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The scope of this Thesis 
 

 

In the last years the probability methods have seen new important developments. At the basis of 

the new approach the following principle may be stated: It’s possible to obtain good estimates of 

structure invariants (s.i.) or structure semi-invariants (s.s.) provided appropiate sets of normalized 

structure factor moduli are exploited, which are statistically the most effective in determining the value of 

the given s.i. or s.s. In this sense we have studied a new formula that we have called P13 and it has been 

applied to practical cases for small molecules. 

Traditional direct methods based on the tangent formula and/or on Sayre’s equation cannot solve 

ab-initio the large majority of protein crystal structures, but they seem able to solve proteins if 

isomorphous derivative data are available. We have settled new direct techniques which minimize errors 

in the normalization procedure, produce high quality phases up to derivative resolution and seem able to 

extend phase information up to the native protein resolution. 
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Symbols and abbreviations 

 

( )C R T≡ ,  Symmetry operator; R is the rotation component, T the 

translation component. 

D I Ii i o(x) (x) / (x)=  Ii  is the modified Bessel function of the order i 

∆ = −S' R'  

∆ ' S' T R'= −  

E F / Sd d d
/= ∑ =1 2 exp(i )ψ  Normalized structure factor of the isomorphous derivative 

E' F / S'd d H
/= ∑ =1 2 exp(i )ψ  Derivative pseudo-normalized structure factor (with respect to 

heavy atom substructure) 

E Rh h h= exp(i )φ  Normalized structure factor 

E F /"
q
/

h h= ∑1 2 Pseudo-normalized structure factor of the native protein 

E F / Rp p p
/= ∑ =1 2 exp(i )φ  Normalized structure factor of the native protein 

E' F / R'p p H
/= ∑ =1 2 exp(i )φ  Native protein pseudo-normalized structure factor (with 

respect to heavy atom substructure) 

E F /,
"

, q
/

π πh h= ∑1 2  Pseudo-normalized structure of the partial structure 

εh h= −R2 1 

f j  Atomic scattering factor of the jth atom 

° f j  Atomic scattering factor of the jth atom at rest. 

F |F |d d= exp(i )ψ  Structure Factor of the isomorphous derivative 

F
|F |
F FH

H H

d p
= −





exp(i )φ
 Structure factor of the heavy-atom (added to the native protein) 

F |F |p p= exp(i )φ  Structure factor of the native 

F |F |π π πφ= exp(i )  Structure factor of a partial structure 

Φ3
1 2 3

= − −
= + +




−φ φ φ
φ φ φ
h k h k

h h h
 with h h h1 2 3 0+ + = . 

[ ]G |R R R | / /
p

= −2 3 2
3 2

h k h k σ σ  



Symbols 
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Ii (x)  Ii  is the modified Bessel function of the order i 

m Number of symmetry operators. 

N Number of atoms in the primitive unit cell. 

Nd  Number of atoms in the primitive unit cell for the derivative 

structure. 

N /eq = σ σ2
3

3
2  Statistically equivalent number of atoms in the primitive unit 

cell 

N H  Number of heavy atoms in the primitive unit cell. 

N p  Number of atoms in the primitive unit cell for native structure. 

p Number of atoms (symmetry equivalents included) whose 

positions are a priori known 

q Number of  atoms (symmetry equivalents included) whose 

positions are unknown: q=N -p 

σi j
i

j

N
Z=

=
∑

1
 Zj is the atomic number of the jth atom 

[ ]σ σ2
3

3
2/

H
 Value of Neq  relative to the heavy-atom structure 

[ ]σ σ2
3

3
2/

p
 Value of Neq  for the native protein 

[ ]σ σ
π2

3
3
2/  Value of Neq  for the partial structure for the primitive unit 

cell 

[ ]σ σ2
3

3
2/

q
 Value of Neq for the difference structure obtained by 

subtracting the partial from the protein structure 

∑ =
=
∑d j
j

N
f

d
2

1
  

∑ =
=
∑H j
j

N
f

H
2

1
  

∑ =
=
∑p j
j

N

f
p

2

1
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Chapter I 
 

 

General aspects 
 

The phase problem 
Crystal structure analysis is usually based on diffraction phenomena caused by the interaction of 

matter with some type of radiation , in general X-rays, electrons, or neutrons. The diffracted intensity 

(under the kinematic approximation) is simply related to the squared structure factor Fh
2

, where 

 

  F f j j
j

N

h h r= ⋅
=
∑ exp( i )2

1
π       (I.1) 

 

where h a b c≡ + +h k l* * *  is a vector in the reciprocal space and r a b cj j j jx y z≡ + +  the 

positional vector of the jth atom in the unit cell. a, b, c are the elementary translations of the direct lattice 

and a*, b*, c* are the translations of the reciprocal lattice. As it is well known, the two lattices are related 

by the relation 

 

  a b a c b a b c c a c b* * * * * *⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = 0  
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  a a b b c c* * *⋅ = ⋅ = ⋅ = 1       (I.2) 

 

The crystal structure is defined if the electron density distribution ρ is known. ρ may be written in 

the form: 

 

  [ ]ρ π( ) T exp( i )r h rh h
h

= = − ⋅∑F
V

F
1

2     (I.3) 

 

where T is the Fourier transform function. Viceversa, Fh  can be written in terms of ρ  by 

calculating the inverse Fourier transform: 

 

  [ ]F
V Vh r r h r= = ⋅∫T ( ) ( )exp( i )-1 ρ ρ π
1

2     (I.4) 

 

 

Since the diffraction data provide the magnitudes of the structure factors but not their phases, (I.3) 

cannot be used to directly obtained the electron density distribution from the experimental data. This is 

the so called phase problem. 

The problem must in principle have a solution (even if not necessarily unique), but in this case the 

unknown quantities (the atomic positions r j ) appear as argument of trigonometric functions: 

 

  F f f fj j k j k
j k

N

j

N

h h r r
2 2

11
2 2= + ⋅ −

> ==
∑∑ cos ( )π    (I.5) 

 

(I.5) is a system of non-linear equations, and its solutions cannot be obtained in any analytical way, even 

though the number of relationships greatly exceeds the number of unknowns. 

If an approximate solution, is available, that is if an initial structural model has been obtained, 

then the system of non-linear equations may be solved. This can then be refined applying least squares 

methods on minimizing the quantity 
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  ( )W F F= −∑ obs cal
2

      (I.6) 

 

until the best agreement with the experimental data is achieved. 

As a measure of agreement between the observed and calculated values of the structure factors, 

crystallographers commonly use a quantity called reliability index or residual R defined by 

 

  R
|F | |F |

|F |
=

−∑
∑
h h

h

h
h

obs cal

obs
      (I.7) 

 

Direct methods 
Methods which try to derive the structure factor phases directly from the observed amplitudes 

through mathematical relationships are called direct methods. They are responsible of the great deal of 

crystal structures solved in these last years. Historically, the first mathematical relationships capable of 

giving phase information were obtained by Harker and Kasper (1948) in the form of inequalities. In 1953 

Hauptman and Karle established the basic concepts and the probabilistic foundations of direct methods. 

Also in 1952 Sayre was able to derive a very important relationships 

 

  F F Fh h k h k
k

= −∑ϑ        (I.8) 

 

where ϑ h  is a known value. 

A crucial role in direct methods is played by the structure invariants. They are linear 

combinations of phases which are independent of the choice of origin. Therefore their value depends only 

on the crystal structure, and therefore may be estimated (in principle) from the observed magnitudes 

diffraction. 

The most general structure invariants is represented by the product 

 

  [ ]F F ...F F F ...F ...
n n nh h h h h h h h h1 2 1 2 1 2
= + + +exp i( )φ φ φ   (I.9) 

 

when 
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  h h h1 2 0+ + + =... n        (I.10) 

 

The simplest structure invariant is F000, its phase is always zero. The structure invariant 

F F Fh h h− =
2

 does not contain any phase information, while the triplet invariant F F Fh k h k− − +  with 

phase φ φ φh k h k− − − , plays a primary role in the probabilistic procedures for phase determination. 

With a simple extension it is possible to define the quartet invariant F F F Fh k l h k l− − − + +  with phase 

φ φ φ φh k l h k l− − − − − . In the same form we can define quintets, sextets, etc. 

