on G and E(o) = 0.

iir) If Xo € T'(AG) 1is the section of the Lie algebroid AG satisfying E =

—)TO), we have that

#a(door) = Xy — e " Xo. (5.34)
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Proof: Suppose that (G = M, A, E,0) is a Jacobi groupoid.

If py € T;G and vy, € Ty G satisty a7 (p,) = 3*(vy,) then, from (5.8), (5.15),
(5.23), (5.32) and since the map # g) : T*G' xR — TG xR is a Lie groupoid
homomorphism, we have that o (#a(1g)) = 87 (#4(vs)) and

#a (g BFc vn) = #a(1tg) Bre #a(vn).

This proves 1).

On the other hand, we have that
(") 0 #am) = o 0 o, (B") 0 #am) = o 0 B (5.35)
Thus, if g € G, it follows that
((@F)s 0 #a5) (016, 1) = (9o © d5) (0136, 1),
which, using (5.8), (5.15) and (5.32), implies that
o!(E(g) =0,  E(g)(o) =0. (5.36)
Now, if (g, h) € G then, from (5.15), we deduce that
5 (0136, 1) = B(0rz,0) = 0
and therefore
#u.5)((0r:6,1) ®r-axr (0136,0))
= #u.5) (0126, 1) ®raxr #,8)(0176,0).
Consequently, using (5.8), (5.15) and (5.32), we obtain that
(Bn)I(E(9)) = E(gh). (5.37)
This proves i) (see (5.36) and (5.37)).

Next, we will show that (5.34) holds.
From (5.35), it follows that

((87)0 0 #,m)(€” (do0)(9), ") = (00 ) (e (do0) (9), ”)
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and thus, using (5.8), (5.15), (5.17) and (5.32), we have that
B(He" () =0, (5.38)

where H((;.\’E) is the hamiltonian vector field of the function e’ with respect
to the Jacobi structure (A, E).

On the other hand, suppose that (g, h) € G®. Then, from (5.15) and (5.17),
we deduce that

(0156, 0) = B, ("™ (door) (h), 7 ™) = 0
and therefore
#.5) (0136, 0) ®rexr (e7M (doo) (h), e7™))
= #00.5)(01;6,0) Br o) (¢ (doo) (1), 7).

Consequently, using (5.8), (5.15), (5.17), (5.32), the fact that o is multiplica-
tive and since E(o) = 0, we obtain that

(L)t (M () = 1P (gh). (5.39)
Now, if z is a point of M then, using (1.58), it follows that the map
g\A;’;G : A;G — T:(I)G

is a linear isomorphism between the vector spaces A*G and the annihilator
of the subspace T;)e(M), that is, (Tyz)e(M))°. Thus, from (1.55), (1.58),
(5.8), (5.15), (5.33) and since ('), 0 g = #(a,p) © €, we conclude that

#Ha(Tez)e(M))° C Tye(M), (5.40)

for all + € M. This implies that #,(doo)(e(x)) € Time(M) (note that
(doo)(e(x)) € (Tez)e(M))°) or, equivalently,

#a((doo) (e(x))) = €2 (B (#a(doo) (e(2)))).

But, Hgﬁ’E) is (-vertical and therefore

B (#a((doo) (e(2)))) = =3 (E(e(2))),
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that is,
H (e(x)) = #a((doo) (e(2))) + Ee(w)) = — X o(e(x)). (5.41)

Consequently, using (5.38), (5.39) and (5.41), we deduce that #,(dyo) =
Yo — e*"yo.
Conversely, assume that ), ) and dii) hold.

We must prove that the map # g) : TG X R — TG x R is a Lie groupoid
morphism or, equivalently, that if (u,,v) € T;G x R and (v, () € T;G x R

satisfy &(pug,v) = B(vh, ¢) then
(a")o (#0519, ) = (B (# 0. (1 0)), (5.42)

#,8) (g, ) Br=axr (Vh, Q) = #(a,B)(Kg, V) Brexr #(1,E5)(Vh, (). (5.43)
Now, from (5.15), (5.17) and (5.23), we obtain that

& (1g + ¢ 79 (doo)(g)) = B3 (vn)
which, using i), implies that
o (#alug + €79 (doo)(9))) = BT (#a (), (5.44)

#a((1g + €79 (dyo)(g)) Brec e Dy)

(5.45)
= #a(py + (e (doo)(g)) Dre #a(e”Dmy).
Thus, form (5.43), 4i) and iii), it follows that
of (#alng)) = BT (#alm)) +Ca” (Xo(g)) (5.46)

= BT (#a(vn) + CE(R)).

Moreover, using 1), the fact that o is multiplicative and since (&, (ig,7))
(Xo(a(9))) = (Bs(vn, €))(Xo(B(Rh))), we deduce that

e "D 1uy(Xo(g)) = —va(E(h)). (5.47)

From (5.8), (5.36), (5.46) and (5.47), we conclude that (5.42) holds.
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On the other hand, using (1.58), (5.15), (5.32) and i), we obtain that

#,5) (g, 7) Breaxr (Vn,())
= (#alug + €7@ (doo)(9)) Bra #a(e”Wwy,)
+(v + e"WO(E(9) Bre 0n,6), —((1g + 7 D¢(door)(9))
®r-c(e”W))(E(9) ©ra 01,0))
= (#a(ug + €79 (do0)(9)) Bre #a(e”W1y)
+(v + "D (E(9) ©re 0n,6), —1g(E(9))).
Furthermore, if p, € T;G and v, € T;G satisfy a(u,) = B(v}) then, from
(1.58) and 4ii), we have that
(1y Drec v3) FHalitg + 79 (doo)(9)) re #a(e” Wy
+(7 + "D (E(9) ®r6 On,¢)) = —a(uy)(Xo(a(g)))-

Finally, using (1.58) and i), it follows that

(kg O V) ((#a(1g) +7E(9)) ©16 (#a () +CE(R))) = =B(1},)(Xo(B(h))).
Therefore, we conclude that

#(1g+¢ €79 (doo)(9)) Bra#a(e® D) +(v+e7 D) (E(9) @1 0r,c)
= (#a(pg) +7E(9))®rc (F#a(vn) + CE(R))

and thus, from (5.8), (5.32) and (5.48), we deduce (5.43).

(5.48)

Remark 5.14 Let (G = M, A, E, o) be a Jacobi groupoid. Then, by Theo-
rem 5.13, we have that #, : T*G — T'G is a Lie groupoid morphism from the
o-cotangent groupoid T*G = A*G to the tangent Lie groupoid TG = T'M.
As a consequence, we get that

e #rocoa=c oal o#s, #rocofB=c o o#,,

&, [ and € being the projections and the inclusion of the cotangent Lie
groupoid T*G = A*G.
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Some other basic properties of Jacobi groupoids, different from the ones we
obtained in Theorem 5.13, are shown in the following result.

Proposition 5.15 Let (G = M, A, E,0) be a Jacobi groupoid. Then:

i) M = e(M) is a coisotropic submanifold in G.

ii) If g and h are elements of G such that a(g) = f(h) = x and X and Y are
(local) bisections through the points g and h, X (x) = g and Y(x) = h, then

Agh) = (Ry){(Alg)) +e D (La)i(A(h))

5.49)
—e779(Ly 0 Ry)i™ (A(e(x))). (

Proof: Using (5.40), we obtain that M is a coisotropic submanifold in G.

Next, we will prove ii). Let = be the 2-vector on G x G x G defined by
=(g,h, k) = e?@DA(g) + A(h) — e?DA(k). Then, since the map # : T*G —
TG is a Lie groupoid morphism from the o-cotangent groupoid TG = A*G
to the tangent Lie groupoid TG = T'M (see Theorem 5.13), it follows that
the graph of the multiplication in G, {(g, h,gh) € Gx G x G /a(g) = B(h)},
is a coisotropic submanifold of G x G x G with respect to =.

Now, denote by AD(G) the affinoid diagram corresponding to the Lie group-
oid G, that is (see [118]),
AD(G) = {(k,g,h, 1) € GXGXGXG | a(h)=a(k), B(k) =Blg), r=hk~'g}.

Then, following the proof of Theorem 4.5 in [118], we obtain that AD(G) is
a coisotropic submanifold of G x G x G x G with respect to the 2-vector =
given by

2k, g, h, 1) = “PA(K) — “PA(g) — e”MA(R) + P A(r).

On the other hand, if g and h are elements of G satisfying a(g) = 5(h) = z,
we have that (gh, g, h,€(x)) is an element of AD(G). In addition, for any & €
T,G and X, (local) bisections of G through the points g and h (X (x) = g
and Y(z) = h), it follows from Lemma 2.6 in [120] that

(=& ((Ry)2)" (&), (L)1) (&), —((Ry o Lx){™)*(8))
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is a conormal vector to AD(G) at (gh,g, h,e(x)), i.e., it is an element of
(Tgh,g,nez))AD(G))°. Here, Ry and Ly denote the right-translation and the
left-translation induced by J and X (see (1.51)). Therefore, if §,n € T),G,
we deduce that

(e“(gh)/\(gh) — " (L )2 (A(R))
—e”W(Ry)4(A(g)) + €™ (Ry o Lx)i(””)(A(E(fE)))) (€)= 0.

This implies that (5.49) holds. QED

Motivated by the above result, we introduce the following definition.

Definition 5.16 Let G = M be a Lie groupoid and o : G — R be a multi-
plicative function. A multivector field P on G is o-affine if for any g,h € G
such that o(g) = B(h) = x and any (local) bisections X,y through the points
g,h, X(x) =g and Y(x) = h, we have

P(gh) = (Ry)}{(P(9)) + e ¥(Lx)i(P(h))

5.0
—e77O(Ly o Ry)i™ (P(e(2))). (550

It is clear that if P is a o-affine multivector and o identically vanishes, then
P is affine (see [85, 120]).
The following proposition gives a very useful characterization of o-affine mul-

tivector fields.

Proposition 5.17 Let G = M be an a-connected Lie groupoid and o :
G — R be a multiplicative function on G. For a multivector field P on G,

the following statements are equivalent:
i) P is o-affine;

ii) For any left-invariant vector field X, the Lie derivative e”(ﬁo)gP is
left-invariant.

