
 

 

PLASTICIDAD MORFOLÓGICA Y 

SOLAPAMIENTO DE NICHO TRÓFICO 

EN DORADAS (Sparus aurata) 

ESCAPADAS DE INSTALACIONES 

ACUICOLAS EN LAS ISLAS 

CANARIAS. 

 

MORPHOLOGICAL PLASTICITY AND 

TROPHIC NICHE OVERLAPPING OF 

SEA BREAM (Sparus aurata) 

ESCAPEDFROM AQUACULTURE 

FACILITES IN THE CANARY ISLANDS. 

 

María José Valera Jiménez 

Máster Biología Marina: Biodiversidad y Conservación. 

Junio 2018 



2 
 

  

 

KILIAN TOLEDO GUEDES, Investigador colaborador sénior del Departamento de Ciencias 

del Mar y Biología Aplicada de la Universidad de Alicante y PABLO SÁNCHEZ JEREZ, 

Profesor titular de la Universidad de Alicante. 

CERTIFICAN: 

Que la memoria presentada por la graduada en Ciencias del Mar María Josefa Valera Jiménez, 

titulada “Morphological plasticity and trophic niche overlapping of sea bream (Sparus aurata) 

escaped from aquaculture facilities in the Canary Islands.”, ha sido realizada bajo nuestra 

dirección y consideramos que reúne todas las condiciones de calidad y rigor científico 

requeridas para optar a su presentación como Trabajo de Fin de Máster, en el Máster de 

Biología Marina: Biodiversidad y Conservación de la Universidad de La Laguna, curso 2016-

2018. 

 

Y para que así conste y surta los efectos oportunos, firmamos el presente certificado en 

 

Alicante, 

a 28 de mayo de 2018 

 

 

 

Fdo.  Kilian Toledo Guedes                                                      Fdo.  Pablo Sánchez Jerez 

  



3 
 

TABLE OF CONTENTS 

 

ABSTRACT 

 

4 

INTRODUCTION 

 

5 

MATERIALS AND METHODS 

 

8 

RESULTS 

 

11 

DISCUSSION 

 

16 

CONCEPTUAL MODEL 

 

21 

CONCLUSIONS 

 

21 

REFERENCES 

 

22 

  



4 
 

 

Resumen 

Los escapes en acuicultura suponen uno de los principales problemas de esta actividad, 

suponiendo una amenaza para la biodiversidad en los ecosistemas, como en el caso de la 

dorada (Sparus aurata) en las islas centrales y occidentales de Canarias. Este impacto puede 

ser mayor si los escapes se adaptan al medio, sufriendo un proceso de asilvestramiento. Con 

el objetivo de determinar si las doradas escapadas de granjas acuícolas son capaces de 

adaptarse al medio en las Islas Canarias se capturaron 71 individuos escapados mediante 

pesca con fusil, mientras que otros 20 fueron recolectados directamente de jaulas. El 

contenido estomacal fue clasificado, identificado y comparado con dietas de diferentes 

espáridos obtenidas a través de la revisión de literatura centrada en el Atlántico y el 

Mediterráneo. También se estudiaron cambios fenotípicos en la morfología, comparando 

individuos escapados con cultivados. Los análisis del contenido estomacal demuestran que 

una vez en el medio, los individuos son capaces de alimentarse de presas naturales, 

principalmente moluscos, crustáceos y plantas, compartiendo nicho trófico con otras especies. 

Además, las diferencias morfométricas sugieren que los individuos escapados pueden 

adaptarse al medio adoptando una morfología similar a la de individuos salvajes. En 

conclusión, una vez en el medio, son capaces de alimentarse y adaptar su morfología externa a 

las nuevas condiciones, lo que puede plantear un problema de solapamiento de nicho trófico 

con consecuencias desconocidas para el ecosistema. 

Palabras clave: Acuicultura, Dorada, Escapes, Morfometría, Solapamiento de nicho trófico. 

Abstract 

Escapes of farmed fish from net-pens are one of the main concerns related to aquaculture 

being considered a threat to natural biodiversity in ecosystems, just as in the case of gilthead 

sea bream (Sparus aurata) in central and western Canary Islands. The impact of escapees is 

expected to be higher if the species is able to adapt to the natural environment, through a 

feralization process. The main objective of this study was determining if sea bream escapes of 

aquaculture farms are able to adapt to the environment in the Canary Islands, for this, 71 

escaped sea bream individuals were captured by spearfishing, while twenty of them where 

collected from aquaculture cages. Stomach contents were sorted, identified and compared 

with the diets of other sparids, which were obtained through a literature review focused on the 

Atlantic and the Mediterranean. Moreover, we studied phenotypic changes in the morphology 

of escapees once in the wild; comparing morphometry of escaped and cultured sea bream. The 

stomach content analyses showed that escaped sea bream feed on natural preys (mainly 

mollusks, crustaceans and plants), sharing trophic niche with other cohabiting species. What 

is more, morphometric differences suggested that escaped individuals are able to adapt to the 

environment, adopting more fusiform body morphology, similar to wild individuals. In 

conclusion, escaped sea bream, once in the wild, is able to forage over natural preys and adapt 

its external morphology to the new environmental conditions, which could pose a problem of 

trophic niche overlapping, with unforeseen consequences for the ecosystem.  