Structure semi-invariants are single phases or linear combinations of phases which are invariant 

with respect to a shift of permissible origin. A basic property of a structure semi-invariants (Giacovazzo, 

C., 1980) is its capability of being transformed into a structure invariant by adding one or more pairs of 

symmetry-equivalent phases. For instance, in a given space group possessing the symmetry operator 

C R T≡ ( ), , the phase φH  is a semi-invariant if it possible to find a reflection h such that 

 

  Ψ = − +φ φ φH h hR        (I.11) 

 

is an invariant, this is H h hR− + = 0 . 

 

The normalized structure factors 
A central role in direct methods is played by the normalized structure factors, defined as 

 

  E Fh h h= ∑ε        (I.12) 

 

where εh  is the Wilson coefficient depending on the specific indices (h k l) (for the tabulation of εh  

see Giacovazzo, C., 1980). From (I.12) one can immediately obtain (under the hypothesis that the atomic 

positions are random variables with uniform distribution throughout the unit cell) 

 

  < >=Eh
2

1         (I.13) 
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So far we have implicitly assumed that the observed structure factor moduli are on the absolute 

scale, but in general the values of Fh obs
2

 obtained from the intensities are on a relative scale. In the case 

that we assume an overall isotropic thermal motion equal for all the atoms, we may write 

 

  F K º F Bsh hobs
exp( )

2 2 22= −      (I.14) 

 

where K is a scale factor, º Fh  is the structure amplitude in absolute scale for atoms at rest, B is the 

overall isotropic tempreature factor, and s /= sinθ λ . 

Wilson (1942) proposed a method to derive the values K and B. From (I.14) one obtains 

 

  Ln Lnobs< >
∑











 = − < >

F
K B s

s

2
22      (I.15) 

 

where 

 

  ∑ =
=
∑s j
j

N
º f 2

1
        (I.16) 

 

where ° f j  denote the atomic scattering factor for jth atom at rest. 

If Ln obs< >
∑













F

s

2

 is plotted againts < >s2  and then the best straight line is derived, the intercept of 

the line on the vertical axis will give us Ln K and its slope the value of 2B. This is called the Wilson 

plot. 

 

Probabilistic methods 
The basic probability formula for triplet invariants was derived by Cochran (1955): 

 

  P( )
( )

exp( cos )Φ Φ=
1

2π I G
G

o
     (I.17) 
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where 

 

  [ ]G / E E E/= −
−2 3 2

3 2σ σ h k h k      (I.18) 

 

and 

 

  σi j
i

j

N
Z=

=
∑

1
        (I.19) 

 

where Z j is the atomic number of the jth atom. P( )Φ  is a so-called von Mises distribution and G is its 

concentration parameter. 

If more than one pair of phases φk j
, φh k− j

, with j=1, 2,..., r, are known, all defining the same 

φh  through triplet relations such us φ φ φh k h k− − − , then (Karle & Hauptman , 1956) 

 

  tan

sin( )

cos( )

=1

=1

θ

φ φ

φ φ
h

k h k

k h k

=

+

+

−

−

∑

∑

G

G

j
j

r

j
j

r

j j

j j

     (I.20) 

 

where 

 

  [ ]G / E E Ej
/

j j
= −

−2 3 2
3 2σ σ h k h k      (I.21) 

 

gives the most probable value of φh . The relation (I.20) is known as the tangent formula. This formula 

plays a central role in the phase determination process. 

In the last years probability methods have seen new important developments. Not only it has been 

possible to improve the estimate of the triplets, but also to derive reliable estimates of other phase 

relationships. The first step of the new methods is to identify the moduli { }E that provide information 

on the structure invariant or semi-invariant Φ , and the second step consist in deriving the probability 
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distribution { }P( )Φ E , where the vertical bar after Φ  stands for: “given all magnitudes in the set 

{ }E ”. 

 

Solving crystal structures 
The following general scheme for a crystal structure solution may be used: 

1. Normalization 

The values of the normalized structure factors are calculated as we have described before. 

2. Setting up phase relationships 

Triplet and quartet relationships are calculated among the reflexions with large |E| values in order to 

estimate those with the highest reliability. The triplet and quarted search must take into account the 

space group symmetry. 

3. Definition of an optimun starting set of phases 

The choice of the reflections in the starting set is very important because the success of the process 

will depend on them. In general the starting set is formed by the reflections which fix the origin (up to 

three reflections), one reflection if it is neccesary to fix the enantiomorph, and a limited number of 

reflections (usually five or more) which are assigned by different techniques (symbolic addition, 

magic integers permutation, etc). Given the phases in the starting set, all the other phases can be 

determined one after the other in a chain process. 

4. Figures of merit 

They are functions which allow an a priori estimate of the goodness of each phase set as 

representative of the correct solution. 

5. Electron density maps 

The phase set with the highest CFOM (combined figure of merit) is used for obtain the electron 

density map. The most modern programs find the peaks and supply a list of maxima sorted in 

decreasing order of height. This list may then be analysed in terms of distances and angles. 

6. Completing and refining the structure 

If the model obtained according to the above procedures is not complete, there are differents methods 

which recovery the complete structure. The most widely used method of structure refinement are the 

least-squares Fourier-methods. 



General aspects 

8 

Protein crystallography 
Protein crystallography is a specialized branch of crystallography that investigates, by using 

diffraction techniques on single crystals, the three-dimensional structure of biological macromolecules. 

The solvent content makes the difference between a classical molecular crystal and a protein crystal: the 

protein crystals are much less ordered than classical crystals, not only for the large amount of unordered 

material present in the crystal itself, but also because surface groups of the macromolecule in contact with 

the solvent can show a great mobility. As a consequence, diffraction data cannot be measured to the 

resolution normally attainable with small molecules, and this reduces the quality of information available 

for direct methods. A futher problem is the large number of atoms in the unit cell: the consequence is that 

Cochran distribution is rather flat for all the triplet invariants, and therefore it is of very limited 

usefulness. 

 

The isomorphous derivative 
The term isomorphous derivative ideally indicates a crystal where some solvent molecules have 

been replaced by a group of atoms with more electrons, without any alteration of the structure of the 

protein or of the crystal lattice itself. In practice, this never happens: the introduction of a bulky 

compound which interacts with some of the atoms on the surface of the protein will give rise to local 

movements and displacements of atomic groups, at least in the close vicinity of the binding site. Lack of 

isomorphism can be confirmed by differents parameters: a change in unit cell parameters or the 

comparison of structure data between the native a derivative structures. 

 

The solution of the phase problem in proteins 
There are two main methods for solving the phase problem in protein crystallography: 

isomorphous replacement and anomalous scattering techniques. Other methods like molecular 

replacement, can in some cases help to solve the phase problem, coupled with suitable, translation and 

rotation functions. Recent developments of direct methods seem able to offer the possibility of ab-initio 

solution of protein crystal structures if at least diffraction data of one isomorphous derivative is available 

(Giacovazzo, Guagliardi, Ravelli & Siliqi, 1994; Giacovazzo, Siliqi & Ralph, 1994; Giacovazzo, Siliqi & 

Spagna, 1994; Giacovazzo, Siliqi & Zanotti, 1995; Giacovazzo, Siliqi & Gonzalez-Platas, 1995). As 

usual for direct methods, we speak of ab-initio crystal structure solution when phases are directly derived 

from diffraction data without any supplementary prior information. 
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In this case, a mathematical technique can be used (Hauptman, 1982) that integrates direct-

methods and isomorphous-replacement techniques. A perfect isomorphism is assumed: accordingly 

F F Fd p H= + . 