Proof: The result follows using the fact that ¢ is multiplicative and proceed-
ing as in the proof of Theorem 2.2 in [85]. QED
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5.3 Examples of Jacobi groupoids

5.3.1 Poisson groupoids

If (G = M,A\,E, o) is a Jacobi groupoid with £ = 0 and ¢ = 0 then,
using Remark 5.8 and Theorem 5.13, we deduce that #, : TG — TG is
a Lie groupoid morphism from the cotangent groupoid T*G = A*G to the
tangent groupoid TG = T M. Thus, we recover the definition of a Poisson
groupoid (see [83, 85]).

5.3.2 Contact groupoids

Let (G = M,n,o0) be a contact groupoid. If (A, E) is the Jacobi structure
associated with the contact 1-form 7 then, using the results in Section 5.1,
we have that (G = M, A, E,0) is a Jacobi groupoid.

5.3.3 Locally conformal symplectic groupoids

In this Section, we will study a Jacobi groupoid (G = M,A, E, o) such
that its Jacobi structure (A, E) is Lc.s.. For this purpose, we introduce the

following definition.

Definition 5.18 Let G = M be a Lie groupoid with structural functions a,
B, m and €, (Q,w) be a l.c.s. structure on G, o : G — R be a multiplicative
function and 6 be the 1-form on G defined by

0 = e’ (dyo — w). (5.51)

Then, (G = M,Q,w,0) is a locally conformal symplectic groupoid (I.c.s.
groupoid) if the following properties hold:

m*Q =170 4 e, (5.52)

aow=0, [olh=0; (5.53)

miw = Tiw, m0= e, (5.54)
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Aw,0) =0, (A+w—¢éofow)oe=0; (5.55)

where 7; : G® — G, i = 1,2, are the canonical projections, (A, E) is the
Jacobi structure associated with the l.c.s. structure (Q,w) and &, B, Dr-c
and € are the structural functions of the cotangent Lie groupoid TG = A*G.

Two examples of this situation are the following ones.

Examples 5.19 1.- Let (G = M, Q) be a symplectic groupoid. This con-
dition is equivalent to say that (2 satisfies the condition m*Q = 77Q + 75Q
(see [19]). Therefore, we conclude that (G = M, ) is a symplectic groupoid
if and only if (G = M,,0,0) is a l.c.s. groupoid.

2.- Let G = M be a Lie groupoid and ¢ : G — R be a multiplicative
function. Then, using the multiplicative character of o, we can define a right
action of G = M on the canonical projection 7 : M x R — M as follows

(z,1) - g = (alg),0(9) +1) (5.56)

for (z,t) € M x R and g € G such that §(g) = x. Thus, we have the
corresponding action groupoid (M x R) * G = M x R (see Example 4 in
Section 1.3.2). Moreover, if (AG,[ , ],p) is the Lie algebroid of G, the
multiplicative function ¢ induces a 1-cocycle ¢y on AG given by

for x € M and X, € A,G. In addition, using the results in Section 1.3.2 (see
Example 6 in Section 1.2.2), we deduce that the R-linear map x : I'(AG) —
X(M x R) defined by

X = (p(X) om) + (60(X) 0 1) o (5.58)

induces an action of AG on the projection 7; : M x R — M and the Lie
algebroid of (M x R) % G is just the action Lie algebroid AG x .

Now, it is easy to prove that (M x R)* G may be identified with the product
manifold G x R and, under this identification, the structural functions of the
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Lie groupoid are given by

as(g,t) = (alg),o(g)+1), for (g,t) € G xR,

By(h,s) = (B(h),s), for (h,s) € G xR,

mo((9:8), (hes)). = (ghit)s if anlg.t) = Bo(h 5) (5:59)
(

eo(z,t) = (e(x),t), for (x,t) € M x R.

Thus, if A(G x R) is the Lie algebroid of G x R and X € Ay ;) (G x R), it is
clear that X € A,G and therefore the map J : A(G x R) — AG x R defined
by

X € Apy(GxR) = J(X) = (X,1) € 4,G xR (5.60)

defines an isomorphism of vector bundles. Furthermore, if on AG x R we
consider the Lie algebroid structure ([ , ]%,p%) given by (3.75) then J
is a Lie algebroid isomorphism. In conclusion, the Lie algebroid of the Lie
groupoid G x R = M x R may be identified with (AG x R, [, ] %, p%).

From (1.55) and (5.59), it follows that the projections (o, ), (8,)T, the
inclusion (e,)7 and the partial multiplication of the tangent Lie groupoid
T(Gx M) = T(M x R) are given by

(a0)"(Xy+A%,)

= o’ (Xy) + (A + Xy(0) 5
(Bo)" (Y + gy,)

= 57 (Ya) +nfy,, for Ya+uf € Ting(G x R), (5.61)

(X, + )\%”) Sraxr) (Yn + HJ%S) = (Xy &rc Yp) + )‘%u’

), for Xy+ A2 € Tiyy(G xR),

lt+o(g ot

9
()T (Ko + AG ) = €(X,) + A G, for X, + A%t € Tany(M x R).

On the other hand, using (1.58) and (5.59), we deduce that the projections
o, (35, the inclusion €, and the partial multiplication @7+ (GxR) in the cotan-
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gent groupoid T%(G x R) = A*G x R are defined by

g (kg + vot)
= (d(ug)v J(g) + t)7 for Mg + 7d0t|t € T(*g,t)(G X R)a

ﬁa(l/h + Cd0t|s)

= (B(vn) — C(doo)(e(B(9))), s), for vy + Cdotys € T, (G x R), (5.62)
(pg + vdoty) B (axr)y (Vn + Cdots)

= (kg + C(doo)(9)) B v + (v + ()doty;

€ (e, t) = €(pz) + 0dotyy, for (p,,t) € ALG xR
Now, suppose that 7 is a contact 1-form on G in such a way that (G =
M,n, o) is a contact groupoid. If 711 : G Xx R — G and 7y : G x R — R are
the canonical projections, then the function & on G x R defined by ¢ = ooy
is multiplicative and the 2-form €2 on G x R given by

Q0 = —(7i(don) + 3 (dot) A 71 (1)), (5.63)

is a l.c.s. structure on G x R with Lee 1-form w = —m5(dot).

Next, we will prove that (G x R = M x R,Q,w,d) is a l.c.s. groupoid.
In fact, from (5.1), (5.3), (5.61) and (5.63), we deduce that

miQ =170 + e Q,

7+ (G xR)? — G x R being the canonical projections. Moreover, using
(5.17) and (5.62), we obtain that

Grow=0, f00=0,
where 6 is the 1-form on G x R defined by 0 = €7 (dyg — w).
In addition, from (5.17), (5.59) and (5.61), it follows that

* .k *n _ (GoTy) *
miw =T w, m.0 =e 7, 0.

Furthermore, if (A, E) is the Jacobi structure on G x R associated with the
l.c.s. structure 2 and £ is the Reeb vector field on GG of the contact structure
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n then, using (1.9), (1.12) and (5.63), we have that F = —¢. Thus, from
Remark 1.1 and Proposition 5.3, we conclude that

Aw,0) = 0(#a(w)) = 0(§) = €7 (§(0) —w(§)) = 0.
Finally, a direct computation, using (5.17) and (5.62), proves that
(0 +w—¢60fB,0w)oe, =0.

Now, we will show that a l.c.s. symplectic groupoid is a Jacobi groupoid
(G = M, A, E, o) such that (A, F) is the Jacobi structure associated with a

l.c.s. structure.

Theorem 5.20 Let G =% M be a Lie groupoid, (2, w) be a l.c.s. structure
on G and o : G — R be a multiplicative function. If (A, E) is the Jacobi
structure associated with the l.c.s. structure (Q,w) then (G = M,Q,w, o) is
a l.c.s. groupoid if and only if (G = M, A\, E, o) is a Jacobi groupoid.

Proof: Assume that (G = M,Q,w,0) is a l.c.s. groupoid and denote by
ax, 3%, ®%. and & the structural functions of the o-cotangent groupoid
T*G = A*G. Using (5.52), we obtain that

Qe(2))(€9(X,), €(Y,)) = 0, for X,.,Y, € T, M. (5.64)

Now, suppose that g € G and that X, € T,G and Z,;) € Ayy)G. Then,
from (1.55), it follows that

Xg = Xg Pra 6:‘(9)(042()(9))7
(L) (Zoa) = g B16 Zag)-

Using these facts, (1.55), (1.58), (5.23), (5.52) and (5.64), we deduce that
i(gf(uf')(ag(xg)))Q(e(a(g))) = g(&;(ngQ(g)))' (5'65)
In a similar way, we prove that

Uesm (gn iy SEB(R))) = (B (v, Q2(h))), (5.66)
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for Y, € T),G.

Thus, if p1y € T,;G and vy, € T; G satisfy & (11y) = 3%(vy,) then, from (5.65)
and (5.66) (taking X, = #4(uy) and Y), = #4(v,)), we have that

which implies that € (a” (#4(py)) = € (87 (#4(v4)) and therefore

e ea ) U] = T 200 g

Vp

o’ (#alug)) = B (#a(vn))-
Moreover, using (1.58), (5.23), (5.52) and Remark 1.1, we conclude that

(Tt n (g @5 o) $2(91) ) (X g D16 Yi)
= (i#a(ug)oratan)SUgh))(Xy Bra Ya),

for (X,,Y;) € TunG®. Consequently (see Remark 1.1), it follows that
#A (g BT ) = #a(1y) Bre #a(v) and, thus, the map #, : TG — TG
is a Lie groupoid morphism over some map ¢y : A*G' — T'M, between the
o-cotangent groupoid T*G = A*G and the tangent groupoid TG = TM. In
particular, this implies that

afoffa=@ood,,  [Todn=poof; (5.67)
Using (5.53), (5.67) and since E' = —#,(w), we deduce that the vector field
E is a-vertical.
Next, suppose that (g,h) € G® and denote by Ry, : Gany — Gam) the
right-translation by h. Then, (1.12), (5.52) and (5.54) imply that

(i m(gn)Ugh))(Xy ©ra Yi) = (i(ry2E@) 2(9h)(Xy ©ra Yi),

for (X,,Y) € T(gjh)G(Q). Consequently, E is a right-invariant vector field and
there exists Xy € I'(AG) such that F = ~X,.

On the other hand, if Hiﬁ’E) is the hamiltonian vector field of the function
e, it is clear that H™) = #4(6). Using this equality, (5.53), (5.54), (5.67)



160 Chapter 5. Jacobi groupoids and Jacobi bialgebroids

and proceeding as in the proof of the fact that F is right-invariant, we con-
clude that HEQ’E) is a left-invariant vector field. Furthermore, if = is a point
of M, then relation (5.55) implies that H>"™ (e(z)) = —Xo(e(z)). Thus,
#a(doo) = Yo — e“’<)_(0.