Key words: Aquaculture, Escapees, Gilthead sea bream, Morphometry, Trophic niche 

overlapping.  
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Introduction 

The gilthead sea bream, Sparus aurata (L.), hereinafter called S. aurata, is a subtropical 

Sparidae whose distribution covers 62ºN-15ºN,17ºW-43ºE (Lloris, 2005). It occurs naturally 

in Eastern Atlantic, from the British Isles to Cape Verde and around the Eastern Canary Island 

(Lanzarote and Fuerteventura) (Brito et al., 2002), also can be found in the Mediterranean and 

the Black Sea (Magoulas et al., 1995). This species inhabits seagrass beds and sandy bottoms 

as well as the surf zone, commonly to depths of about 30m, but adults may occur at 150m 

depth.  It may be found either solitary or in small aggregations. It is mainly carnivorous 

feeding for the most part shellfish, (e.g. mussels and oysters) and accessorily herbivorous 

(Bauchot and Hureau, 1990). The sea bream is a protandrous hermaphrodite: maturing first as 

male in the first two or three years of age and after that, maturing as female, normally at over 

30cm in length (Bauchot et al., 1981; Buxton and Garrat, 1990). 

Sea bream is a highly appreciated target species in the Mediterranean and Atlantic countries, 

regularly present in fish markets where they come from both extractive fisheries and 

aquaculture. For this latter activity, it is estimated that 195,853t in Europe were produced in 

2016; meanwhile, extractive fisheries in the Atlantic Ocean and Mediterranean Sea, captured 

a total of 8,438t in 2015 (APROMAR, 2017). At the present, sea bream is cultured in 20 

different countries, and Spain is the fourth country producing sea bream with a 7% of the total 

production, far from Turkey, the main producer, with 67.612t, which represents a 34.5% of 

total production. Aquaculture began to grow exponentially both in production and diversity of 

cultured species the last 50 years (Duarte et al., 2007; FAO, 2012), maybe due to the over-

exploitation suffered by wild fish stocks, which has led the stagnation of world fisheries 

(Jackson et al., 2001; Worm et al., 2006). Actually, the world capture production of sea 

bream is quite constant throughout the years, fluctuating from 6000 to 8500 t y-1. In Spain, 

fishery captures of sea bream kept constant and reached 826t in 2015 while cultured sea 

bream amounts to 13,740t, 95.1% of Spanish product in markets (APROMAR, 2017). Here, 

the Valencian Community is ahead in the Spanish production with 5619t (40.9%), followed 

by Murcia, with 3368t (24.5%), Canary Islands with 2492t (18.1%), Andalusia with 1605t 

(11.7%) and Catalonia with 730t (4.8%) (APROMAR, 2017). 

When one or several fish in any point of their life-cycle lose their confinement it is considered 

an escape event (Dempster et al., 2013). These events can be large-scale escapes, when a fish-

cage suffer structural damages by storms or sabotage, and most of the fish escape, or daily 
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escapes, through small holes in the net (CIESM, 2007). The latter is quite problematic to 

quantify since is difficult to estimate the number of fish escaped before the holes are found 

(Dempster et al., 2007). Escape events from fish cages are a common problem around the 

world and both native and non-native species are regularly released into the wild (Naylor et 

al., 2005). In the case of escape of non-native species, they are more concern in aquatic 

systems (Ruiz et al., 1997, 2000; Streftaris et al., 2005; Casal, 2006) due to their potentiality 

to adapt to the new natural environment and interact with native species. 

Escaped farmed fish from sea-cages are able to survive, they may entail a threat to natural 

biodiversity in marine waters, they are considered as one of the main environmental problems 

caused by aquaculture due to the potential for escaped fish to interact with natural populations 

(McGinnity et al., 2003; Arechavala-Lopez et al., 2017). For management reasons, after an 

escape it could be relevant to be able to distinguish the escapes from wild individual and 

monitoring the level of escapees feralization. Domesticated organisms tend to exhibit 

morphological and physiological variations because of artificial selection that can persist 

under favourable conditions, as the abundance of food and absence of predators in captivity 

(Trut et al., 2009; Balon, 2004; Teletchea and Fontaine, 2012), that are never seen in the wild. 

As have been shown in other studies, could identify differences between wild and reared 

individuals (i.e. salmon) thanks to different patterns since the development in hatcheries is 

faster and more controlled than in the wild (Swaine et al., 1991; Fleming et al., 1994; Hard et 

al., 2000; Fiske et al., 2005). During its lifetime, the individuals develop a series of 

behavioural, physiological and morphological changes (Toledo-Guedes, 2013). These 

changes, as differential relative growth of body parts, is a common feature of fish 

development and help to overcome drastic environmental stress once away from favourable 

conditions that human control contribute (Osse, 1990; Osse and van den Boogaart, 1995, 

1999; Gisbert, 1999; Loy et al., 2001; Brown and Laland, 2001) and may facilitate 

feralization (Valiente et al., 2010) in the same way that aids to succeed in the initial stages of 

domestication. Several studies reveal that sea bass escaping from fish farms tend to converge 

towards a more similar wild phenotype compare to farmed conspecifics. Toledo-Guedes 

(2013) found clear differences in body shape dividing farmed fish, with more rounded body 

shape and wild fish, with smaller body depths and more streamlined bodies. 