The triplet phase invariants of the protein may then be estimated via the following probabilistic 

formula: 

 

  [ ]P( ) ( ) exp( cos )Φ ΦR ,R ,R ,S ,S ,S I A Aoh k h k h k h k− −
−

≅ 2
1

π  (I.22) 

 

where A is a positive or negative term, the value of which depends on an intricate interrelationship 

among the six moduli, Rh , Rk , Rh k− , Sh , Sk , Sh k−  are the moduli of the native and of the derivative 

structure factors respectively. Hauptman’s approach has been reconsidered and generalized by 

Giacovazzo, Cascarano & Zheng (1988), who derived a more simply and effective expression for A: 

 

  [ ] [ ]A / R R R //
p

/
H

= +− −2 23 2
3 2

3 2
3 2σ σ σ σh k h k h k h k∆ ∆ ∆   (I.23) 

 

where 

 

  ( )∆ = − ∑F Fd p H
/1 2       (I.24) 

 

In the phasing process a modified tangent formula can be applied, according to which the most 

probable value of φh  is given by 

 

  tan sin( ) cos( )θ φ φ φ φh k h k k h k h h= + + =−
=

−
=

∑ ∑A A T / Bj
j

r

j
j

r

j j j j
1 1

 

           (I.25) 

where now the reliability parameter is 

 

  ( )α h h h= +T B
/2 2 1 2

       (I.26) 
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Chapter II 
 

 

The Formula P13 
 

Introduction 
The triplet relationship 

 

  Φ3 1 2
0= + + ≅φ φ φ πh h h3

(mod 2 )     (II.1) 

 

with h h h1 2 3 0+ + =  is the most widely used phase relationship for solving crystal structures. It’s 

very important to use good triplets in the phase determination process because the occurrence of a few 

bad triplets (i.e. triplets for which (II.1) is violated) in the early stages of a phasing procedure can lead to 

wrong results even if the set of starting phases is relatively accurate. The probability of finding the 

correct solution is enhanced if the bad triplet relationships are recognized: then they may be excluded 

from the structure-solving process or suitably used. 

Φ3 is traditionally estimated by the Cochran (1955) formula (denoted by P3 from now on): 

 

  P ( )
( )

exp ( cos )
o

3 3 3
1

2
Φ Φ≅

π I C
C     (II.2) 
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where Io  is the modified Bessel function of order zero, C |E E E |/= −2 3 2
3 2

1 2 3
σ σ h h h  , 

σn j
n

j

N
Z=

=
∑

1
, Zj is the atomic number of jth atom of the structure, N is the number of atoms in the unit 

cell. Cochran’s formula estimates Φ3 by exploiting only the information contained in the three moduli 

|E |h1
, |E |h2

, |E |h3
. 

In the last years probability methods have seen new important developments. Not only it has been 

possible to improve the estimate of the triplets, but also to derive reliable estimates of other phase 

relationships. The theory of representations proposed by Giacovazzo (1977,1980) is a useful framework 

for designing the procedures devoted to estimating structure inviariants. 

In accordance with this theory we can use the second representation of Φ3 to obtain a better 

estimate of Φ3. The second representation in this case is the collection of special quintets 

 

  Ψ Φ2 3= + − =φ φkR kRi i
, i ,...,m1     (II.3) 

 

where k is a free vector in the reciprocal space and m is the number of symmetry operators 

C R Tj j j,= ( )  not related by a centre of symmetry (R j  is the rotational part, Tj  the translational part 

of the symmetry operator). Since Ψ Φ2 3≡ , estimating any Ψ2 is perfectly equivalent to estimating Φ3. 

The basis magnitudes of Ψ2 are the magnitudes |E |h1
, |E |h2

, |E |h3
, |E |k  and the cross magnitudes 

are the six terms |E |
ih kR1± , |E |

ih kR2± , |E |
ih kR3± . The collection of the basis and of the cross 

magnitudes of various quintents Ψ2 is called the second phasing shell of Φ3: 

 

  { } { }B R ,R ,R ,R ,R ,R ,R i ,...m
i i i2 1= =± ± ±h h h k h kR h kR h kR1 2 3 1 2 3

 

 

where R is the modulus of E. A formula was derived (Cascarano, Giacovazzo, Camalli, Spagna, Burla, 

Nunzi & Polidori, 1984) which is able to estimate Φ3 given the moduli in {B}2: 

 

  { }P( )
( )

exp ( cos )Φ Φ3 2 3
1

2
B

I G
G

o
≅

π
    (II.4) 
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where 

 

  G C Q= +( )1  

 

  C R R R N= 2
1 2 3h h h  

 

  
Q

' A / N

' B / N

i

m

i

i

m

i

=

+




























=

=

∑

∑
∑ 1

1 2

k

h h h k
k

,

1
,+

1 2 3
ε ε ε

 

 

  

( )[
( )
( ) ]

A ,i i i i

i i i

i i i

k k h kR h kR h kR

h kR h kR h kR

h kR h kR h kR

= + +

+ +

+

+ − −

+ − −

+ − −

ε ε ε ε

ε ε ε

ε ε ε

1 2 3

2 1 3

3 1 2

 

 

  

( )[
]

( )[
]

( )[
]

B ,i i i

i i i i

i i

i i i i

i i

i i i i

k h k h kR h kR

h kR h kR h kR h kR

h k h kR h kR

h kR h kR h kR h kR

h k h kR h kR

h kR h kR h kR h kR

= +

+ +

+ +

+ +

+ +

+ +

+ −

+ − − +

+ −

+ − − +

+ −

+ − − +

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

1 1 1

2 3 2 3

2 2 2

1 3 1 3

3 3 3

1 2 1 2
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The prime to summation warns the reader that precautions have to be taken in order to avoid 

duplications of contributions. In our notation εh stays for Rh
2 1− . The conditional distribution 

{ }P( )Φ3 2| B  was denoted P10 in order to emphasize the fact that the formula explores reciprocal space 

by means of ten-nodes figure. Unlike in Cochran formula, G may be positive or negative: in particular if 

G < 0 the triplet is estimated negative. The accuracy with which the value is estimated by (II.4) strongly 

depends on εk : large εk  will provide higher contributions to the formula. In practice, only a subset of 

magnitudes (the reflections k with large values of ε) may be used for estimating Φ3. 

The long experience with SIR88 (Burla, Camalli, Cascarano, Giacovazzo, Polidori, Spagna & 

Viterbo, 1989) and SIR92 (Altomare, Cascarano, Giacovazzo, Guagliardi, Burla, Polidori & Camalli, 

1994), two packages for direct phasing of crystal structures, proved that P10 is much more efficient than 

P3 formula. Its use often makes the difference between success and failure. 

The basic reason for the succes of P10 may be described in the following way. For any k vector 

the 6m cross magnitudes of Φ3 are listed below: 

 

  

R R R R R R

R R R R R R

. .

. .

. .
R R R R R R

m m m m m m

h kR h kR h kR h kR h kR h kR

h kR h kR h kR h kR h kR h kR

h kR h kR h kR h kR h kR h kR

1 1 1 1 2 1 2 1 3 1 3 1

1 2 1 2 2 2 2 2 3 2 3 2

1 1 2 2 3 3

+ − + − + −

+ − + − + −

+ − + − + −

(II.5) 

 

From the magnitudes in the ith line of the matrix (II.5) six quadrupoles arise, 

 

  a)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h kR h kR

h kR h kR

h h kR h kR

1 2 3

1 1

2 2

3 1 2

+ +

− − +

− + +

− − −













+

−

+ −

i i

i i

i i

 b)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h kR h kR

h h kR h kR

h kR h kR

1 2 3

1 1

2 1 3

3 3

+ +

− − +

− − −

− + +













+

+ −

−

i i

i i

i i
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  c)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h kR h kR

h kR h kR

h h kR h kR

1 2 3

1 1

2 2

3 1 2

+ +

− + +

− − +

− − −













−

+

− +

i i

i i

i i

 d)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h h kR h kR

h kR h kR

h kR h kR

1 2 3

1 2 3

2 2

3 3

+ +

− − −

− − +

− + +













+ −

+

−

i i

i i

i i

  (II.6) 

 

  e)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h kR h kR

h h kR h kR

h kR h kR

1 2 3

1 1

2 1 3

3 3

+ +

− + +

− − −

− − +













−

− +

+

i i

i i

i i

 f)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h h kR h kR

h kR h kR

h kR h kR

1 2 3

1 2 3

2 2

3 3

+ +

− − −

− + +

− − +













− +

−

+

i i

i i

i i

 

 

 

each of which giving a well recognizable contribution to P10. In conclusion the P10 formula is an 

efficient way for simultaneously exploiting the information contained in a quite large number of 

quadrupoles. 

 

Beyond the formula P10 
The question is: does (II.6) represent the only quadrupoles exploitable via the second 

representation of Φ3 ? In case of affirmative answer, P10 is a limit formula to which no other 

information may be added via the second representation of the triplet. If other quadrupoles might be 

identified some supplementary information could be should to improve the triplet estimates. 