Finally, since A(w,0) = 0 and E = —#,(w), we obtain that E(s) = 0.
Therefore, (G = M, A, E,0) is a Jacobi groupoid (see Theorem 5.13).

In a similar way, one can prove the converse.

Remark 5.21 Using Theorem 5.20 (see also Section 5.3.1 and Examples
5.19) we directly deduce that a symplectic groupoid is a Poisson groupoid.
This result was first proved in [117].

5.3.4 Jacobi-Lie groups

Let (G = M, A, E,0) be a Jacobi groupoid over a single point, that is, G is
a Lie group and M = {e}, ¢ being the identity element in G. Then, using
Theorem 5.13 and Proposition 5.15, it follows that :

i) A is o-multiplicative, i.e.,
Agh) = (Ru)2(A(9)) + e 7 (Ly) 1 (A(R)), (5.68)
for g,h € G.
i) E is a right-invariant vector field, F(e) = —Xj.
iii) #a(doo) = Xo — e~ X .

Conversely, suppose that G is a Lie group endowed with a Jacobi structure
(A, E) and o : G — R is a multiplicative function in such a way that i), i)
and 41i) hold. If i, € T;G and vy, € TjG satisty & (p1y) = 3%(vp) then, from
(5.23), we have that

a1y) = By, (5.69)

Thus, using (1.57), (1.58), (1.59), (5.23), (5.68) and (5.69), we deduce that

H#a(ttg BT V) = F#a(ltg) Bra #a(Vn).
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Therefore, the map #, : TG — TG is a Lie groupoid morphism from the

o-cotangent groupoid to the tangent groupoid.

On the other hand, from i) and since ¢ is a multiplicative funcion, we obtain
that Xo(o) = 0, which implies that E(c) = 0. Consequently, we have proved
that (G = {e}, A, E, 0) is a Jacobi groupoid (see Theorem 5.13).

If G is a Lie group, (A, E) is a Jacobi structure on G and 0 : G — R is a

multiplicative function such that i), 1) and 4ii) hold then (G, A, E, o) is said
to be a Jacobi-Lie group.

5.3.5 An abelian Jacobi groupoid

Let (L, [, ], p) be a Lie algebroid over M and II.« be the corresponding linear
Poisson structure on the dual bundle L* (see Example 8 in Section 1.2.2).
We may consider on L* the Lie groupoid structure for which a = (3 is the
vector bundle projection and the partial multiplication is the addition in the
fibers. Then, L* with the Poisson structure II;« is a Poisson groupoid (see
[117]).

Now, suppose that o € I'(L*) is a 1-cocycle of L and denote by (A(g+ ),
E(1+ u0)) the Jacobi structure on L* given by (2.7). Note that:

i) The Liouville vector field Ap. of L* and the vertical lift u§ € X(L*) of
1o to L* are a-vertical and (-vertical vector fields on L*, and

ii) py is a right-invariant and left-invariant vector field on L*.

Using i), ), (1.56), (2.7), (5.8), (5.15) and the fact that (L*, II;«) is a Poisson
groupoid, we deduce that (L* = M, A(z+ o), £+ 1), 0) is a Jacobi groupoid.

5.3.6 The banal Jacobi groupoid

Let M be a differentiable manifold. The results in Section 1.3.2 (see Examples
2 and 3 in Section 1.3.2) imply that G = M x R x M is a Lie groupoid
over M and, moreover, the function ¢ : G — R given by o(x,t,y) = t

is multiplicative. Thus, we can consider the corresponding Lie groupoids
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TG xR=TM xR and T*G x R = A*G with structural functions defined
by (5.8) and (5.15).

On the other hand, the map ® : TM x R — AG given by
0

O(X,,A) = (0, = ,

(Xa, A) = ( B0

for (X,,A\) € T, M x R, defines an isomorphism between the Lie algebroids
(TM xR,[, ],m) (see Section 1.2.2) and AG. Thus, AG may be identified
with TM x R and, under this identification, the projections and the partial

Xa;) € T(Lo,x)G, (5.70)

multiplications on TG x R and T*G x R are given by
(@) (Xzyagy,, Yy), A) = (Yy,a+ N),

ot 1y
(B7)o (X5, a5 Yy ) X) = (X5 N,
(Xaragy,, Yy), N) @rexr (Y, d' 55, Yy) a + X)
= ((Xa, (a+a)dt\t+t”y;//) A,

ao (i, adotye, 0y),7) = (€704, 7),
B (1, @ dotyyr, 0),7") = (=, @ =),
((pz, adotys, 0y),7) Br=cxr ((—e 0y, dotpw, 0,),a" — e ta)
= ((pta, @€' dot v, €'0;,), v — a+ €' a’).

Now, suppose that (A, E) is a Jacobi structure on M. Then, it was proved
in [43] that the pair (A’, E’) is a Jacobi structure on G, where

N, ty) == (M) = &, A B@) + e (AW) + &, A W),
E'(z,t,y) = —E(x).
Furthermore, it follows that the map ¢ : A*G 2 T*M xR — T M x R given
by (5.33) is just the homomorphism # gy : T*M x R — TM x R. Using
the above facts, we conclude that (G = M, A, E’, o) is a Jacobi groupoid.

(5.71)

5.4 Jacobi groupoids and Jacobi bialgebroids

The aim of this Section is to show the relation between Jacobi groupoids and

Jacobi bialgebroids.
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5.4.1 Coisotropic submanifolds of a Jacobi manifold
and Jacobi algebroids

In this Section, we will prove that if S is a coisotropic submanifold of a Jacobi
manifold M then there exists a Jacobi algebroid structure on the conormal
bundle to S. For this purpose, we will need the following result.

Lemma 5.22 Let (M, A\, E) be a Jacobi manifold and ([, J(a,g) #(A,E)) be
the Lie algebroid structure on T*M x R. Suppose that S is a coisotropic
submanifold of M and that 7* : QY(M) x C*°(M,R) — Q(S) x C*(S,R)
is the map defined by 7 (u, f) = ()1, 7°f), 3+ S — M being the canonical
inclusion. Then:
i) Ker7* is a Lie subalgebra of the Lie algebra (Q'(M) x C*(M,R),
[[7 ]](A,E))
i) The subspace of QY (M) x C*°(M,R) defined by {(u, f) € Q' (M) x
C*(M,R) /s = 0,7*f = 0} is an ideal in KerJ*.

Proof: i) If (1, f), (v, g) € Q' (M) x C°°(M,R) satisfy
j*(:uaf):()? T(Vug):()a
it follows from (1.29) that

j*[[(,u, f)> (V7 g)]](AE)
= (" (iga(dov — igpo)dop — do(p(#4(V)))), (5.72)
T (u(FHa)) + #a(1)(g) = #a()(f)))

Now, since 7*u = 0,7"v = 0 and S is a coisotropic submanifold, it follows
that the restriction to S of the vector fields #, () and #,(v) is tangent to
S. Thus, from (5.72), we deduce that

fﬂ(ﬂa f)? (V7 g)]](A,E) = 0.

ii) If 4/ and v are 1-form on M, we will denote by [u/, '] the 1-form on M
given by

[V 1a = gy dov” — iy ydop’ — do(p' (#4()))-
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Note that

[ [V Ta = I v Ia + #a (W) ()Y, (5.73)
for f € C(M,R).
Next, suppose that (u, f), (v,g) € QY (M) x C°°(M,R) satisfy the following

conditions
/‘L|S:07 ]*f:()a j*(ug) = 0.

Then, proceeding as in the proof of i), we have that

[(1e. 1), (v, O] s,y = ([, v]ays, 0)-

Thus, if = is a point of S, we must prove that [u,v]s(x) = 0. For this
purpose, we consider a coordinate neighborhood (U, ) of M with coordinates

(T1,. .., T, Tpit, - - -, Ty) such that

e(UNS)={(x1,...,2m) €@U) [/ Tps1 = ... =2y =0},

Here, n (respectively, m) is the dimension of S (respectively, M). Then, on
U

n

= i/f dox;, v = Z v doyxj + i * dyzy, (5.74)
i=1

j=1 k=n+1
with
St =0, 77 =0, (5.75)

foralli € {1,...,m} and j € {1,...,n}.

Note that, since S is a coisotropic submanifold of M, it follows that

#a(dozy)is(p') = 0, (5.76)
foralli € {1,...,m} and k € {n+1,...,m}. Therefore, using (5.73)-(5.76),
we conclude that [, v]a(z) = 0.

Now, we will show the main result of the Section.

Proposition 5.23 Let (M, A, E) be a Jacobi manifold and ([, [(a,5), #(A,E))
be the Lie algebroid structure on T*M x R. Suppose that S is a coisotropic
submanifold of M. Then:
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i) The conormal bundle to S, N(S) = (T'S)° — S, admits a Lie algebroid
structure ([, |s, ps) defined by
[ v]s(x) = (m[(,0), (7, 0)]ap)(2),
ps(u)(x) = #alpa),

for p,v € T(TS°) and © € S, where m : Q' (M) x C*(M,R) —
QY(M) is the projection onto the first factor and ji and U are arbitrary

(5.77)

extensions to M of p and v, respectively.

ii) The section Es of the vector bundle N(S)* — S characterized by

p(Es(r)) = —p(E(x)), (5.78)

forallp € NS = (T,5)° and x € S, is a 1-cocycle of the Lie algebroid
(N(S), [[7 ]]S: ps)-

Proof: i) follows from Lemma 5.22 and i) follows using (5.78) and the fact
that (—F,0) € X(M) x C*(M,R) is a 1-cocycle of the Lie algebroid (7 M x
R, [, la,m), #a,5)) (see Example 4 in Section 1.2.2). QED

Remark 5.24 If the Jacobi manifold M is Poisson (that is, £ = 0) then
the 1-cocycle Eg identically vanishes and ([, ]s, ps) is just the Lie algebroid
structure obtained by Weinstein in [117].

5.4.2 The Jacobi bialgebroid of a Jacobi groupoid

In this Section, we will show that Jacobi bialgebroids are the infinitesimal
invariants for Jacobi groupoids.