Once in nature, escaped fish exploit natural resources as soon as they are able to survive in the 

wild (Arechavala-Lopez et al., 2012c). They are able to swim away from farm facilities which 

is a major environmental concern because they can interact with other species with potential 
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negative ecological consequences such as: direct predator-prey interactions, interspecific 

competition for resources, trophic cascade effects or competition for habitat occupation (Soto 

et al., 2006; Arismendi et al., 2009; Edelist et al., 2013) even more important if they are able 

to access to Marine Protected Areas (Arechavala-Lopez et al., 2011; Izquierdo-Gomez et al., 

2014; Toledo-Guedes et al., 2014). Sometimes interactions with other species imply protected 

species or highly appreciated in the market. Moreover, escapees become available for sport 

and professional fisheries, attracting fishing pressure over certain areas or promoting the over-

explotation of other non-targered species (Lorenzen et al., 2012). Because of the high 

availability of escaped fish, easily caught by non-professional fishermen, market prices can 

collapse locally and these fish could be sold as wild fish even if their origin is unknown, with 

subsequent detriment to the consumer (Toledo-Guedes, 2013; Arechavala-Lopez et al., 

2012a,b,c, 2013a). Other problems could be transmission of pathogens to wild populations 

(Arechavala-Lopez et al., 2013b) or even affecting to genetic diversity of natural populations 

which is important to prevent due to natural populations with low genetic diversity means 

more limited capacity to respond to changes in the environment (Araki and Schmid, 2010). 

In the Canary Islands, marine fish production is mainly limited to two locally-absent species, 

legally cultured around different islands (La Palma, Tenerife, Gran Canaria and Lanzarote): 

Gilhead sea bream, Sparus aurata and the European sea bass Dicentrarchus labrax (Toledo-

Guedes, 2009). Before aquaculture activities, these species were present only in the eastern 

islands: Lanzarote and Fuerteventura (Brito et al., 2002) possibly due to larval dispersion 

through upwelling filaments from African coastal populations (Rodriguez et al., 1999; 

Becognée et al., 2006). Moreover, sea bream was not captured or recorded by visual census in 

coastal areas of central and western islands before the aquaculture development (Brito, 1991; 

Brito et al., 2002; Falcón et al., 1996). Therefore, escaped sea bream can be clearly identified 

in central and western islands since there are no natural populations. Even when natural 

mortality is believed to be high, they are able to disperse rapidly from aquaculture facilities 

and may resemble their wild conspecifics thanks to different adaptations to the new 

environment through the production of an alternative phenotype known as phenotypic 

plasticity (Arechavala-Lopez et al., 2011, 2012a, 2012b; Uglem et al., 2008; West-Eberhard, 

1989). 

There are many studies dealing with the long range dispersion of escaped sea bream and sea 

bass (González-Lorenzo et al., 2005; Toledo-Guedes et al., 2009; Arechavala-Lopez et al., 

2011a,b) but predicting establishment success of fish escaping is not without difficulties 
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(Bekkevold et al., 2006; DeVaney et al., 2009; Consuegra et al., 2011). Food regime and 

swimming activity can have strong effects on body shape (Pakkasmasa and Piironen, 2001; 

Marcil et al.,2006). Sea bream feralization appears to involve a sudden and dramatic shift in 

food regime and a variable period of starvation (Arechavala-Lopez et al., 2012c). Food 

deprivation would result in the mobilization of lipids and loss of weight, specially hepatic 

weight (Pérez-Jiménez et al., 2007). Sea bream escapees from sea cages have been well 

recorded in the Mediterranean Sea (Dempster et al., 2002,2005; Boyra et al., 2004; Tuya et 

al., 2005, 2006; Valle et al., 2007; Fernandez-Jover et al., 2008; Arechavala-Lopez et al., 

2012), due to technical and operational failures, cage breakage because of extreme weather or 

holes caused by wear or gnawing from cultured fish on fouling (Dempster et al., 2007). 

However, few corresponding studies have been carried out for escaped fish from fish farms in 

the Northeastern Central Atlantic and their capacity to adapt to a new environment. 

The main objective of the present study was to investigate if sea bream escapees are able to 

adapt to the environment in the Canary Islands. For this we (1) identified main items of the 

diet of escaped sea bream, (2) investigated trophic niche overlapping with other sparid species 

and (3) assessed morphometric changes in escaped individuals when compared to cultured 

individuals. 

Material and methods 

Study site and sampling method 

The study was carried out in the Canary Island (Figure1), a subtropical archipelago situated in 

the North of the Eastern Central. A total of 71 sea bream were spear-caught between June 

2007 and April 2009 in two of the islands where sea bream has escaped some other time: 

Tenerife and La Palma (Toledo-Guedes et al., 2009). Also, 20 sea bream were caught from 

aquaculture facilities in Tenerife Island. 
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Figure1. (Toledo-Guedes et al., 2009).Location of sea bream farms (·) and sampling sites (*) in the coastal 

waters of the islands of Tenerife and La Palma (Canary Islands, Spain). 