Other types of quadrupoles do exist. For example, 

 

  

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h kR h kR

h kR h kR

h h kR R h kR R

1 2 3

2 2

3 3

1 2 3

+ +

− − +

− + +

− − −













+

−

+ −

i i

j j

i p j s( ) ( )

     (II.7) 

 

is a quadrupole too, provided h h R h R kR R kR R1 2 3 0+ + + − =p s i p j s . (II.7) is structurally 

different from quadrupoles (II.6) because it involves magnitudes contained in two lines of the matrix 
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(II.5), and also because the sum of the four triplets in (II.7) is no longer strictly equal to zero. Indeed if 

the sum D of the four triplet phases in (II.7) is calculated, one obtains: 

 

  ( )[ ]D p s i j i p j s= + + − + −2 2 3π h T h T k T T R T R T  

 

When D=0, the quadrupole is called consistent (Viterbo & Woolfson, 1973), inconsistent in the 

other cases. Since quadrupoles (II.6) are all consistent, P10 cannot exploit any inconsistent quadrupole. 

It’s therefore of some interest to understand if some quintets exist which are referred to quadrupoles 

(II.7), and to introduce a formalism able to involve such quintets. In this cases, both quadrupole types 

could be simoultaneously exploited. 

 

Algebraic considerations 
Let 

 

  Ψ2 1 2 3
= + + + −φ φ φ φ φh R h R h kR hRp q i j

    (II.8) 

 

where h h h1 2 3, ,  and k are chosen so as to satisfy the condition 

 

  h R h R h k R R1 2 3 0p q i j+ + + − =( )      (II.9) 

 

The quintet (II.8) differs from Φ3 by a know symmetry phase-shift: 

 

  [ ]Ψ Φ2 3 1 22= − + + −π h T h T k T Tp q i j( )  

 

Therefore any method estimating Ψ2 also provides an estimate of Φ3. Finding for each set of 

four vectors h1, h2 , h3, k, all the combinations of 4 matrices R p , Rq , R i , R j  for which (II.9) is 

satisfied is a too long job, even for fast computers. Thus we prefer to limit our study to three subsets of 

quintets (II.8), more precisely to the following cases: 

 

Case I: 
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  { }φ φ φ φ φh R h h kR kR R1 2 3p i i p
+ + + −     (II.10) 

 

under the condition 

 

  ( )( )h kR R I1 0− − =i p      (II.11) 

 

Case II: 

 

  { }φ φ φ φ φh h R h kR kR R1 2 3
+ + + −

p i i p
   (II.12) 

 

under the condition 

 

  ( )( )h kR R I2 0− − =i p      (II.13) 

 

Case III: 

 

  { }φ φ φ φ φh h h R kR kR R1 2 3
+ + + −

p i i p
   (II.14) 

 

under the condition 

 

  ( )( )h kR R I3 0− − =i p      (II.15) 

 

For each set of four vector h1, h2 , h3, k, we need now to identify only the two matrices R p  

and R i  which satisfy (II.11), (II.13) or (II.15). Since the three cases have similar properties we focus our 

attention to the case I: results will then be easily extended to cases II and III. 

Let us consider for the case I the generic quintet (II.10). Its phasing shell is constituted by the 

following 13 magnitudes: 

 



The formula P13 

18 

  
{

}
R ,R ,R ,R ,R ,R ,R ,R

R ,R ,R ,R ,R

p i i i i p

i i p p p i p

,h h h k h R kR h kR h kR h kR R

h kR h kR R h R h h R I h kR R I

1 2 3 1 1 2 2

3 3 1 2 1 2

+ − + −

+ − + − − −( ) ( )

(II.16) 

 

In accordance with (II.11) the vector kR R Ii p( )−  can be rewritten as h R I1( )p − . This 

notation emphasizes the fact that when k varies over reciprocal space and p is kept constant then 

kR R Ii p( )−  remains constant. Therefore the last three terms in (II.16) depend only on h1, h2 , h3, 

R p . 

When R Ip =  the 13 magnitudes reduce to 10, which constitute the second phasing shell of Φ3. 

Accordingly the formulation used for deriving the P10 expression is a particular case of the theory 

described here. 

It should be noted that because of (II.11) h kR1 − i  is a special reflexion marked by a Wilson 

coefficient η≠1 (i.e., η rotation matrices exist for which ( )h kR R h kR1 1− = −i p i . In literature the 

Wilson coefficient is usually called ε or p. Here it’s called η to avoid a conflict with other symbols). 

According to (II.10) the phase shift between Ψ2 and Φ3 reduces to ∆ = −2 1π ( )h kR Ti p ; 

therefore ∆≠0 only if ( )h kR1 − i  is a systematic absence, otherwise ∆=0. 

We also note that equation (II.11) may be written as 

 

  h R kR h kR R1 1p i i p+ = +       (II.17) 

 

If Cp  represents a symmetry operator of order 2 then also ( )h R kR1 p i+  is a special reflexion with 

η≠1. Indeed 

 

  h R kR h kR R R h kR R R1 1
1

1p i i p p i p p+ = + = +−( ) ( )  

 

and, according to (II.17), 

 

  ( ) forh kR R R h kR R R I1 1+ = + ≠i p p i p p  

We conclude that al least one cross reflexion of the quintets (II.10) is always special: when it 

coincides with a systematic absence, the phase shift between Ψ2 and Φ3 is different from zero. 
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Quintet (II.10) exploits the following 14 quadrupoles (for a simpler writing we will often denote 

h R I h h R h1 2 1 3( ) asp p− − + ): 

 

  a)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h kR h kR

h kR h kR

h h kR h kR

1 2 3

1 1

2 2

3 1 2

+ +

− + +

− − +

− − −













−

+

− +

i i

i i

i i

  b)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h kR h kR

h h kR h kR

h kR h kR

1 2 3

1 1

2 1 3

3 3

+ +

− + +

− − −

− − +













−

− +

+

i i

i i

i i

 

 

  c)
( )

( )

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h h R h R I

h h R h R h

h h R h h R I

1 2 3

1 1 1

2 1 1 2

3 1 2 1

+ +

− + −

− − +

− − +













−

+

+ −

p p

p p

p p

 d)
( )

( )

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h h R h R I

h h R h h R I

h h R h R h

1 2 3

1 1 1

2 1 3 1

3 1 1 3

+ +

− + −

− − +

− − +













−

+ −

+

p p

p p

p p

 

 

  e)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h R h h R h

h kR R h kR R

kR h kR R h R h

1 2 3

1 3 1 3

2 2

2 1 3

+ +

− − +

− + +

− − −













+

−

− +

p p

i p i p

i i p p

 f)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h R h h R h

h kR h kR

kR R h kR h R h

1 2 3

1 3 1 3

2 2

2 1 3

+ +

− − +

− − +

+ − −













+

+

+ +

p p

i i

i p i p

 

 

           (II.18) 

 

  g)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h R kR h R kR

h kR R h kR R

h h R kR h kR R

1 2 3

1 1

2 2

3 1 2

+ +

− − +

− + +

− − −













+

−

+ −

p i p i

i p i p

p i i p

 h)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h R kR h R kR

h h R kR h kR R

h kR R h kR R

1 2 3

1 1

2 1 3

3 3

+ +

− − +

− − −

− + +













+

+ −

−

p i p i

p i i p

i p i p

 

 

 



The formula P13 

20 

  i)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h R h h R h

kR R h kR h R h

h kR h kR

1 2 3

1 2 1 2

3 1 2

3 3

+ +

− − +

− −

− − +













+

+ +

+

p p

i p i p

i i

 j)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h R h h R h

kR h kR R h R h

h kR R h kR R

1 2 3

1 2 1 2

3 1 2

3 3

+ +

− − +

− − −

− + +













+

− +

−

p p

i i p p

i p i p

 

 

  k)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h R h kR h kR R

h kR h kR

h kR R h kR R

1 2 3

1 2 3

2 2

3 3

+ +

− − −

− − +

− + +













+ −

+

−

p i i p

i i

i p i p

 l)

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

h R h kR R h kR

h kR R h kR R

h kR h kR

1 2 3

1 2 3

2 2

3 3

+ +

− − −

− + +

− − +













− +

−

+

p i p i

i p i p

i i

 

 

  m)
( )

( )

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

kR kR R kR R I

h R h h R h

h h R h h R I

1 2 3

1 2 1 2

3 1 2 1

+ +

− + −

− − +

− − +













−

+

+ −

i i p i p

p p

p p

 n)
( )

( )

φ φ φ

φ φ φ

φ φ φ

φ φ φ

h h h

kR kR R kR R I

h R h h R h

h h R h h R I

1 2 3

1 3 1 3

2 1 3 1

+ +

− + −

− − +

− − +













−

+

+ −

i i p i p

p p

p p

 

 

 

The reader will easily verify that some of the quadrupoles (II.18) are in common with the 

quadrupoles (II.6). Such an overlapping will be reflected in the probabilistic formula estimating triplets 

via 13 moduli, which will therefore have terms in common with P10. 