Let (G = M,A,E o) be a Jacobi groupoid and (AG,[, ],p) be the Lie
algebroid of G. Then, F is a right-invariant vector field and, thus, there exists
a section Xy of AG such that E = —X, (see Theorem 5.13). Moreover, the
conormal bundle to M, as a submanifold of G, may be identified with A*G.
In fact, the inclusion € : A*G — TG of the cotangent groupoid TG = A*G
induces an isomorphism between A*G and the conormal bundle to M.
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Now, we consider the section ¢ of A*G given by
Po(Xz) = Xa(0), (5.79)

for X, € A,G and x € M. Since ¢ is a Lie groupoid 1-cocycle, it follows
that ¢ is a 1-cocycle of the Lie algebroid AG (see [120]).

On the other hand, using that M = ¢(M) is a coisotropic submanifold of G,
we deduce that there exists a Lie algebroid structure ([, J., p«) on A*G and,
furthermore, the vector field E induces a 1-cocycle Ey; € T'(AG) of A*G (see
Proposition 5.23). In fact, from Proposition 5.23, we have that F,; = X,

and __ __
[[:uv V]]*(J:) = M [[(g o W, 0)7 (g ov, O)H(A,E)(E(ﬁ))a

p()(@) = ol (F#a(E(na)),

for pu,v € I'(A*G) and © € M, where €/<;¢ and € o v are arbitrary extensions

(5.80)

to G of éop and €ov, respectively. Note that, since M = ¢(M) is a coisotropic
submanifold of G (see Proposition 5.15), it follows that

e (p+(n)(@)) = #a(€(pa)). (5.81)

Note that, from (5.33) and (5.80), we have that ¢y = (ps, Xo), where

(s Xo) (112) = (P (), pre(Xo())), (5.82)

for u, € A;G. In addition, we will prove the following result.

Theorem 5.25 Let (G = M, A\, E,0) be a Jacobi groupoid. Then, the pair
((AG, ¢0), (A*G, X0)) is a Jacobi bialgebroid.

Proof: Denote by dX° the X,-differential of the Lie algebroid (A*G, [, ]+, ps)-
We will show that
X
¢ (Lo) A = —dXX. (5.83)
for X € T'(AG). Suppose that pq, o are any sections of A*G. Let €fc;/,ul,
€ o yu, be any of their extensions to 1-forms on G. Then, using (1.21), (1.29),
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3.2), (5.80) and the fact that o) = 0, we have that
e(M)

(e (Lo)gh) (1o 1e)
= ((0£0) 0 ) 0 2 = (£0) ) © 11 — A(ES 13,0 1) )(X)
(€0 19) (€0 1y (X)) — #a (€0 1) (E0 1o X0)) )
= 11, p2] (X)) + pu(p2) (pa (X))
—pu(p1) (p2(X)) — (Xo A X) (1, po)
= —(dX0X) (. o).

le(M)

Thus, since —c<ZfTX and e"(ﬁo);{/\ are left-invariant 2-vectors (see Proposi-
tion 5.17) and their evaluation coincides on the conormal bundle A*G, we
deduce (5.83).

Using (1.53), (5.79) and (5.83), we obtain that

d[X,Y] = —€%(Lo) g A
= (Lo)(e7(Lo) A) = Y (0)(€7 (L) )
—(Lo)(e7(Lo) A) + X () (€7 (Lo) -A) (5.84)

= [X, dfoy]] - ¢0(X)dfOY

—[Y,d°X] + ¢o(YV)d° X,
for X, Y € I'(AG). Thus, from (3.22) and (5.84), we conclude that
d[X, Y] = [X, df°Y]™ — [V a0 X]*,

for X, Y € I'(AG).
Now, (5.79), the condition E(o) = —)?0(0') = 0 (see Theorem 5.13) and
the fact that o is a multiplicative function imply that ¢o(Xy) o @ = 0 and,
therefore,

do(Xo) = 0. (5.85)

Furthermore, if x € M then, from (5.34), (5.79) and (5.81), we deduce that

€1(p-(00) (@) = #a(doo) (€(x)) = Ko(e(w)) = Ko(e(w)) = =X (o™ (Xo(x))),
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that is, (see (1.52)),
pe(d0)(2) = —=p(Xo)(). (5.86)
On the other hand, using (5.79), (5.83) and (5.85), it follows that

€ i (. X) = —idyo((Lo) ) + €7 (00(X) 0 @) Xo.

Consequently, using again (5.79), we have that
Qo (A X) = —(z'dog((/lo))«?A)) o€+ ¢o(X)Xo. (5.87)
Finally, from (5.34) and (5.79), we deduce that

0=[X.X0] = dao((Lo)gA) + #aldo(90(X) 0 @)
—e™(¢0(X) 0 )Xo + e [X, Xal,
which implies that (see (1.21), (5.79), (5.80) and (5.87))

Z¢0(d*X) +d*(¢0<X)) —|— [[Xo,X]] - 0 OED
Before describing the examples, we will relate the Jacobi structure on GG and

the Jacobi structure on M induced by the Jacobi bialgebroid structure of
Theorem 5.25.

Proposition 5.26 Let (G = M, A, E,0) be a Jacobi groupoid and (Ag, Ey)
be the Jacobi structure on M induced by the Jacobi bialgebroid ((AG, ¢o),
(A*G, Xy)). Then, the projection [ is a Jacobi antimorphism between the
Jacobi manifolds (G, A, E) and (M, Ao, Eo) and the pair (o, €7) is a conformal

Jacobi morphism.

Proof: Denote by { , } g (respectively, { , }(om,)) the Jacobi bracket
associated with the Jacobi structure (A, E) (respectively, (Ao, Ey)). Then,

we must prove that

{B*flvﬁ*fQ}(A,E) = _ﬁ*{fbe}(Ao,Eo)a
e 7{e’a* fi,e7a* fa}a,m) = @™ { f1, fo}(ro,E0)
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for f1, f € C*(M,R).

Now, if (p., Xo) : T'(A*G) — X(M) x C*(M,R) is the map given by
(5.82) and (p,¢0) : T(AG) — X(M) x C*°(M,R) is the homomorphism
of C*°(M,R)-modules defined by (3.9) then, from (3.46), (3.47), (5.82), it
follows that

#(80.E0) = (P Xo) © (p, o), (5.88)

where (p, ¢o)* : QY(M) x C°(M,R) — T'(A*G) is the adjoint operator of the
homomorphism (p, ¢g). In particular,

#ao(10) = p+(p*(110)), (5.89)
for o € QY(M).
Using (5.8) and since (67), 0 #1.x) = (ps, Xo) © 3, we have that
{8 1,8 ftwm = (#FHap(Bdofr, B f1), (B dof2, B f2))
= <( 5) O#A,E))(ﬁ*dofl,ﬁ*fﬂ,(doﬁ0575*f2)>
= (((ps, Xo) 0 Ba)(ﬁ*dofhﬁ*ﬁ), (dof2 0 B, B f2))-
From (1.52), (1.58), (3.9), (5.15) and (5.79), we deduce that

B (B2 (5(0))s A) = —(ps $0)" (15(9): M)
yM x R. Using this fact and (5.88), we get that

{8 f1. 8" f2} am) = B {1, fo} (ro, o)

On the other hand, using (1.52), (5.8), (5.89), Remark 5.14 and since (o), o
#(\E) = (ps, Xo) © &, we obtain that

e {e’a* f1,e7a" fo} (a,p)
= e 7 (#n,p) (do(e7a” f1), e7a” fi), (do(e”a” f2), e7a” f2))
=e’(((a”)y 0 #am)(a*dofr, " fr), (dofa 0 o, @ fo))
+e? (" f1)(#a,p)(do0, 0), (@ (do f2), " f2))
e?{((px, Xo) 0 a5)(a*(dof1), " f1), (dofo 0 o, 0" fo))
+a*(fiEo(f2))-

—_— =

for (1s(0), M) € T,
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Now, from (1.52), (1.58), (3.9), (5.15) and (5.79), it follows that

eg(g)&a((ai)*(/v‘a(g))a )\) = (p7 ¢0)*<Na(g)7 0>’

for (pa(g), A) € Ty yM x R. Therefore,

e 7{e’a” fr, e’ fatamy = & { f1, f2} (Ao, o)
{ 1 2} (A,B) 115 ot o0

Next, we will describe the Jacobi bialgebroids associated with some exam-
ples of Jacobi groupoids. We remark that two Jacobi bialgebroids ((A, ¢o),
(A*, Xo)) and ((B, po), (B*, Yp)) over a manifold M are isomorphic if there ex-
ists a Lie algebroid isomorphism Z : A — B (over the identity Id : M — M)
such that Z(Xy) = Y and, in addition, the adjoint operator Z* : B* — A* is
also a Lie algebroid isomorphism satisfying Z*(1o) = ¢o.

Examples 5.27 1.-Poisson groupoids

If (G, A, E,0) is a Jacobi groupoid with £ = 0 and o = 0, that is, (G,A) is a
Poisson groupoid, then we have that ¢ and X, identically vanish (see (5.79)
and Remark 5.24). Therefore, (3.33) and Theorem 5.25 imply a well-known
result (see [83, 120]): if (G, A) is a Poisson groupoid then the pair (AG, A*G)
is a Lie bialgebroid.

2.-Contact groupoids

Let (G = M,n,0) be a contact groupoid and (A, F) be the Jacobi structure
associated with the contact 1-form 7. Then, (G = M, A, E, o) is a Jacobi
groupoid.

Now, denote by (Ag, Ey) the Jacobi structure on M characterized by the
conditions (5.6), by Xy the section of the Lie algebroid AG of G satisfying
E = —)—(—5 and by Z : T*M x R — AG the Lie algebroid isomorphism given
by (5.7). If we consider the section (0,—1) € Q'(M) x C*°(M,R) of the
vector bundle T*M x R — M, we have that (see (5.7))

7(0,—1) = X,. (5.90)
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Moreover, if Z* : A*G — TM x R is the adjoint operator of Z, from (5.7), it
follows that

T (ve) = (o (#a(e(1a))), —va(Xo(2))), (5.91)
for v, € ALG, where € is the inclusion in the Lie groupoid T*G = A*G.

Next, denote by ([ , ]_,7_) the Lie algebroid structure on the vector bundle
TM x R — M defined by

(X, ), Vo9l = (=[X, Y], =(X(9) =Y (), 7 (X, f)=-X,

for (X, f), (Y, g) € X(M) x C=(M,R).

On the other hand, if on the vector bundle TG x R — G we consider the
natural Lie algebroid structure (see Section 1.2.2) then the map # p) :
TG x R — TG x R is a Lie algebroid homomorphism between the Lie
algebroids (TG xR, [, [(a,5), %E(A,E)) and TG xR. Using this fact, (5.80) and
since M = ¢(M) is a coisotropic submanifold of G, we deduce that Z* defines
an isomorphism between the Lie algebroids A*G and (TM xR,[ , ]_,7_-). In
addition, from (5.91) and Proposition 5.3, we obtain that Z*(¢,) = (—Ej, 0).