Stomach contents and diet analyses 

The stomach-intestine was removed, and prey items were counted by number, fresh-weighed 

and identified to the lowest possible taxonomic level. Based on the study of Prokopchuk and 

Sentyabov, 2006, we use the following scale: 0-empty; 1-very little content; 2-some content; 

3-full, but not bloated; 4-bloated; 5-everted; to determine the Stomach Fullness (SF). After 

that, percentage by number (%N), weight (%W), frequency of occurrence (O%) and 

alimentary coefficient (Q) as result of N% x W%, were calculated  for each prey 

(Hureau,1970). Vacuity was calculated as percentage of empty stomach. The importance of 

prey groups was assessed using the categories used by Rosecchi and Nouaze, 1987, based on 

values of Q and O: main preferred prey, when Q>100 and %O>30%; main occasional prey, 

when Q>100 and %O<30; secondary common prey, when 10<Q<100 and %O>10%; 

secondary additional prey, when 10<Q<100 and %O<10% and finally, accidental prey, when 

Q<10. Index of Relative Importance (IRI) was also estimated using next formula: IRI= 

(N%+W %) x O% (Pinkas et al., 1971). 

A literature review was carried out for other species and fish diets were obtained from 

published studies based on stomach contents. An amount to 15 papers were reviewed but only 

to gather data from 8 different species. First, we tried to choose those papers where sparids 

diets were showed in the Atlantic Ocean but due to difficulties to find them, we also reviewed 

papers about sparids diets in the Mediterranean Sea. All of them were chosen because they 

showed a size range similar to wild sea bream individuals to be analyzed. We use data diet of 
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Epinephelus marginatus (fam. Serranidae) as reference. We obtained quantitative data in 

order to compare with those obtained for sea bream escapees. Moreover, we were able to 

compare our data with other three significant sparids diet data, one of them from Pagellus 

acarne, in the Atlantic Ocean in Azores (Morato et al., 2001) and the other two from Sparus 

aurata in the Mediterranean Sea (Rosecchi and Nouazé, 1987; Arechavala-Lopez et al., 2012) 

being the last one also data from escaped fish. To determine diet overlap we used the 

Schoener index (SI): 

𝑆𝐼 = 1 − 0.5( ∑ |𝑛
𝑖=1 PiA - 𝑃𝑖𝐵| ) 

Where PiA and PiB are the numerical frequencies of item i in the diet of species A and B, 

respectively (Linton et al., 1981). Values of this index vary from 0, where there isn’t trophic 

overlap, to 1, where species make the same proportional use of food resources. Using this 

index we have to consider those values higher than 0.6 should be account as biologically 

significant (Wallace, 1981; Wallace and Ramsey, 1983) although there are no critical levels 

with which overlap values can be compared. 

Variation in body morphology 

We study feralization level using body shape divergence. For it, we took standardized 

photographs of 20 escapees and 19 cultured fish from Tenerife using a Nikon Coolpix 5400 

digital camera. To ensure correct calibration in the following image processing, was necessary 

to use a ruler on each photograph. Morphological landmarks were selected to give a precise 

definition of the fish morphology (Figure2) (Humphries et al., 1981; Straus and Bookstein, 

1982). Altogether 16 morphological landmarks were digitized using the image processing 

programme ImageJ (Abramoff et al., 2004). After that, distances between landmarks were 

calculated using the programme PAST v.2.17c (Hammer et al., 2001). 
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Figure2. The 16 Landmarks which were used for the morphological analysis, scale 5cm. 1 tip of the 

premaxillary; 2 point of maximum curvature in the head profile curve; 3 anterior insertion of dorsal fin; 4 

posterior insertion of dorsal fin; 5 dorsal point at least depth of caudal peduncle; 6 posterior extremity of the 

lateral line; 7 ventral point at least depth of caudal peduncle; 8 posterior insertion of anal fin; 9 anterior insertion 

of anal fin; 10 anterior insertion of pelvic fin; 11 insertion of the operculum on the profile; 12 dorsal insertion of 

pectoral fin; 13 most anterior point of the eye; 14 most dorsal point of the eye; 15 most posterior point of the 

eye; 16 most ventral point of the eye. 

Statistical analyses 

In order to have a visual representation of species with similar trophic niche, cluster diagram 

was performed. Previously, the data were standardized since sample size for each study 

reviewed was different. Finally, dissimilarity matrix was calculated, where higher values 

mean greater differences. These analyses were carried out with Statistical software R (R 

Development Core Team, 2011). 

Prior to analysis, all morphometric measurements were size-adjusted using the ‘allometric vs. 

standard’ method proposed by Elliot et al., 1995. Discriminant analysis was used as a 

standard method for visually confirming or rejecting the hypothesis that cultured and escapees 

individuals are morphologically distinct. Equality of the two groups is tested by a multivariate 

analogue to the t-test, called Hostelling’s t-squared. For this purpose, we use the program 

PAST version 2.17c (Hammer et al., 2001). 