 

The conditional probabilistic formula P13 
Let us consider the quintet (case I of the preceding section) 

 

  φ φ φ φ φh R h h kR kR R1 2 3p i i p
+ + + −     (II.19) 

 

The method of joint probability distribution function of structure factors (Hauptman & Karle, 

1953; Klug, 1958; Giacovazzo, 1980) will be used to derive the conditional probability 
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(
)

P

( )

Φ3 1 2 3 1 1 2 2

3 3 1 2 1 3 1

|R ,R ,R ,R ,R ,R ,R ,R ,

R ,R ,R ,R ,R

p i i i i p

i i p p p p

h h h k h R kR h kR h kR h kR R

h kR h kR R h R h h R h h R I

+ − + −

+ − + + −

 

 

under the condition (II.11). 

For the sake of simplicity we will not give any detail about the mathematical derivation. We only 

underline that k is a free vector which can vary over reciprocal space and that Ri is a rotation matrix 

which can freely vary over the set of rotation matrices included in the space group. Once the vector kR i  

and the matrix R p  satisfies (II.11) then the conditional probability of Φ3 given 13 magnitudes is 

calculated. Contributions arising from different k and different R i  can be combined with each other to 

give the general formula: 

 

  P( )
( )

exp ( cos )Φ Φ3 3
1

2
|...

I G'
G'

o
≅

π
   (II.20) 

 

where 

 

  G' C Q'= +( )1  

 

 

  
Q'

' A / N

' B / N

,i
'

i

m

,i
'

i

m=

+




























=

=

∑

∑
∑

k

h h h k
k

1

1
21+

1 2 3
ε ε ε
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( )[{
( )
( )
( )

]
( ) ( )

A ',i
'

p

m

i i i

p i i p i p

p i i p

p i i p

i i p i i p

p p p

k k h kR h kR h kR

h R kR h kR R h kR R

h R h h kR h kR R

h R h h kR h kR R

h kR h kR R h kR h kR R

k h R I h R h h R h

h

= +

+ +

+ +

+ +

+ +

+ − +




+

− + +
=

+ − −

+ + −

+ + −

+ − + −

− + +

∑ ε ε ε ε

ε ε ε

ε ε ε

ε ε ε

ε ε ε ε

ε ε ε ε

ε

1 2 3

1 2 3

1 2 3 3

1 3 2 2

2 3 3 2

1 1 2 1 3

1

1
4

2

1
4

( ) cos∆

( ) ( )1 1 1 2 1 3
2− +− + +ε ε εh R I h R h h R h( )p p p

 

 

  ( )∆ = −2 1π h kR Ti p  

 

  

( )

]
( )

]

B ',i
'

p

m

p i i

i i p i p i

p p

i i p p i i p

i i p p

i

k h k h R kR h kR

h kR h kR R h kR R h kR

h h R h h h R h

h k h kR h kR R h R kR h kR R

h kR h kR h R h h R I

h k h kR h

= +






+ +

+ +

+ +
 +

+ +

+ +

+ −
=

+ − − +

+ +

+ − + −

− + + −

+

∑ ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε

ε ε ε ε

1 1 1

2 3 2 3

2 1 2 3 1 3

2 2 2 1 3

1 3 1 3 1

3 3 3

1

( )

( )
]

( )
( )

− + −

− + + −

+ + −

+ + −


 +

+ +

+ +


+ + 





kR R h R kR h kR R

h kR h kR h R h h R I

k h R h h kR h kR R

h R h h kR h kR R

i p p i i p

i i p p

p i i p

p i i p

ε ε

ε ε ε ε

ε ε ε ε

ε ε ε

1 2

1 2 1 2 1

1 3 2 2

1 2 3 3

( )
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Let us consider now the case II. The quintet (II.12) may be written down as 

 

  Ψ2 2 1 3
= + + + −φ φ φ φ φh R h h kR kR Rp i i p

 

 

and depends on the following ordered set of magnitudes: 

 

  
{

}
R ,R ,R ,R ,R ,R ,R ,R

R ,R ,R ,R ,R

p i i i i p

i i p p p p

,h h h k h R kR h kR h kR h kR R

h kR h kR R h R h h R h h R I

2 1 3 2 2 1 1

3 3 2 1 2 3 2

+ − + −

+ − + + −( )

 (II.21) 

 

The quintet (II.14) may be written down as 

 

  Ψ2 3 2 1
= + + + −φ φ φ φ φh R h h kR kR Rp i i p

 

 

and depends on the following ordered set of magnitudes: 

 

  
{

}
R ,R ,R ,R ,R ,R ,R ,R

R ,R ,R ,R ,R

p i i i i p

i i p p p p

,h h h k h R kR h kR h kR h kR R

h kR h kR R h R h h R h h R I

3 2 1 3 3 2 2

1 1 3 2 3 1 3

+ − + −

+ − + + −( )

 (II.22) 

 

The ordered set (II.16) has its image in the ordered set (II.21) if h1 is replaced by h2  and 

viceversa. Accordingly the ordered set (II.22) is the image of the ordered set (II.16) if h1 and h3 change 

their roles. In conclusion the same formula holds for all the cases if the position of magnitudes in (II.16), 

(II.21) and (II.22) are considered rather than their indices. Then the final formula P13, collecting 

contributions from different cases and from different k’s, may be so written: 

 

  P P( )
( )

exp ( cos )13 3 3
1

2
= ≅Φ Φ|...

I G' '
G' '

oπ
  (II.23) 

 

where 
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Pedices of ε indicate the position of the related magnitude in (II.16), (II.21), (II.22). 

 

First applications of the formula P13 
In order to check the practical effectiveness of P13 for R Ip ≠  we have suitably modified the 

SIR92 program. Triplets are sought among the NLAR reflexions with largest R values ( NLAR is 
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fixed by the program ) and estimated according to Cochran (1955) formula (denoted here as P3), and P10 

respectively. 

Nine test structures were used: for them we give in Table I references, space groups and main 

crystal data. 

 

 

 

 

 
Table I: Code name, space group crystallochemical data for the test structures. 
(*) Complete references for such structures are not given for the sake of brevity. The reader is 
referred to magnetic tape distribuited by crystallographic group in Göttingen. 
(1) Distributed by the Crystallographic Group of York. 
(2) Cascarano, Douggy-Smiri & Nguyen-Huy Dung, (1987). 
 

 

 

P10 and P13 formulas require that the vector k is allowed to vary over a number of reflexions. 

SIR92 fixed for P13 the same number of k vectors used for P10: let Nk  be this value (see Table II) and 

let < >NkR i
 be the average number of the kR i  vectors involved in quintets (II.3) exploited for each 

triplet by P10. 

 
 
 

Structure Code Space 
Group 

Molecular Formula Z 

AX118(1) Pccn C H N O Cl19 21 2 3  8 

AZET(*) Pca21 C H Cl N O21 16  8 

BED(*) I4 C H N O26 26 4 4  8 

BOBBY(*) P2 31  Na Ca N CH CO+ ++ −( )2 2 3
3  4 

CUIMID(*) P3 212  C H N Cl Cu6 8 4  6 

DIAM(*) P n42 /  C H O14 20  8 

DIOLE(*) I d42  C H O10 18 2  16 

FEGAS(2) P mmc63 / Fe Ga S2 2 5 2 

INOS(*) P n21 /  C H O H O6 12 6 2⋅  8 
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Table II: NTRIP is the number of triplets calculated by SIR92. For the other symbols see the main text. 

 
 

Because of algebraic reasons only a subset of the vectors kR i  will satisfy (II.11) or (II.13) or 

(II.15): we denoted by < >NkRi
'  the average number of quintets (II.10) or (II.12) or (II.14) exploited 

for each triplet by P13. 