In conclusion, if on the vector bundle T*M x R — M (respectively, TM x
R — M) we consider the Lie algebroid structure ([, ]](AO,E()%#(AO,EO)) (res-
pectively, ([ , ]_,m—)) then the Jacobi bialgebroids ((AG, ¢o), (A*G, X))
and ((T*M x R,(—Ep,0)),(TM x R,(0,—1))) are isomorphic. Note that
the Jacobi structure on M induced by the Jacobi bialgebroid ((7*M x R,
(—Ep,0)), (TM x R, (0,—1))) is just (Ao, Eo) (see (3.45)).

3.-L.c.s. groupoids
Let (G = M,Q,w,0) be a l.c.s. groupoid and € be the 1-form on G given
by (5.51). Then, (G = M, A, E,0) is a Jacobi groupoid, where (A, E) is the
Jacobi structure associated with the lc.s. structure (2,w). Furthermore,
the 1-form 76 is closed and since 306 = 0, it follows that 6 is basic with
respect to the projection «. Thus, there exists a unique closed 1-form 6y on
M such that

a*fy =e70. (5.92)
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Note that if Y}, € T,,G then
(B°00) (W) (Ys) = Oo(B(h))(as "™ (™ (5(12))))
= (e70)(e(B())) (™ (52 (Y2)))

and, since o is multiplicative, ig{) = w and F is a right-invariant vector field,

(8700) (h)(Yn) = —{(e 0 B)"(w)}(h)(Ya) = —w(h)(Ya),
that is,
B0y = —w. (5.93)
On the other hand, #,(0) is the hamiltonian vector field Heﬁ’E) of the func-
tion e?. Moreover, from Theorems 3.13 and 5.20, and Proposition 5.26, we
deduce that there exists a Jacobi structure (Ao, Ey) on M in such a way

that the couple («,e?) is a conformal Jacobi morphism between the Jacobi
manifolds (G, A, F) and (M, Ay, Ep). This implies that
#ro(ate) (0o(a(g))) = €7D (af o #a() o (af)*)(o(alg)))
= af(HZ"(9) = Eo(alg)),
for g € G, where (af)* : T3 M — TG is the adjoint map of the tangent
map of : TyG — T, M. Therefore, we have proved that #a,(6y) = Eb.
Next, we will describe the Lie algebroid associated with a l.c.s. groupoid.

Theorem 5.28 Let (G = M,Q,w,0) be a l.c.s. groupoid, AG be the Lie
algebroid of G, (A, E) be the Jacobi structure on G associated with the l.c.s.
structure (Q,w) and (Ao, Ey) be the corresponding Jacobi structure on M.
Then, the map ¥ : QY(M) — X1 (G) between QY (M) and the space X1(G)
of left-invariant vector fields on G defined by V(u) = e?#x(a*p) induces an
isomorphism between the vector bundles T*M and AG. Under this isomor-
phism, the Lie bracket on I'(AG) = X(G) and the anchor map of AG are
given by

[k, v r0.E000) = (Lo)sag 0V — (Lo)gay it — do(Ao(pt,v))

—igy (0 A V) — No(p, V)00,

H#(ho,Fo00) (1) = H#ao (1),

for u,v € QY (M), where 0y is the 1-form on M characterized by (5.92).
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Proof: Let pu be a 1-form on M. Since the map #, : T°G — TG is
a morphism between the o-cotangent groupoid and the tangent groupoid
TG = TM over some map @g : A*G — T M, we obtain the that vector field
X = U(u) is f-vertical. In fact, if g € G then (see (1.58))

B(X(9) = @B #ala 1)(9))
= "Dgo(B((a"p)(g))) = 0.
Moreover, if (g,h) € G® and L, : G*9 — G is the left-translation by g
then, using Remark 1.1 and the fact that ¢ is multiplicative, we deduce that
(i3 (gny 2 gM) Yy ©ra Z1) = =" De” W p(a(h)) (al(Z1)),

for (Yy, Z1,) € T(ymG®. Thus, from (5.52), it follows that

ZX(gh)Q(gh) = iOQEBTGX(h)Q(gh)

and, as X is a B-vertical vector field, we have that

iX(gh)Q<gh) = i(Lg)Q(X(h))Q(gh>a

that is, X (gh) = (L,)"(X(h)). This proves that X € %.(G).

*

Conversely, assume that X € X(G) and consider the 1-form on G defined
by ji = —izQ. We will show that ¥(u) = X, where y is the 1-form on M
given by

p=€f.
If ge Gand Y, € T,G then

X(9) =0y @ra X(e(alg), Yy =Y, Brg 9 (ed(Yy)). (5.94)
Therefore, using (5.52) and (5.94), we deduce that

ig)(Y,) = e"@(e(a(9))(X(e(alg))), e (e(Y,))
= @ fi(e(af g

NS
~—
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—~
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—~
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—~
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Consequently, ¥(u) = X.



174 Chapter 5. Jacobi groupoids and Jacobi bialgebroids

On the other hand, using that the map #, : Q'(G) — X(G) is an iso-
morphism of C*°(G, R)-modules, we conclude that ¥ is an isomorphism of
C>°(M,R)-modules. Note that U(fu) = (foa)U(u), for f € C*°(M,R) and
w e QHM).

Now, denote by ([, ],p) the Lie algebroid structure on AG and suppose
that X,Y € I'(AG). We have that the left-invariant vector field X is o
projectable to the vector field p(X). In addition, if p and v are 1-forms on
M satisfying W(u) = X and U(v) = Y then, from Proposition 5.26 and
since, o o € = 0, it follows that

P(X) = F(ro,50.00) (1)-
Using (5.53), we obtain that
wX)=wY) =0, (5.95)
which implies that (see (1.11))
i (L)) = (=Y (0)a"u+ (a*)(Y)(doo — )
+do((a*p) (V) = (Lo) 0" ).

Moreover, since ¢ is multiplicative and Y is a left-invariant vector field, we
deduce that

In addition, it is clear that

(ﬁo);a*ﬂ = a"((Lo)p(v)1)
and therefore,

i((Lo) ) = 7o’ (=(Lo)pyn — (Y(0) 0 €)p
+1(p(Y))b0 + do(1u(p(Y)))).

Furthermore, using that ¢ is multiplicative, we have that

(5.96)

p(Y) = #1,(v). (5.97)
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On the other hand, from (5.53) and since #,(0) = HEQ’E), it follows that

(Y (0) 0 ) (@) = —(@) (s (™ (e()))
which, by Proposition 5.26, implies that
Y (0) o€ = —v(Ey). (5.98)
Consequently, (see (5.96), (5.97) and (5.98)),
i((£0) <) = €70 (—(Lo) a1+ V(Eo)it — Ao, ) — do(Ao(s, v))).

Finally,
. o/ * *
(Eo);{(z;Q) =—e’(X(0)a"v + (Eo);{oz V)

and, using that Y(U) = —pu(Ep) o a and the fact that
(Lo) v = o™ ((Lo)px)v) = @ ((Lo)#ry (¥ — 1(Eo)v)

we conclude that

(L0)(1:82) = —e7a™((Lo) s, (v — w(Eo)v).

Thus,
oK, YD) = g 2= (Lo) (i) — ip-((Lo) )
= —6005*([[,[1, V]] (A07E0760))’
This ends the proof of our result. QED

Remark 5.29 Let (G = M, 2) be a symplectic groupoid. Then, the Jacobi
bialgebroid is a Lie bialgebroid (see Example 1 in Examples 5.27) and the
Jacobi structure on M is Poisson (see Example 3.4.1 in Chapter 3). In
addition, the 1-form 6y on M identically vanishes. Thus, AG is isomorphic
to the cotangent Lie algebroid T*M. This result was proved in [14].

Finally, let us describe the Jacobi bialgebroid associated with a l.c.s. group-
oid (G = M,Q,w,0).
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Theorem 5.30 Let (G = M,Q,w,0) be a l.c.s. groupoid, AG be the Lie
algebroid of G and ¢q (respectively, Xo) the corresponding 1-cocycle on AG
(respectively, A*G). Then, the Jacobi bialgebroid ((AG, ¢o), (A*G, Xy)) is
isomorphic to the pair ((T*M,—Ey), (TM~,—60y)), where TM~ denotes the
Lie algebroid structure on TM given by [ X,Y]|_ = —[X,Y] and —1d(X) =
-X, for XY € X(M).

Proof: If W :T*M — AG is the isomorphism defined in Theorem 5.28 then
V() = #a (@) (1), for v, € TFM. (5.99)
Thus,

V(1) = —al® (#a(E(1))), for p, € ALG.

Therefore, using (5.80), the fact that #u m[(7,0), (7,00 = [#a(),
#a(D)], for 1,7 € QYG) and since €(M) is a coisotropic submanifold of
G, we conclude that ¥* is also a Lie algebroid morphism.

On the other hand, from (5.93), it follows that

€ (87(6h)) = —€"(w),

which implies that
Oy = —€"(w). (5.100)

Finally, using (5.64), (5.99), (5.100) and since F = — X, we obtain that
\11(90) == —X(].

4.-Jacobi-Lie groups
Let G be a Lie group with identity element ¢, 0 : G — R be a multi-
plicative function and (A, E) be a Jacobi structure on G such that A is

o-multiplicative, F is a right-invariant vector field and

#1(doo)(9) = —B(g) + " (L) (E(e)),

for all ¢ € G. Then, (G = {e}, A, E,0) is a Jacobi groupoid (see Section
5.3.4) and the corresponding Jacobi bialgebroid is a Jacobi bialgebra. In
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fact, the Lie algebroid of G is just the Lie algebra g of G, that is, AG = g
and, from (5.79), it follows that ¢g = (doo)(e).

On the other hand, since A(e) = 0, one may consider the intrinsic derivative
5.\ : g — A%g of A at e. Moreover, using (1.29) and (5.80), we deduce that
the Lie bracket [, ]. on the dual space A*G = g* of g is given by

[, V] = [ v]a = p(E(e))v + v(E(e))n

for p,v € g*, where [, Jo : g* x g* — g* is the adjoint map of the intrinsic
derivative of A at e. In addition, the 1-cocycle Xy on g* is Xy = —E/(e).