Results 

Stomach content and diet analysis 

An amount of 91 sea bream specimens were caught. Total lengths varied from 11.8 to 42.9 

cm, with a mean value ± standard deviation (sd) of 26.64 ± 4.53 cm. Diet indices are provided 
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in Table 1 obtained from the study of 33 stomach analyzed. Percentage of vacuity was 

51.50% while Mean Stomach Fullness (MSF) was 0.87. Alimentary coefficient (Q), 

frequency of occurrence (O%) and IRI identifies Mollusca as main prey. Human origin items, 

Crustacea (Decapoda), Echinodermata and plants as secondary common preys and insecta and 

Polychaeta as accidental preys. 

 

Table1. Diet composition of escaped Sparus aurata. Mean Stomach Fullnes (MSF), Vacuity, numeric 

percentage (%N), weight percentage (%W), frequency of ocurrence (%O), alimentary coefficient (Q), Index of 

Relative Importance (IRI) and Prey Preferences. 

 

 

The most important preys by number were mollusks of the family Cerithidae, followed by the 

bivalve Timoclea ovata. Those which contribute highly by weight to their diet were the 

mollusk T. ovata and the echinoderm Diadema africanum. Some food pellets were found in 

the stomach contents which are outlined as secondary common prey with the Index of 

Relative Importance. 

Prey N% W% O% Q IRI Prey Preferences

Polychaeta Accidental preys

Unidentified 1,7 0,05 6,25 0,09 10,95

Crustacea (Decapoda) Secondary Common preys

Xantho pilipes 1,7 0,16 6,25 0,27 11,61

Ethusa sp. 1,7 0,11 6,25 0,18 11,28

Fam. Calappidae 3,4 0,11 12,5 0,36 43,82

Unidentified 3,4 1,27 12,5 4,3 58,31

Total 10,3 1,63 31,25 16,83 372,94

Insecta Accidental preys

Unidentified 3,4 0,16 12,5 0,54 44,48

Equinodermata Secondary Common preys

Diadema africanum 3,4 20,03 12,5 68,11 292,9

Mollusca Main  prey

Timoclea ovata 8,7 50,61 6,25 440,27 370,66

Fam. Cerithidae 50 2,53 12,5 126,52 656,63

Total 58,7 53,14 18,75 2096,93 3119,1

Plantas Secondary Common preys

Cymodocea nodosa 3,4 0,74 12,5 2,51 51,73

Unidentified 3,4 0,74 12,5 2,51 51,73

Total 6,8 1,48 25 10,18 209,4

Ítems de origen humano 12,2 12,76 43,75 155,64 1091,9

MSF 0,87

Vacuity 51,50%
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Trophic Niche Overlapping 

Table2. Reference, Specie and Number of individuals analyzed founded in literature and Location code (At for 

Atlantic Ocean, M for the Mediterranean Sea: here, codes 1and 2 are to distinguish the same specie studied by 

different authors). 

 

Reference 

 

Species 

Number of 

individuals 

analyzed  

Location 

Code 

Arechavala et al., 2012 Sparus aurata 38 M2 

Killianotis et al., 2005 Lithognathus mormyrus 120 M 

Linde et al., 2004 Epinephelus marginatus 157 M 

Morato et al., 2001 Pagellus acarne 235 At 

Papaconstantinou et al., 1989 Pagrus pagrus 122 M 

Rosecchi and Nouazé, 1987 Diplodus sargus, S. aurata 471, 183 M, M1 

Salas and Ballesteros, 1997 Diplodus puntazzo 16 M 

Santic et al., 1983 Pagellus erythrinus 798 M 

 

According to the dendogram obtained from the cluster analysis performed on frequency 

percentage data (Figure 1), obtained about our data of S. aurata and the different species 

found in the literature (Table 2), three main cluster can be identified with a 50% of similarity. 

Could be verified in the first group that the most similar species trophically here are E. 

marginatus, used as reference, whose diet resembling to sparid diet P. erythrinus (l) (0.15). 

Following it, in this first group we can find diet similarity with P. erythrinus (m) (0.35) and S. 

aurata from Rosecchi and Nouazé, 1987 (0.40). The second group is composed only by 

specie P. acarne from Morato et al., 2001 and this group has a 50% of similarity with the 

third group, where we can find our specie. Third, grouping different species gatherer in the 

same group with the results obtained for our S. aurata (S. aurata At), indicating that escapees 

are able to feed on in the same way that wild populations do. Most similar species in this third 

group are D. sargus and L. mormyrus with 75% of similarity approximately. Also could find 

association with S. aurata from Arechavala et al., 2012 study, whose individuals are escapees 

too, in this case from fish farms in the Mediterranean Sea, this result corroborate that, once in 

the wild, escapees are able to feed on natural preys, adapting to the environment like wild 

individuals and with survival opportunities. Following specie in similarity is the sparid D. 



14 
 

puntazzo individually. Finally, this complete group is gathered in the same place that couple 

S. aurata At and P. pagrus.  

 

Figure 2. Dendogram resulting from the cluster analysis performed on stomach contents data of the Sparus 

aurata studied in the present work (Sparus aurata At), being cultured and escapees from the aquaculture 

facilities of the Canary Island, compared with the different species founded in the literature. 