The relative efficiency of P3 and P13 can be deduced by Tables III , IV where triplets estimates 

are ranked as a function of ARG (ARG equal to C or G’ or G’’ according to circumstances). In Table 

III n is the number of triplets with |C| or |G’’| larger than ARG, nw is the number of wrong estimates. 

In Table IV < >| |Φ o  is the average absolute deviation of the triplet phase from 2π. We have calculated 

P13 only for the cases in which R Ip ≠ , in order to check the usefulness of the terms not included in 

the P10 formula. 

Tables III and IV show that P13 is an efficient tool both for ranking positive triplets and for 

picking up negatives ones. It proves to be a formula more accurate than P3, and therefore may constitute 

a useful alternative to it. In the same tables we show the corresponding statistics obtained for P10. It is 

inmediately seen that P13, calculated for R Ip ≠  is not better than P10 and is highly correlated with it. 

In order to have a simple figure for measuring the relative efficiency of the three formulas we calculated 

for each structure the correlation coefficient 

 
( )( )

( )[ ] ( )[ ]
ρ

φ φ

φ φ
=

< − < > − < > >

< − < > > < − < > >

cos cos (ARG) (ARG)

cos cos (ARG) (ARG)

T T

T T

D D

D D
/ /

1 1

2 1 2
1 1

2 1 2  

 

CODE NLAR NTRIP N k  < >N kRi
 

< >NkRi
'

 

ρ3 ρ10  ρ13  ρ10 13+
 

AX118 300 7025 46 156 60 0.200 0.635 0.503 0.644 
AZET 342 8000 60 186 50 0.156 0.406 0.284 0.413 
BED 286 4585 64 186 1 0.176 0.282 0.183 0.281 
BOBBY 68 2217 32 196 21 0.329 0.732 0.427 0.736 
CUIMID 198 4204 33 120 5 0.224 0.657 0.284 0.657 
DIAM 260 6455 46 162 41 0.193 0.553 0.430 0.571 
DIOLE 182 6508 42 230 34 0.179 0.275 0.212 0.280 
FEGAS 71 1334 30 180 320 0.311 0.773 0.543 0.785 
INOS 304 3572 56 99 17 0.188 0.660 0.412 0.656 
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Table III: AX118 - Triplet statistics. The P13 formula has been calculated for Rp ≠ I. 

 

 

 

 

 
Table IV: AZET - Triplet statistics. The P13 formula has been calculated for Rp ≠ I. 

 

 

 

 

where cos Tφ  is the true cosine of the triplet and D1(ARG) is the expected value of the triplet cosine 

according to P3, P10 and P13. Accordingly, for each structure three correlation factors ρ3 , ρ10  and 

ρ13 are calculated which correspond to Cochran (P3), P10 and P13 formulas respectively (see Table II). 

It’s easy seen that: 

1. ρ13  is always much higher than ρ3 . The indications of Tables III and IV are therefore confimed. 

P3  P13  P10  

   POSITIVE 
EST. TRIP. 

NEGATIVE 
EST. TRIP. 

POSITIVE 
EST. TRIP. 

NEGATIVE 
EST. TRIP. 

ARG n (nw) n (nw) n (nw) n (nw) n (nw) 

0.4 6823 (843) 3435 (53) 93 (14) 3794 (17) 131 (19) 
0.8 2672 (143) 2672 (24) 14 (1) 2919 (8) 11 (0) 
1.2 740 (13) 1514 (11) 3 (0) 1547 (1) 1 (0) 
1.6 197 (0) 831 (1) 1 (0) 675 (0)   
2.0 56 (0) 425 (0) 1 (0) 276 (0)   

P3  P13  P10  

   POSITIVE 
EST. TRIP. 

NEGATIVE 
EST. TRIP. 

POSITIVE 
EST. TRIP. 

NEGATIVE 
EST. TRIP. 

ARG n <|Φ|>° n <|Φ|>° n <|Φ|>° n <|Φ|>° n <|Φ|>° 
0.4 8000 50.5 5708 44.4 87 87.6 5373 40.3 55 109.9 
1.2 1409 38.8 1972 35.5 9 121.2 2341 32.0 1 122.0 
2.0 95 27.2 521 29.4 2 89.5 597 25.8   
3.2   111 25.4   67 22.3   
4.4   25 26.9   4 23.0   



The formula P13 

28 

2. ρ10 is always larger than ρ3. This corroborates the well documented higher efficiency of  P10 with 

respect to Cochran formula. 

3. For low symmetry space groups < >NkRi
'  is very small: consequently P13 does not provide a 

relevant improvement of P3 perfomances. We then decided to recalculate P13 after having increased 

the value of Nk  and, as a consequence, the value of < >NkRi
' .The results are in Table V and show 

that ρ13  generally increases even if, for low symmetry space groups (i.e., for BED), conditions 

(II.11) or (II.13) or (II.15) are hardly satisfied. 

4. In most cases ρ13 is significantly close to ρ10. This correlation seems not casual and suggests a 

supplementary algebraic and statistical analysis of the P13 formula. 

 

 

 
Table V: For the symbols see the main text. The correlation 
coefficient has been calculated using P13 formula with Rp ≠ I. 

 

 

 

Algebraic and statistical analysis of the P13 formula 

If R Ip =  condition (II.11) is verified for any kR i : then A ,i
'
k  and B ,i

'
k  terms coincide with 

terms A ,ik  and B ,ik  in P10. Thus the present formulation encompasses the P10 formalism. However 

some theoretical and practical drawbacks limit the usefulness of the present theory. For example, as for 

CODE Nk  < >NkRi
'  ρ13 

AX118 150 185 0.556 

AZET 150 126 0.314 

BED 150 3 0.175 

BOBBY 68 45 0.447 

CUIMID 150 24 0.344 

DIAM 150 116 0.464 

DIOLE 150 129 0.233 

FEGAS 71 770 0.635 

INOS 150 44 0.440 
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P10, the prime to the summation warns the reader that precautions have to be taken in order to avoid 

duplications of contributions(i.e., if R p  is a symmetry operator of order two ( R Rp p= −1 ), then A ,i
'
k  

and B ,i
'
k  do not change when R i  is replaced by −R Ri p  ). While duplications of contributions can be 

easily avoided for P10, a computer program able to eliminate all of them from (II.23) is too time 

consuming even for fast computer. Thus (II.23) would result less efficient in practice than theoretical 

expected. 

Let us now compare (II.20) with P10, with special attention to the comparison between A ,ik  and 

A ,i
'
k  ( A ,ik  and A ,i

'
k  influence the sign of cosΦ3, while B ,ik  and B ,i

'
k  are only scaling factors). We 

note: 

1. The term ε ε ε εk h kR h kR h kR1 2 3− + ++
i i i
( ) is both in A ,ik  and in A ,i

'
k  (the quadrupoles (II.18a) 

and (II.18b) are also in (II.6)), but is multiplied in A ,i
'
k  by cos∆ . This is not a contradiction. Indeed 

∆ ≠ 2π n only if the reflexion with vectorial index h kR1 − i  is systematically absent: but in this 

case the term itself vanishes. 

2. If R i  is replaced by R Ri p
−1 and R p  is a symmetry operator of order two then the term 

ε ε ε εk h R kR h kR R h kR R1 2 3p i i p i p+ − −+( ) (from quadrupoles (II.18g) and (II.18h)) is replaced by 

ε ε ε εk h kR h kR h kR1 2 3+ − −+
i i i
( )  which is also included in A ,ik  (that is not true if R p  is not a 

symmetry operator of order two). The fact that in A ,i
'
k  the term is multiplied by cos∆  is not a 

contradiction. In the section dedicated to algebraic considerations we showed that if R Rp p
− =1  then 

h R kR1 p i+  is a special reflexion with η≠1. Therefore ∆ ≠ 2π n  only if the reflexion with 

vectorial index h R kR1 p i+  is a systematically absent reflexion: but in this case the term itself 

vanishes. 