5.-An abelian Jacobi groupoid

Let (L, [, ], p) be a Lie algebroid over a manifold M and uo € T'(L*) be a 1-
cocycle of L. We may consider on L* the Jacobi structure (A¢z+ o), £(1+ o))
given by (2.7) and the Lie groupoid structure for which aw = (3 is the vector
bundle projection 7 : L* — M and the partial multiplication is the addition
in the fibers. As we know (see Section 5.3.5), (L* = M, A+ uo)s 1+ i), 0) 18
a Jacobi groupoid and therefore we have the corresponding Jacobi bialgebroid
(A(L"), d = 0), (A7(L7), Xo)).

On the other hand, if 0 : M — L* is the zero section of L* and u € 77(z) =
L, we will denote by p¥(0(x)) € Ty L} the vertical lift of p to L* at the
point 0(x). Then, the map

v:L"— A(LY), wpelL;— p0(x)) e A (L"),

defines an isomorphism between the vector bundles L* and A(L*). Moreover,
using (2.7) and since aw = 7 and the Lie bracket of two left-invariant vector
fields on L* is zero, we conclude that:

i) v defines an isomorphism between the Lie algebroid L* (with the trivial
Lie algebroid structure), and A(L*) and

ZZ) V(,uo) = X().
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In addition, if v* : A*(L*) — L is the adjoint map of v : L* — A(L*)
then, from (1.29), (1.42), (2.7) and (5.80), we deduce that v* induces an
isomorphism between the Lie algebroids A*(L*) and (L, [, ], p).

Therefore, we have proved that the Jacobi bialgebroids ((A(L*),0), (A*(L*),
Xo)) and ((L*,0), (L, po)) are isomorphic.

6.- The banal Jacobi groupoid

Let (M, A, E) be a Jacobi manifold and G the product manifold M x R x M.
Denote by (A’, E') the Jacobi structure on G given by (5.71) and by o :
G — R the function defined by o(z,t,y) = t. Then, one may consider a Lie
groupoid structure in G over M in such a way that (G = M, E',0) is a
Jacobi groupoid (see Section 5.3.6). Thus, we have the corresponding Jacobi
bialgebroid ((AG, ¢y), (A*G, Xp)). As we know, the map ® : TM xR — AG
given by (5.70) defines an isomorphism between the Lie algebroids (T'M X
R,[ , ],7) and AG and, moreover, it follows that ®(—FE,0) = X.

Now, let ®* : A*G — T*M x R be the adjoint map of ®. Then, using (1.29),
(5.70), (5.71) and (5.79), we deduce that ®* induces an isomorphism between
the Lie algebroids A*G and (T*M x R, [, ]](A,E)a%z(A,E)) and, in addition,
®*(¢o) = (0, 1).

Therefore, we have proved that the Jacobi bialgebroids ((AG, ¢y), (A*G, X))
and ((T'M xR, (0,1)),(T*M x R, (—FE,0))) are isomorphic.

5.4.3 Integration of Jacobi bialgebroids
In this Section, we will show a converse of Theorem 5.25, that is, we will show
that one may integrate a Jacobi bialgebroid and obtain a Jacobi groupoid.

Jacobi groupoids and Poisson groupoids

In this first part, we will prove that a Poisson groupoid can be obtained from
any Jacobi groupoid and we will show the relation between the Jacobi bial-
gebroid associated with the Jacobi groupoid and the Lie bialgebroid induced
by the Poisson groupoid.
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Let G = M be a Lie groupoid and ¢ : G — R be a multiplicative function.
Then, using the multiplicative character of o, we have defined a right action
of G = M on the canonical projection m : M x R — M by (5.56) and the
corresponding action groupoid may be identified with G x R = M x R with
the structural functions given by (5.59). Moreover, the Lie algebroid of the
Lie groupoid G x R = M x R may be identified with (AG x R, [, ] %, p%),
where ¢q is the 1-cocycle on AG given by (5.57).

We also have the following result.

Proposition 5.31 Let G = M be a Lie groupoid and 0 : G — R be a
multiplicative function. Suppose that (A, E) is a Jacobi structure on G, that
Il = e “(A+ & AE) is the Poissonization on G x R and that in G x R
we consider the Lie groupoid structure on M x R with structural functions
given by (5.59). Then, (G = M, A\, E, o) is a Jacobi groupoid if and only if
(G xR = M xR, 1) is a Poisson groupoid.

Proof: From (1.19), we have that the homomorphism #p : 7%(G x R) —
T(G x R) is given by

(g +2dot) = e (#(0g) +7B(9) ~ m(Bla)) 5 ), (5.100)

for pg + ydoty € T(, ;) (G X R).

Now, we consider in T7*G xR (respectively, T'G' xR) the Lie groupoid structure
over A*G (respectively, TM x R) with structural functions defined by (5.15)
(respectively, (5.8)). Then, an straightforward computation, using (1.55),
(1.58), (5.8), (5.10), (5.15), (5.61), (5.62) and (5.101), shows that # g) :
T*G xR — TG x R is a Lie groupoid morphism over some map g : A*G —
TM x R if and only if #5 : T*(G x R) — T(G x R) is a Lie groupoid
morphism over some map ¢y : A*G xR — T (M x R). This proves the result.

QED

Let ((4, ¢o), (A%, X)) be a Jacobi bialgebroid and denote by ([, ], p) (respec-
tively, ([, ]+, p«)) the Lie algebroid structure on A (respectively, A*). Then, if
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on the vector bundle A xR — M xR (respectively, A* xR — M xR) we con-
sider the Lie algebroid structure ([ , ] ?°, p%) (respectively, ([, ].X°, pX0))
then the pair (A xR, A* xR) is a Lie bialgebroid (see Theorem 3.29). In par-
ticular, if (G = M, A, E, o) is a Jacobi groupoid and AG is the Lie algebroid
of G then the pair (AG x R, A*G x R) is a Lie bialgebroid. Furthermore, we

have

Proposition 5.32 Let (G = M, A, E, o) be a Jacobi groupoid and (GxR =
M x R,II) be the corresponding Poisson groupoid. If ((AG, ¢o), (A*G, X))
(respectively, (A(G x R), A*(G x R))) is the Jacobi bialgebroid (respectively,
the Lie bialgebroid) associated with (G = M, A\, E, o) (respectively, (G X
R = M x R,II)), then the Lie bialgebroids (A(G x R), A*(G x R)) and
(AG x R, A*G x R) are isomorphic.

Proof: Denote by ([, [, p) and ([, ]«, p«) the Lie algebroid structures on AG
and A*G, respectively, and by J : A(G x R) — AG x R the isomorphism
between the Lie algebroids A(G x R) and (AG x R,[, ], p%) given by
(5.60).

Now, let J* : T*G x R x R — T*(G x R) be the map defined by

j*(ug77>t) = g T+ ’Ydot\t,

for py € T)G and 7,t € R.

If we identify A*G (respectively, A*(G x R)) with the conormal bundle of
e(M) (respectively, €,(M x R)) then the restriction of J* to A*G'x {0} xR =
A*G x R is just the adjoint operator J* : A*G x R — A*(G x R) of J.
Therefore, from (2.12), (3.87), (5.80) and Remark 5.24, we conclude that the

map J* is an isomorphism between the Lie algebroids (A*G xR, [, ], pX°)
and A*(G x R).

Integration of Jacobi bialgebroids

Next, we will show a converse of Theorem 5.25.
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For this purpose, we will use the notion of the derivative of an affine k-vector
field on a Lie groupoid (see [85]). Let G be a Lie groupoid with Lie algebroid
AG and P be an affine k-vector field on G. Then, the derivative of P, 0P,
is the map 0P : T'(AG) — T'(A*(AQG)) defined as follows. If X € T'(AG),
dP(X) is the element in T'(A*(AG)) whose left translation is (Lo) P

Now, we will prove the announced result at the beginning of this Section.

Theorem 5.33 Let ((AG, ¢y), (A*G, Xy)) be a Jacobi bialgebroid where AG
15 the Lie algebroid of an a-connected and a-simply connected Lie groupoid
G = M. Then, there is a unique multiplicative function ¢ : G — R and
a unique Jacobi structure (A, E) on G that makes (G = M, A\, E, o) into a
Jacobi groupoid with Jacobi bialgebroid ((AG, ¢y), (A*G, Xy)).

Proof: Since G is a-connected and a-simply connected, we deduce that there

exists a unique multiplicative function o : G — R such that

for all X € I'(AG). The multiplicative function o : G — R allows us to
construct a Lie groupoid structure in G x R over M x R with structural
functions «,, 8,, m, and €, given by (5.59).

If ([, ],p) is the Lie algebroid structure on AG then, as we know, the Lie
algebroid of G x R is (AG x R, [, ]?,p?). Moreover, if ([ , ., ps) is
the Lie algebroid structure on A*G and we consider on the vector bundle
A*G xR — M x R the Lie algebroid structure ([, ],X°, pX°) given by (2.12),
it follows that the pair (AG x R, A*G x R) is a Lie bialgebroid. Therefore,
using Theorem 4.1 in [85], we obtain that there is a unique Poisson structure
IT on G x R that makes G x R into a Poisson groupoid with Lie bialgebroid
(AG x R, A*G x R). Thus, II is affine.

We will see that the 2-vector (on G x R) (E_O)%H + I is affine, where £,
is the Lie derivative on G x R. For this purpose, we will use the following

relation

3l

(Lo)g P =5 (5.102)
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for P € T(A*(AG x R)). Note that P is a time-dependent section of the
vector bundle A¥(AG) — M and, thus, one may consider the derivative of P

P
with respect to the time, o
- J .
From (5.102) and Proposition 5.17, we conclude that the vector field 5 8

affine. Consequently (see Proposition 2.5 in [85]), the 2-vector (L) 2 I+11
is also affine.

Next, we will show that the Poisson structure II is homogeneous with respect

0
to the vector field —. This fact implies that II is the Poissonization of a

Jacobi structure (A, E') on G (see Section 1.1.6). Moreover, from Propositions
5.31 and 5.32, we will have that (G = M, A, E, o) is a Jacobi groupoid with
Jacobi bialgebroid ((AG, ¢y), (A*G, Xo)).

Therefore, we must prove that Il is homogeneous. Now, using Theorem 2.6
in [85] and since G is a-connected and the 2-vector (L) 2 [T+ 1T is affine, we
t

deduce that II is homogeneous if and only if:
i) The derivative of the 2-vector (L) 21T+ 1T is zero and

ii) The restriction of the 2-vector (E_O)B@H +1IT to the points of ¢,(M x R)

1S zero.