Estimates of the degree of trophic overlap among species are given in Table3. Values under 

0.6 founded between species indicate no significant overlap, according to the percentage of 

frequency values, diet overlap was higher than 0.6 between S. aurata At and the sparid P. 

acarne At and their conspecific of the Mediterranean Sea found in Arechavala et al., 2012. 

Table3. Schoener Index (SI) values of trophic niche overlap between the different species. Code used for species 

was: S.a At for our data about Sparus aurata; P.p M for Pagrus pagrus; D.s for Diplodus sargus; D.p for 

Diplodus puntazzo; P.e (m) for Pagellus erythrinus (m); P.e (l) for Pagellus erythrinus (l); P.a for Pagellus 

acarne; L.m for Lithognathu smormyrus; S.a M2 for Sparus aurata of Arechavala et al., 2012; S.a M1 for 

Sparus aurata of Rosecchi and Nouazé, 1987 and E.m for Epinephelus marginatus. Those values coupled by (*) 

are higher than 0.6. 

Sp S. a At P. p M D. s  D. p  P. e(m)  P. e (l)  P. a  L. m S. a M2 S. a M1 E. m  

S. a At 1 0.59 0.55 0.46 0.45 0.44 0.61* 0.48 0.61* 0.34 0.54 
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Morphometry 

The discriminant analysis carried out shows the difference of the individuals according to 

their origin, representing the individuals cultivated in blue and the escapees in red. Specimens 

were sharply separated along the discriminant axis (i.e. escapees in the positive portion, 

captive ones in the negative portion) (Figure3). Results of discriminant analysis aresignificant 

for all pairwise body-shape comparisons, and reveal a high discrimination in body shape 

between cultured and escapees. The relative classifications are very reliable (Percent correctly 

classified= 87.47%, Hotelling’s T2= 53.144, P-value= 0.04288). As is shown in Figure3, there 

are differences between cultured and escaped fish. In general, fish kept in fish farm develop 

deeper bodies, shorter heads and shorter caudal peduncles over time, whereas almost exactly 

the opposite occurs when they are released into the wild. 

 

Figure3. Discriminant analysis for the grouping variable domestication status, here appears represented escapees 

in red and cultured fish in blue. In the middle of the figure could be observed that two both, cultured and 

escapees, overlap in morphometry. 

In Table4, it can be observed that 17 of 20 cultured fish are well classified in their category, 

which represent 85%, while remaining part (15%) are classified as escapees. On the other 

hand, 17 out of 19 escapees are correctly classified, which represents 89.47%, while 10.53% 

are classified as cultured fish. 
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Table 4. Number of escapees and cultured fish classified per category in the discriminant analysis. 

 Escapees Cultured 

Escapes 17 2 

Cultured 3 17 

 

Discussion 

Throughout this work and as shown the results obtained in previous studies, it is plausible to 

say sea bream is able to adapt t the environment in the Canary Islands, being introduce in the 

central and western Canary Island as consequence of escape events from aquaculture 

activities. Furthermore, sea bream are able to feed in the natural environment, with a diet 

similar to their wild conspecifics from the Mediterranean Sea and their external morphology 

is more fusiform, adapting to new conditions in the wild, being more agile to both, avoid 

predators and access new preys, which could pose a problem of trophic niche overlapping, 

with unforeseen consequences for their preys and other competitor fish species.  

When an escape occurs, the decisive survival factors are density and size of the escaped 

individuals (Pitcher, 1986; Kristiansen et al., 2000). An unknown number of sea bream are 

able to survive in the environment, adapting to natural conditions and interacting with natural 

assemblages, and the activities taking place there (e.g. fisheries). Fisheries will play an 

important role in mortality of individuals and previous studies, such as Arechavala-Lopez et 

al., 2010 reveal higher catches in seagrass, sandy or rocky bottoms, where wild individuals 

inhabit (Arechavala-Lopez et al., 2012). In the Canary Islands, professional and recreational 

fishing are one of the main factors that control the densities of escaped fish (Toledo-Guedes, 

2013), although it is not a determining factor in mortality of fish. On the other hand, the 

presence of predators around farms will be more important, especially when it comes to small 

escapes. It is known that pelagic fish are attracted to floating structures on the natural 

environment (Freon and Dagorn, 2000; Castro et al., 2002) the same happens in  FADs (Fish 

Aggregating Devices) and in aquaculture facilities (Dempster et al., 2004). Some pelagic 

species are attracted to farms because they feed on unconsumed pellets, and this attracts 

piscivorous species due to greater abundance of small fish on which they prey (Sánchez-Jerez 

et al., 2011). High densities of predators have been recorded in the vicinity of the facilities 

(Fernandez-Jover et al., 2008, Arechavala-Lopez et al., 2010, 2011a), these are the first steps 
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to avoid, the chance of survival increases when a massive escape occurs (Toledo-Guedes, 

2013) since a greater number of individuals are able to escape and move to more remote 

areas.  