3. For a fixed R p  the term ( ) ( )1
4

2
1 1 1 2 1 3

ε ε ε εh h R I h R h h R h− +− + +( )p p p
 (from quadrupoles 

(II.18c) and (II.18d) ) does not change with k. Consequently its role in (II.20) is statistically not 

relevant. In addition it is based on special quadrupoles (see relationships (II.18)) involving ∑1  

relations which are unreliable for complex structures. An analogous conclusion holds for the term 

( ) ( )1
4

2
1 1 2 1 3

ε ε ε εk h R I h R h h R h− +− + +( )p p p
 arising from quadrupoles (II.18m) and (II.18n). 
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4. The term 

 

  
( )
( )

ε ε ε ε

ε ε ε

k h R h h kR h kR R

h R h h kR h kR R

1 2 3 3

1 3 2 2

p i i p

p i i p

+ + −

+ + −

+


+ + 


 

 

arising from quadrupoles (II.18i), (II.18j), (II.18f) and (II.18e), is present both in A ,i
'
k  and in B ,i

'
k . 

When it is large it contributes to A / N,i
'
k  meaningfully, but at the same time it makes B / N,i

'
k 2  

large so auto-reducing its own influence on the formula (II.20). Generally speaking large value of this 

term are asociated to large variance values. This strange behaviour may be so explained: while typical 

quadrupoles strengthening Φ3 involve triplets each of which containing h1 or h2  or h3, 

quadrupoles (II.18e), (II.18f), (II.18i) and (II.18j) do not satisfy this condition. They are based on 

two-phase seminvariants (for example, the sum of the last two triplets in the quadrupole (II.18e) is the 

two-phase seminvariant φ φ πh R I h h kR T
1 2 2

2( )p i p− − − −  ) which are unreliable for complex 

structures. 

5. The term [ ]ε ε ε ε εk h kR h kR R h kR h kR R2 3 3 2+ − + −+
i i p i i p

 arising from quadrupoles (II.18k) and 

(II.18l), is not present in A ,ik : it contains useful information supplementary to that provided by P10. 

In particular it is able to exploit quadrupoles of type (II.7) (not accessible to P10) because it involves 

magnitudes contained in two different lines of the matrix (II.5). It should be worthwhile calculating 

the role of the quadrupoles (II.18k) and (II.18l) in the P13 formula. We neglect in A ,i
'
k  all the terms 

but ( )ε ε ε ε ε4 7 10 8 9+  and in B ,i
'
k  all the terms but 

( ) ( ) ( ){ }ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε1 7 10 8 9 2 4 7 4 8 3 4 9 4 10+ + + + + . The results for AX118 and AZET 

are shown in Table VI and VII. 
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Table VI: Triplet statistics calculated using only the contrubition of quadrupoles 

(II.18k) and (II.18l). 

 

 

 

 

Table VII: Triplet statistics calculated using only the contribution of quadrupoles 

(II.18k) and (II.18l). 
 

 

 

We see that the simple use of the information contained in the quadrupole (II.7) is able to identify 

negative triplets and to efficiently rank the positive ones. The phase indications provided by quadrupoles 

(II.18k) and (II.18l) well agree with those obtained through the complete P13 formula (see Tables III and 

AX118 
P13  

 POSITIVE 
ESTIMATED TRIPLETS 

NEGATIVE 
ESTIMATED TRIPLETS 

ARG n (nw) n (nw) 

0.4 3512 (144) 62 (21) 

0.8 2527 (70) 13 (11) 

1.2 1338 (23) 2 (0) 

1.6 738 (12)   

2.0 400 (6)   

AZET 
P13  

 POSITIVE 
ESTIMATED TRIPLETS 

NEGATIVE 
ESTIMATED TRIPLETS 

ARG n <|Φ|>° n <|Φ|>° 

0.4 6435 47.7 17 96.0 

1.2 1805 39.2 4 139.2 

2.0 343 34.3   

3.2 56 29.5   

4.4 5 25.2   
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IV). We have combined the contributions from P10 just by adding the corresponding numerators and 

respective denominators (terms can be considered as statistically independent). The correlation 

coefficient ρ was then calculated for the test structures and is shown in the last column of Table II. It is 

seen that ρ10 13+  is slightly better than ρ10 but improvement is not really significant. 

 

Conclusions 
The main purpose was to investigate about the limits of accuracy to which one can go by 

embedding triplet invariants in quintet invariants. P13 provides a slightly better information then P10 but 

the additional contribution does not seem of sufficient quality for justifying the quite larger amount of 

computing time. However it’s too early to conclude that the limits have seen reached. 
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Chapter III 
 

 

The normalization procedure for Proteins 
 

Introduction 
In recents works (Giacovazzo, Siliqi & Ralph, 1994; Giacovazzo, Siliqi & Spagna, 1994; 

Giacovazzo, Siliqi & Zanotti, 1995) a probabilistic approach has been described for the ab-initio crystal 

structure solution of proteins. The method integrates direct methods and isomorphous techniques and 

requires diffraction data from the native protein and from one isomorphous derivative. It is based on the 

formula obtained by Giacovazzo, Cascarano & Zheng Chao de (1988) estimating three-phase invariants 

given six magnitudes. The results may be summarized as follows: 

1. the multisolution technique is applied to random starting phases. A small number of trials is sufficient 

for obtaining the correct solution. 

2. Proper figures of merit rank the trials: the correct solution is often found among the trials 

characterized by the largest values of the combined figure of merit CFOM. 

3. About 40% of the reflections up to derivative resolution can be phased with good reliability. The 

process needs a relative short computing time. 

4. The accuracy of the phasing process relies on the quality of the heavy-atom derivative. 

Quite small phase errors can be obtained in case of good isomorphism. Severe lack of 

isomorphism degrades the accuracy of the triplet invariant estimates and therefore the quality of the 
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assigned phases. The process proved sufficiently robust against experimental errors but it may still be 

improved in several ways. Our attention will be focused on the following ones: 

a) the procedure is based on ∆ ( or ∆´) values which are obtained by a statistical treatment of the 

experimental data. Each ∆ may be considered as sum of a signal (i.e., the heavy atom scattering) and 

of a noise ( arising from the disordered water distribution, lack of isomorphism, error in 

measurements, etc.). Since noise is unavoidable, the following question arises: is the procedure 

yielding ∆ values optimally designed to face a large noise? If not, can new criteria be fixed to design 

a robust procedure accurately working in severe conditions? 

b) The phasing procedure was applied to different structures for which derivative data are available, 

whose resolutions are 2Å for CARP and APP, and 3Å for E2 and M-FABP (see Table I and Table II 

for more details) and it was proved that success for direct methods can be obtained even at non-

atomic resolution. However it is not unfrequent that only isomorphous data up to 4Å resolution are 

available. Can the phasing process successfully work at such a low resolution where the scaling 

Wilson procedure is rather inaccurate? 

c) The various trials solutions are ranked by proper FOM’s, which are extremely efficient when perfect 

isomorphism occurs. For real cases one can expect that the correct solution is among the trials with 

the highest values of CFOM, however various experimental errors and lack of isomorphism can 

heavily reduce the discriminating power of the various FOM’s. The search of FOM’s less sensitive to 

the various “errors” is a topic of enormous importance for the success of direct methods applied to 

macromolecules. An alternative way for contributing to the solution of the problem may consist in 

answering the following question: do criteria exist which are able to discard, among the various trials 

with the highest values of CFOM, the trial solutions devoid of structural meaning? 

We will describe some techniques which will provide efficient solution to the problems described 

in a), b) and c). 

 

The test structures 
In order to check the phasing process, we use the test structures defined by the code names APP, 

CARP, E2, M-FABP, BPO, FIX, NOX, TAQ. 

APP data were collected using a four-cicle diffractometer for the native and a HgCl2 derivative 

(Blundell, Pitts, Tickle, Wood & Wu, 1981). The structure was solved by applying SIRAS (single 

isomorphous replacement including anomalous scattering) techniques to 2Å resolution data. Phases were 

extended to 1.4Å resolution by using a modified tangent formula. New data for the native protein up to 
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0.98Å resolution were collected by a four-circle diffractometer (Glover, Haneef, Pitts, Wood, Moss, 

Tickle & Blundell, 1983). 

For CARP (carp muscle calcium-binding protein), isomorphous and anomalous scattering data 

were measured (Kretsinger & Nockolds, 1973) up to 2.0Å resolution using precession photography; three 

heavy-atom derivatives were used. In our calculations, we only make use of the (3-chloromercurio-2-

methoxypropyl)urea (CMMPU) derivative. 