First, we will show 7). If H' is a Poisson groupoid with Poisson structure I’
and Lie algebroid AH’, we have that (see Theorem 3.1 in [120])

(Lo) I = —d.X, (5.103)

for X € T'(AH'), where d, is the differential of the dual Lie algebroid A*H'.
Thus, from (5.102) and (5.103), it follows that

(Lo) ((£o)2T+TT) = (Lo)

K2
0X = 0(d¥X)
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for X € I'(AG x R). On the other hand, using (3.83), we obtain that

~Xo 5 = = 07z
4 °Z=c (d*Z+X0/\(Z+E)>,

for Z € T(AG x R), d, also denoting the differential of the Lie algebroid
(A*G x R, [, ], p«). Consequently, we deduce that

(Lo).((£) 2 TT+11) = 0.
Next, we will show ). If (x,t) is a point of M X R then
T (00 (G X R) 2 AL (G X R) @ ((a0)“9) (T, 1y (M x R)).

Therefore, if we denote by dy the usual differential on G x R and M x R, it
is enough to prove that

((Zo)%ﬂ + 1) (doFr, do F5) e, (mxr) = 0,

when Fj and Fy are either constant on €,(M x R) or equal to (ay,)* f;, with
fi € C®(M x R,R), i = 1,2. We will distinguish three cases:

First case. Suppose that F} = («o,)*f1 and Fy = (a,)* fo, with fi, fo €
C*(M x R,R). Denote by IIy the Poisson structure on M x R induced
by the Lie bialgebroid (AG x R, A*G x R) and by { , }n (respectively,
{, }m,) the Poisson bracket on G x R (respectively, M x R) associated with
IT (respectively, I1y). Then, from Proposition 5.31 and since the vector field

— on G x R is a,-projectable, it follows that

ot

%7 f2}H0

b + {f1, f2}n0>-

(L) T+ Moy, doF) = a5 (5L b, — |

dfs
Ry

Thus, using that the Poisson structure Il is homogeneous with respect to

o)
the vector field 5 0 M x R (see Theorem 3.29), we obtain that

((£0) o T+ TD)(do Fy, do F) = 0.
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Second case. Suppose that F; = (a,)* f1, with f; € C®°(M x R, R) and that
F; is constant on €,(M x R). Following the proof of Lemma 4.12 in [85], we
deduce that

{(ao)"f, Hn = ((p2°)"(dof)) (H), (5.104)
for f € C°(M x R,R) and H € C*(G x R,R). Note that (see (2.12))

(P2°)* (14 gdot) = e~ ((p.)" (1) + 9Xo), (5.105)

for g € C°(M xR, R) and p a time-dependent 1-form on M. Therefore, from

OF:
(5.102), (5.104), (5.105) and since 8_t2 = 0, we have that

o PRV o) — (020 (ol o) ()

—(p2°)"(do f1)(Fy)

9 oy Xoye( g (Of1
= 5 (7)o f1)) = (5.°)" (do(—5.7))

(%) (dof)(F2) = 0.

((£0) o T1 + T)(doF, doFs) =

Third case. Suppose that F; and F; are constant on €,(M x R). Then, using
that e,(M x R) is a coisotropic submanifold of (G x R,II), it follows that

{Fy, Fo}rje, (uxry = 0.
or oF,

Moreover, since il 0 and the restriction to ¢,(M x R) of the
vector field e is tangent to €,(M x R), we conclude that
((Zo)%n + H)(dOFl, d0F2)|eg(MXR) =0.

Examples 5.34 1.- Lie bialgebroids

Let (AG, A*G) be a Lie bialgebroid where AG is the Lie algebroid of an
a-connected and a-simply connected Lie groupoid G = M. Then, using
Theorem 5.33, we obtain that there exists a unique Poisson structure A on
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G that makes (G = M,A) into a Poisson groupoid with Lie bialgebroid
(AG, A*@). This result was proved in [85].

2.- Jacobi bialgebras

Let ((g, o), (g*, Xo)) be a Jacobi bialgebra and G' be a connected simply
connected Lie group with Lie algebra g. Then, using Theorem 5.33 (see also
Section 5.3.4), we deduce that there exists a unique multiplicative function
0 : G — R and a unique Jacobi structure (A, F) on G such that (G, A, E,0)
is a Jacobi-Lie group with Jacobi bialgebra ((g, ¢o), (g%, Xo)).

3.- Integration of Jacobi manifolds

Suppose that (M, Ag, Ep) is a Jacobi manifold and that (T*M xR, [, [(ae,z);
#(M,E@) is the corresponding Lie algebroid. Moreover, assume that there
exists an a-connected and a-simply connected Lie groupoid G = M with
Lie algebroid AG =T*M x R.

Then, the pair (A = T*M x R, Xy), (A* = TM x R, ¢y)) is a Jacobi bial-
gebroid, where Xy = (—Ep,0) € X(M) x C*(M,R) and ¢9 = (0,1) €
QY (M) x C°°(M,R) (see Section 3.4.2 and Theorem 3.31). Thus, using Theo-
rem 5.33, we obtain that there exists a unique multiplicative function o on
G and a unique Jacobi structure (A, E') on G such that (G = M, A, E,0) is
a Jacobi groupoid with Jacobi bialgebroid ((A, ¢o), (A*, Xo)).

On the other hand, if on the vector bundle A = A x R — M x R (re-
spectively, A* = A* x R — M x R) we consider the Lie algebroid struc-

ture ([, ]]8\(3 o)’ (F#(ro,B0)) %) (respectively, ([ , ]°%°,7%°) then, from Theo-
rem 3.29, we deduce that (A, A*) is a Lie bialgebroid.

Now, denote by Il the Poissonization on M x R of the Jacobi structure
(Ag, Ey). Then, the map T : A — T*(M x R) defined by
T(:ux: A, t) = et(:ux + A dot\t)v

for p, € Ty M and At € R, induces an isomorphism between the Lie bial-
gebroid (A, A*) and the Lie bialgebroid (T*(M x R),T(M x R)) associated
with the Poissonization Iy of (Ag, Ey) (see Section 3.5.2).
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In addition, as we know (see Proposition 5.31), the product manifold G x R
is a Lie groupoid on M x R and if IT is the Poissonization on G x R of (A, E),
we have that (G x R = M x R, II) is a Poisson groupoid with associated Lie
bialgebroid (A, A*) & (T*(M x R),T(M x R)). Therefore, using Theorem
5.3 in [85], we get that II is a symplectic structure which implies that (A, E)

is a Jacobi structure induced by a contact 1-form 7 on G (see Examples 1.5).

So, we conclude that given a Jacobi manifold (M, Ay, Ey) there always exists,
at least locally, a contact groupoid (G = M, n, o) such that AG = T*M x R.
This result was first proved in [23] (see also [2]). We remark that in [20] has
been shown in which conditions a Jacobi manifold can be integrated to a

contact groupoid.

4.- Triangular Jacobi bialgebroids
Let G = M be an a-connected Lie groupoid and ¢ : G — R be a mul-

tiplicative function. Moreover, let us consider the associated Lie algebroid
(AG,[, ], p) and the l-cocycle ¢, associated with o (see (5.79)). Suppose
that C is a ¢y-canonical section, that is, C € T'(A%2A) and

[C,C]? =o.

Then, we know that there exists a Lie algebroid structure ([, J«c, p«c) on A*G
and a 1-cocycle Xo = —#¢(¢o) such that ((AG, ¢y), (A*G, Xy)) is a Jacobi
bialgebroid (see Theorem 3.20).

Now, we introduce the 2-vector A and the vector field E defined by

—_—

A=eC—C, E=-Xo=+#cb), (5.106)

Using (1.53), Proposition 5.17 and the fact that o is a multiplicative function,
we have that A is a g-affine 2-vector field on G. Moreover, following the proof

of Theorem 3.1 in [79], it is not difficult to show that the following properties
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hold:
8.(Ag)) = =p(C)(B(9));

a.(A(g)) = e p(C)(a(g)),
A fr,8" f2) =0, (5.107)
Peody(arf)/\ 15 a left-invariant vector field on G,

ide(3+f)\ is a right-invariant vector field on G,

for g € G and f, f1, fo € C°(M,R).

On the other hand, denote by AD(G) the affinoid diagram of G (see the proof
of Proposition 5.15) and suppose that g and h are composable elements of
G such that a(g) = B(h) = x. Then, (gh, g, h,e(z)) is an element of AD(G)
and the following three types of covectors are conormal to AD(G) at the

point (gh, g, h, e(z)):

(=& (R9)2)"(©), (La)1)"(€), —((Ry o L)) (),

(=(B2")*(n), (82)*(n), 0,0),

(—(ag")* (1), 0, ()" (1), 0),
with § € T9,G, n € Tj M and p € T, M, where X and Y are (local)
bisections through the points g and h (X (z) = g and Y(z) = h). In fact,
these covectors span the whole conormal space of AD(G) (see the proof of
Theorem 2.8 in [120]). Using this fact, (5.107) and since A is a o-affine
2-vector field on G, we deduce that AD(G) is a coisotropic submanifold of

G x G x G x G with respect to the 2-vector SonGxGxGx G, which is
given by

Z (k. g, hyr) = " OA(K) — "D A(g) — " PA(R) + TOIA(r).

Moreover, if vy, 15 € T.(;)(e(M))°, the conormal space to Te,(e(M)), we get
that
A(E(l’))(l/l, 1/2) =0

and, therefore M is a coisotropic submanifold of G with respect to A. Thus,

the classical techniques of coisotropic calculus (see Theorem 4.5 in [118])
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allow us to deduce that the graph of the multiplication in G, {(g,h,gh) €
G x G xG/alg) = pF(h)}, is a coisotropic submanifold of G x G x G with
respect to = on G x G x G given by

(g, h, k) = "D A(g) + A(h) — 7D A(K).

This implies that the map #, : T*G — TG is a Lie groupoid morphism
from the o-cotangent groupoid TG = A*G to the tangent Lie groupoid
TG =TM.

Now, using that ¢ is multiplicative, we have that
#o(doo) =10,C. H#(doo) =g C. (5.108)

As a consequence,
#aldoo) = # 5 5(doo)

= ¢ %igC — i, (5.109)
= ?0 — €_a<)_(0.