Once in the wild, if individuals are not able to exploit natural resources, there are high 

mortality cases (Ramirez et al., 2011). It has been registered that escapes, in general, have 

lower competitive capabilities than wild individuals, being unable to respond to 

environmental stimuli, which negatively affects their survival (Olla et al., 1994; D'Anna et al., 

2004; Santos et al., 2006; Basaran et al., 2007). They also have a smoother and less 

aggressive mobility than their conspecifics, with a lower capacity to feed, which, added to the 

energy spent while moving around new sites, will result in a loss of energy during the first 

days (Sosiak et al., 1979; Ersbak and Haase, 1983) and with it, changes in corporal 

morphology. Changes in behavior and environmental stimuli received over time, if favorable, 

will lead to the process of feralization (Daniels and Bekff, 1989). Therefore, many authors 

consider that both anti-predatory capabilities and ability to feed on natural preys are an 

important step in adaptation to the natural environment (Olla et al., 1998; Brown and Laland 

2001, 2003; Toledo-Guedes, 2013). Regarding to changes on trophic behavior, Wainwright 

and Richard (1995), based on the similarity of the serranid morphology and the interspecific 

relationships between their size and trophic composition, determined that the changes in the 

diet are associated more associated with the size of the individuals than with the differences in 

the capture mechanisms, extrapolating these results to those obtained in our study with the sea 

bream, may also imply that they compete with other species even of different families with 

which they share a range of size. In addition, the variation in the importance of preys will be 

related to the differences in the availability of it (Ferrari and Chieregato, 1981; Francescon et 

al., 1987; Breber and Strada, 1995) and this availability will change depending on seasons 

(Zander, 1996). During the present study, the results obtained corroborate not only the trophic 

flexibility of the sea bream escape, but also their ability to find the most common prey in a 

medium in which they do not naturally occur. In the case of sea bream, it has been observed 

that it has a wide trophic range. Being an opportunistic animal, it is able to adapt its diet to the 

prey available at that time (Pita et al., 2002, Tancioni et al., 2003) and this period of 

starvation does not occur so frequently, being able to feed on their most common prey as of 

the fifth day after released (Arechavala-López et al., 2012). This may entail a higher risk of 

invasion, displacing other native species of the islands or that frequent that area of the 

Atlantic, although many other factors are involved in the invasion process (Casal, 2006). They 
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naturally predate mainly on bivalve mollusks, followed by decapods, gastropods and 

crustaceans, although they can also feed on polychaetes, amphipods, seagrass, algae and, 

occasionally, fish (Arias, 1980; Rosecchi, 1985; Pita et al., 2002; Tancioni et al., 2003; 

Chaoui et al., 2005). As soon as the escape occurs, sea bream adapt their feeding to 

macrophytes and pellets arising from farm; later they begin to feed on echinoderms and 

crustaceans associated to the facilities and finally feed on mollusks and crustaceans 

(Arechavala-Lopez et al., 2012). Remarkably, escaped sea bream in the Canaries predate over 

Xanthopilipes, a highly appreciated bait species in recreational and professional fisheries of 

the parrotfish Sparisoma cretense. Moreover, predation over Diadema africanum, a species 

forming barren grounds due to the lack of predators (Clemente et al., 2012) could lead to 

further changes at local level, mitigating the effect of this intensive grazer. 

Analyzing the Schoener Index we find that there is some trophic overlap with Pagellus 

acarne from the paper by Morato et al., 2001 studied in the Azores archipelago. Taking into 

account the distribution of P. acarne, which could be found from the Mediterranean to the 

east of the Atlantic Ocean, where the British Isles and the entire Macaronesia region are 

included (Barreiros et al., 2002), and depths from 40 to 100m usually (Muus and Nielson, 

1999), the introduction of sea bream in the Canary Islands, where P. acarne could be found 

naturally, could have negative consequences in case of becoming an active competitor. This 

trophic overlap could not be common due to P. acarne is a benthopelagic specie, however, 

this study demonstrate that there are evidences that S. aurata is able to compete with other 

species of a new environment, not only with species from the same family, but it could be 

extrapolated, as studied by Wainwright and Richard (1995) to any species with which it 

shares size range.  

Due to scarcity of information available on trophic niche of fish species from the Canary 

Islands, we cannot assume, neither rule out, that escaped sea bream is able to displace other 

species cohabiting in the area. Many authors agree on the difficulty of assessing the effects 

caused by the introduction of a new species in marine ecosystems where it does not live 

(Underwood, 1997), especially if it involves shallow waters, where the introduced species are 

subject to the ecological relationships they develop naturally with the environment and other 

species (Toledo-Guedes, 2013). Generally, when clear cause-effect relationships occur, they 

are often accompanied by changes that in many cases are irreversible (Simberloff, 2003, 

2007). Thus, the absence of evidence of negative effects does not indicate that such effects are 

not occurring or will not occur (Carlton, 1996; Altman and Bland, 1995). It would be 
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convenient to monitor escaped populations on the islands of La Palma and Tenerife in order 

to study if once adapted to live in the wild; they are capable of maintaining self-sustainable 

populations. 