Finally, let us show that (A, E) is a Jacobi structure on G. From (1.53),
(3.22), (5.106), (5.108) and (5.109), we have that

- -
[A,A] —2E A A= —[C,C]* +e72?C,C]%
Thus, since C is a ¢p-canonical section, we deduce that [A, A] = 2E A A.

On the other hand, using (5.106) and the fact that ¢o(Xo) = 0, we get that
E(o) = 0. Therefore, from (1.53), (3.22), (3.24) and (5.106), we deduce that

B, = 56, Cf = —i[C.CT% =0,

Consequently, using Theorem 5.13, it follows that (A, F) is a Jacobi structure
such that (G = M, A, E, o) is a Jacobi groupoid. This implies that the dual
vector bundle to AG, A*G, admits a Lie algebroid structure ([, ]., p«) and,
in addition, X, is a %ﬂycle of (A*G, [, ]+, p«) and the Xo-differential of dX
of A*G is given by dX°X = —¢?[X, A], for X € T(AG) (see (5.83)). Thus,
from (1.53), (3.22) and (5.79), we conclude that

X = [X,C]™,
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that is, the differential d,. of the Lie algebroid (A*G,[, ], p«) is given by
(3.70) and

[[7]]*:[[7]]*C7 Px = PxC-
In other words, the Jacobi groupoid (G = M, A, E, o) integrates the triangu-
lar Jacobi bialgebroid ((AG, ¢g), (A*G, Xj)) associated with the ¢o-canonical

section C.
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Future directions

e We have explained the fundamental role played by Poisson brackets in Phy-
sics. Two natural ways for Poisson algebras to arise from a manifold M are
through Poisson structures or presymplectic structures (closed 2-forms) on
M. Both structures are examples of Dirac structures in the sense of Courant-
Weinstein [15, 17]. A Dirac structure on a manifold M is a vector sub-bundle
L of the Whitney sum TM & T*M which is maximally isotropic under the
natural symmetric pairing on TM & T* M and such that the space of sections
of L, T(L), is closed under the Courant bracket [, ] on T'\TM @ T*M) =
X(M) ® QY(M). If L is a Dirac structure on M, then L is endowed with a
Lie algebroid structure over M and the leaves of the induced Lie algebroid
foliation F; on M are presymplectic manifolds. In the particular case when
the Dirac structure L comes from a Poisson structure IT on M, then L is
isomorphic to the cotangent Lie algebroid associated with II and F7; is just
the symplectic foliation of M (for more details, see [15]).

An algebraic treatment of Dirac structures was developed by Dorfman in [26]
using the notion of a complex over a Lie algebra. This treatment was applied

to the study of general Hamiltonian structures and their role in integrability.

191
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More recently, the properties of the Courant bracket [, ] have been systema-
tized by Liu, Weinstein and Xu [77] in the definition of a Courant algebroid
structure on a vector bundle £ — M (see also [78, 101]). The natural exam-
ple of a Courant algebroid is the Whitney sum E = A & A*, where the pair
(A, A*) is a Lie bialgebroid over M. On the other hand, one can introduce
the notion of a Dirac structure on a Courant algebroid as an extension of the
definition of a Dirac structure in the sense of Courant. Then, in [77] it is es-
tablished a correspondence between Lie bialgebroids and pairs of transverse
Dirac structures on Courant algebroids. Moreover, in [78] some applications
to Poisson reduction and to the theory of Poisson homogeneous spaces for
Poisson groupoids are given.

The correspondence between Poisson structures and symplectic groupoids
plays an important role in Poisson geometry; it offers, in particular, a unifying
framework for the study of hamiltonian and Poisson actions. In [6], the
authors extend this correspondence to the context of Dirac structures twisted
by a closed 3-form (see also [11]).

A proper definition of a Dirac structure on the vector bundle £'(M) =
(TM x R) ® (T*M x R), as a version of a Dirac structure in the Jacobi
setting, has been introduced by A. Wade in [113] (a £'(M)-Dirac structure
in our terminology). A &£'(M)-Dirac structure is a vector sub-bundle L of
EY(M) that is maximally isotropic under the natural symmetric pairing of
EY(M) and such that the space I'(L) is closed under a suitable bracket [, ]
on T'(EY(M)) (this bracket may be defined using the general algebraic con-
structions of Dorfman [26]). Apart from £(M)-Dirac structures which come
from Dirac structures on M or from Jacobi structures, other examples can
be obtained from an exact Poisson structure on M, from a 1-form on M (a
precontact structure in our terminology) or from a locally conformal presym-
plectic (l.c.p.) structure, that is, a pair (£2,w), where € is a 2-form on M, w
is a closed 1-form and dp€2 = w A §2 (see [113]).

If L is a £ (M)-Dirac structure, [, |, is the restriction to I'(L) x I'(L) of the
extended Courant bracket [, | and py, is the restriction to L of the canonical



Future directions 193

projection p : E'(M) — T'M, then the triple (L, [, ], pr) is a Lie algebroid
over M (see [113]). An important remark is that the section ¢, of the dual
bundle L* defined by ¢r(e) = f, for e = (X, f)+ (1, g) € I'(L), is a 1-cocycle
of the Lie algebroid (L, [, ];,pr). Therefore, we can obtain a Jacobi alge-
broid structure (L, ([, ],, pr), ¢1) from any E'(M)-Dirac structure. Anyway,
since £'(M)-Dirac structures are closely related with Jacobi structures, it is
not very surprising the presence of a Jacobi algebroid in the theory. Several
aspects related with the geometry of £'(M)-Dirac structures were discussed
by Wade in [113]. Moreover, in [50] we describe the nature of the induced
structure on the leaves of the characteristic foliation of a £!(M)-Dirac struc-
ture.

In addition, very recently, Grabowski and Marmo [34] have introduced the
notion of a Courant-Jacobi algebroid, a Jacobi version for Courant algebroids.
These structures happen to be a particular case of a purely algebraic structure
described in [107]. Using the results of [107], Grabowski and Marmo prove
that every Jacobi bialgebroid ((A, ¢o), (A%, Xo)) induces a Jacobi-Courant
algebroid structure on A@® A* which admits a pair of transverse Dirac-Jacobi

structures.

Therefore, if (G = M,A, E,0) is a Jacobi groupoid and ((AG, ¢y), (A*G,
Xp)) is the corresponding Jacobi bialgebroid, a natural question arises: Is it
possible to introduce the notion of a Jacobi homogeneous space of GG in such a
way that Dirac-Jacobi structures of the Jacobi-Courant algebroid AG & A*G
may be described in terms of Jacobi homogeneous spaces of G? The idea is to
extend the one-to-one correspondence between Poisson homogeneous spaces
of a Poisson groupoid (G = M,II) and Dirac structures of the Courant
algebroid AG @ A*G (see [78]). On the other hand, as in the Poisson setting,
it is probable that Dirac-Jacobi structures may be applied to the Jacobi
reduction.

e As we indicated in the introduction of this Thesis, in [31] and [91] (see
also [103]) the authors started an investigation on the possible generalization

of the concept of a Lie algebroid to affine bundles. In the terminology of
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[31], the resultant structure was called a Lie affgebroid structure. Using this
geometric model, in [91] the authors develop a time-dependent version of
lagrangian equations on Lie algebroids. An important fact to remark in the
previous construction is that a Lie affgebroid structure on an affine bundle
A can be interpreted, in an equivalent way, as a Jacobi algebroid structure
on the bi-dual bundle (A™)* of A, that is, a usual Lie algebroid structure on

(A*)* and 1-cocycle (for this structure) non-vanishing at any point.

Thus, having in mind the relation between homogeneous Jacobi structures
and Jacobi algebroids, it is interesting the study of affine Jacobi structures
on affine bundles. In this direction, a first step has been done. In fact, in a
recent work [32], we have studied affine Jacobi structures on affine bundles.
More precisely, we have proved that if 7: A — M is an affine bundle, then
there exists a one-to-one correspondence between affine Jacobi structures on
A and Lie algebroid structures on the affine dual A* of A. As a consequence,
we recover the results obtained in Chapter 2 about homogeneous Jacobi
structures.

Thus, the next step of this study could be to generalize the results obtained in
this Memory to the affine setting. More precisely, to develop a theory of affine
Lie-Jacobi groups analogous to the theory of Poisson-Lie groups. A vector
space endowed with an affine Jacobi structure could be the abelian model
of this new geometric object. Affine Jacobi-Lie groups should be Lie groups
endowed with a Jacobi structure satisfying some compatibility conditions
in such a way that Jacobi-Lie groups and vector spaces with affine Jacobi
structures are examples of affine Jacobi-Lie groups. Moreover, after giving
this notion, we could characterize the Lie algebras of affine Jacobi-Lie groups
and obtain methods to generate non-trivial examples. A final step of this
study could be to introduce the notion of an affine Jacobi groupoid (as an
extension of the definition of an affine Jacobi-Lie group) and to describe the

corresponding infinitesimal invariant.

e Multiplicative multivector fields on Lie groups have been thoroughly stud-

ied by Lu [80, 81]. The geometry of this structures is certainly interesting.
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In particular we have that any multiplicative k-vector field A on a Lie group
G with Lie algebra g induces a k-differential, that is, a map 6 : g — Afg
which is a 1-cocycle with respect to the adjoint representation of g on AFg.
Conversely, if the Lie group G is connected and simply connected, every
k-differential can be integrated to a multiplicative k-vector field on G.

We remark that multiplicative 0-vector fields are just multiplicative functions
on GG and that Poisson multiplicative 2-vector fields are just Poisson-Lie group

structures on G.

Therefore, it should be interesting to study the geometric properties of mul-
tiplicative multivector fields on Lie groupoids (the cases k£ = 1 and k& = 2
have been dealt in detail in [83, 84, 85, 117, 118, 120]) and their infinitesimal
invariants, the so-called k-differentials on Lie algebroids. For a k-differential
on a Lie algebroid we mean a map d : T'(A*A) — ['(A¥*71A) such that it
is a derivation with respect to the wedge product on @;I'(A'A) as well as
with respect to the Schouten bracket [, ]. A natural generalization, based
on the topics discussed in this Thesis, can be the theory of o-multiplicative
multivector fields.

Two interesting examples of 2-differentials are the following ones: i) If (A, A*)
is a Lie bialgebroid and d, is the differential of A* then d, is a 2-differential
of square zero; and ii) a 2-differential d on A such that d* = [®, -], where @
is a 3-section of A such that d® = 0. This last structure is called a quasi-
Lie bialgebroid (see [100]) and it is an abstract version of twisted Poisson
structures, which appear in [58] related with Poisson o-models.
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