Once far from the facilities, the success of escapes will depend, to a larger extent, on their 

availability to survive during the first days after release into the wild. The ability of organisms 

to adapt to changes in a new environment, in which conditions are not controlled as occurs on 

fish farms (i.e. food and protection from predators) (Brown and Laland, 2001, 2003) is given 

by their phenotypic and genetic plasticity, acquired during rearing period, and will be very 

important to help individuals survive in the environment (Lorenzen et al., 2012). This study 

allowed verifying that morphology between cultivated individuals and escapes were different. 

Cultured fish present rounded shape and small morphology while escapes tend to present 

more elongated and fusiform body, similar to wild individuals (Toledo-Guedes, 2013). These 

differences are not clearly strong, but could identify smooth transition between morphology, 

both cultured and escapes, which indicates that, depending on time they spend in the wild, 

morphological adaptations will be clearer. According to the results obtained by Kraljević and 

Dulčić (1997) estimating growth parameters of the von Bertalanffy equation, maximum time 

in the wild for our escaped individuals was 6 years; since the biggest size was 42.9cm. This 

could be other indicator pointing to the adaptation of escaped sea bream to natural 

environment in the studied area. Costa et al., 2010 in their work proved that genetic plasticity 

of individuals facilitates their adaptation to the environment, in the same way that it helps 

when they are selected for culture to adapt to conditions of captivity. This allows the survival 

of the individuals not being compromised by the development in a new environment and the 

dietary changes, being verified in other species and indicating thus that the escapes undergo a 

feralization process (Lorenzen et al., 2012; Vandamm et al., 2012) that is given by the strong 

effects that the change in diet and swimming activity can have on the morphology of the body 

(Pakkasmaa and Piironene, 2001, Marcil et al., 2006). As Toledo-Guedes, 2013 shown in his 

work with sea bass, other specie introduced by aquaculture in the Canary Islands, an 

elongation of the body occurs along with a reduction on the vertical axis, making them more 

fusiform in comparison with the cultured individuals. In this species, changes were also found 

in the size of the anal and dorsal fins, which were smaller and less variable in wild fish. On 

the other hand, in the sea bream the major morphological changes occur in head height 

(Arechavala-Lopez et al., 2011), where it can be proven that in the case of cultivated 

individuals the head is more flattened and round, while that the elongation is clearer in 



20 
 

escapes or wild organisms. Thus, more elongated morphology of the fish can mean an 

advantage in fish movement, increasing therefore speed ranges (Benhaime et al., 2012; 

Vandamm et al., 2012) and helping the individuals to escape from predators more easily or 

access to preys that have greater mobility (Toledo-Guedes, 2013). 

Arechavala-Lopez et al., 2012 studied the post-escape behavior of sea bream escapes in the 

Mediterranean Sea, where they found a high dispersion capacity within the first 5 days of the 

escape, together with a high degree of mortality (> 60 %) but proved in his study that sea 

bream escapes are able to move to other aquaculture facilities and natural habitats where they 

live with both wild individuals and other escapes, reaching dispersions of more than 20km, 

while in studies such as Sánchez-Lamadrid, 2002 and Santos et al., 2006, bigger distances 

where recorded, ranging from 18 to 40 km away from their farm origin. Many studies show 

an increased mortality occurring in different cultivated species once they escape from 

aquaculture facilities, as in the case of salmon (Soto et al., 2001), sea bass in the Atlantic and 

Mediterranean (Toledo-Guedes, 2013; Arechavala-Lopez et al., 2011; Grati et al., 2011) and 

sea bream in the Mediterranean (Arechavala-Lopez et al., 2012). Considering the contribution 

of each individual to the environment through escapes that occurred in the Canary Islands, we 

must consider how many of them are able to survive and adapt to new conditions, suffering a 

process of feralization (Toledo-Guedes, 2013). The wide dispersion range matches the 

behavior observed in the island of La Palma, where we find individuals of sea bream far from 

the aquaculture facilities. However, in Tenerife, samplings were carried out in nearby areas, 

so we can not estimate the level of dispersion on the island. Geomorphological features of the 

Canary Islands involve that aquaculture facilities are located near the coastal side, due to this 

islands not having a continental shelf around (Hoernle and Carracedo, 2009) this situation 

prevents escapes from expanding between islands or moving away from the coast (Acosta et 

al., 2003) concentrating dispersion of fish around the farms or in coastal areas (Toledo-

Guedes, 2013). These characteristics of the islands would facilitate the management plans in 

case of new escapes, being easier to face this problem. 
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Conceptual model 

 

 

Conclusions 

1. Escaped sea bream are able to survive and forage in the natural environment and their 

diet is similar to the diet of wild individuals, being able to have a wide range of prey, 

which facilitates adaptation to different environments.  

2. This adaptability to new diet and the ecological interactions with the environment and 

other species, with which share trophic niche and are able to compete and overcome to 

it, makes the sea bream a dangerous specie to introduce in areas where is absent. 

3. Morphometric traits differ between farmed and escaped individuals, being cultured 

individuals more rounded and escapees are more streamlined. That is thanks to their 

phenotypic plasticity that allowed them to adapt their body conditions to a new 

environment. 
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