Diffraction data of E2 (catalytic domain of Azotobacter vinelandii dihydrolipoyl transacetylase) 

were collected on a fast television area derector (Mattevi, Obmolova, Schulze, Kalk, Westphal, De Kok 

& Hol, 1992). One mercury and two platinum derivatives were used for phasing: data include anomalous-

dispersion effects (multiple isomorphous replacement including anomalous scattering, MIRAS). We only 

make use of the mercury derivative, which, as stated by Mattevi et al., is of excellent quality. 

The structure of M-FABP (recombinant human-muscle fatty-accid-binding protein) was originally 

solved using both multiple isomorphous replacement and molecular replacement procedures (Zanotti, 

Scapin, Spadon, Veerkamp & Scchettini, 1992). Data for native and two isomorphous derivatives were 

collected with Siemens X1000 area detector system and on a SDMS area detector system coupled with a 

rotating-anode generator. For our calculations, we used the HgAc2  derivative. 

Data for BPO (bromoperoxidase A2 from Streptomyces aureofaciens ATCC 10762 (Hecht, 

Sobek, Haag, Pfeifer & van Pee, 1994) have been collected at room temperature. Native data were 

measured to 2.05Å resolution, two derivative data sets were measured to 2.6Å resolution. The resulting 

MIR map was easily interpretable and allowed a complete chain tracing in the asymmetric unit. 

The factor for inversion stimulation, FIS, was determined by multiple isomorphous replacement 

(Kostrewa, Granzin, Stock, Choe, Labahn & Saenger, 1992): we will only use native data (up to 2Å 

resolution) and the ( )[ ]PtCl C H2 2 4 2
 derivative data (resolution up to 3.3Å). 

NOX is the code name for NADH oxidase from Thermus thermophilus (Hecht, Erdmann, Park, 

Sprinzl, Schmid & Schonburg, 1993; Hecht, Erdmann, Park, Sprinzl, Schmid, 1994). Native data were 

collected up at 12ºC to 2.3Å resolution. Potencial derivative data sets were collected up to 2.9Å 

resolution, but we will use only ( )[ ]PtCl NH2 2  derivative. 

TAQ is the code name for Adenine-N6-DNA-methytransferase (Labahn, Granzin, Schluckebier, 

Robinson, Jack, Schildkraut & Saenger, 1994). Native data were collected up to 2.4Å resolution. Three 

derivatives were used for crystal structure determination, K PtCl2 4, ( )[ ]PtCl C H2 2 4 2
, 
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( )C H O HgCl7 5 3 . We will only use the ( )[ ]PtCl C H2 2 4 2
 and ( )C H O HgCl7 5 3  derivative in the 

calculations. 

In Table I we collect the main crystallochemical data for all the test structures, and in Table II we 

show some relevant parameters of the diffraction data we used. 

 

 

 

 

 
Table I: Code name, space group and crystallochemical data for test structures. 
(1) Glover, Haneef, Pitts, Wood, Moss, Tickle & Blundell (1983) 
(2) Kretsinger & Nockolds (1973) 
(3) Mattevi, Oblomova, Schulze,Kalk, Westphal, De Kok & Hol (1992) 
(4) Zanotti, Scapin, Spadon, Veerkamp & Sacchettini (1992) 
(5) Hetch et al. (1994) 
(6) Kostrewa et al. (1991) 
(7) Hetch et al (1993); Hetch et al (1993) 
(8) Labahn et al. (1994) 

 

Structure Code Space Group Molecular Formula Z 

APP (1) C 2 C190N53O58Zn 4 

CARP (2) C 2 C513N131O121Ca2S 4 

E2 (3) F 4 3 2 C1170N310O366S7 96 

M-FABP (4) P 21 21 21 C667N170O261S3 4 

BPO (5) P 21 3 C2744N712O1073 12 

FIS (6) P 21 21 21 C783N224O1312S10 4 

NOX (7) P 41 21 2 C1034O704N299S2P1/8 8 

TAQ (8) P 21 21 2 C4390N1174O1240S8 4 
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The normalization process at 4Å resolution 

We applied the normalization procedure described by Giacovazzo, Siliqi & Spagna (1994) to 

TAQ by using Hg-derivative data (experimental data up to 4Å resolution). The procedure is a two-step 

method: first, the standard Wilson method is applied to native protein data truncated at derivative 

resolution to obtain ( )DwK p  and ( )DwB p , where K and B indicate scale and temperature factor 

respectively. Then, in the second step, estimates of the ratio ( )K / Kd p  and ( )B Bd p−  are obtained 

by a differential Wilson plot (Blundell & Johnson, 1976) through the equation 

 

  
( ) ( )[ ]

( ) ( )
ln

ln sin

∑ + ∑ < > ∑ < > =

+ −

p H p p d

p d d p

F / F

K / K B B /

2 2

2 22 θ λ
 

 

 

 

 

 

Table II: Relevant parameters for diffraction data of test structures. 

Structure 

Code 

Native Derivative 

 RES(Å) NREFL Heavy atom [σ2]H /[σ2]p RES(Å) NREFL 

APP 0.99 17058 Hg 0.23 2.00 2086 

CARP 1.71 5056 Hg 0.09 1.71 4687 

E2 3.00 10388 Hg 0.08 3.00 9179 

M-FABP 2.14 7595 Hg 0.06 2.15 7125 

BPO 2.76 16348 Au 

Pt 

0.06 

0.06 

2.76 

2.76 

16348 

15291 

FIS 2.00 12846 Pt 0.35 3.30 2983 

NOX 3.00 4295 Pt 0.08 3.00 4295 

TAQ 2.40 37268 Pt 

Hg 

0.09 

0.04 

3.20 

4.00 

15620 

8484 
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The scaling ( )DwK d  and thermal ( )DwB d  parameters for the derivative are used to calculate 

the first estimates of the ∆´ values, which are scaled by the factor 

 

  ( )S |E | |E | |E E | Td
'

p
'

p
'

d
' /

= < + − >
−2 2 1 2

2  

 

to make the experimental distribution of |∆´| closer to expected one. This procedure was used with a 

relative success in APP, CARP, E2 and M-FABP (Giacovazzo, Siliqi & Spagna, 1994) but the results for 

TAQ were in some way surprising: strongly negative values of the termal factors were obtained by the 

Wilson procedure both for the native ( )DwB p = -20.81 and for de derivative ( )DwB d = -8.55 data. The 

Wilson plot is highly non-linear and is shown in Fig.1. 
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Fig. 1: TAQ - Wilson plot for native diffraction data up to derivative resolution 
(4Å). 
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Table III: Scale and thermal factors for the test structures obtained by the procedure described by Giacovazo, 

Siliqi & Spagna (1994). 

Structure 

Code 

4Å Resolution 

Data 

Derivative Resolution 

Data 

 ( )DwK p  

( )DwK d  

( )DwB p  

( )DwB d  

( )DwK p  

( )DwK d  

( )DwB p  

( )DwB d  

APP 0.27 

0.34 

-18.86 

-14.50 

0.14 

0.19 

9.78 

12.57 

CARP 3.87 

3.92 

-22.88 

-18.60 

2.12 

2.22 

5.69 

7.69 

E2 27783.82 

28088.40 

-11.89 

-6.33 

19178.18 

20429.74 

9.14 

11.41 

M-FABP 433.78 

65.48 

-31.41 

-27.99 

211.37 

33.70 

6.11 

6.54 

BPO (Au) 0.091 

0.093 

-37.56 

-34.30 

0.037 

0.039 

6.71 

8.11 

BPO (Pt) 0.091 

0.101 

-37.56 

-37.95 

0.037 

0.039 

7.30 

7.70 

FIS 0.57 

4.30 

-10.61 

29.71 

0.39 

3.57 

10.12 

39.64 

NOX 0.036 

0.035 

-39.52 

-35.92 

0.0128 

0.0130 

10.25 

11.86 

TAQ (Pt) 4.88 

0.031 

-18.09 

-11.26 

2.94 

0.019 

10.92 

16.32 

TAQ (Hg) 5.23 

0.036 

-20.81 

-8.55 

5.23 

0.036 

-20.81 

-8.55 
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In order to check if such a result was casual or representative of a systematic behaviour of protein 

data at 4Å resolution, we cut at 4Å the data of all the other test structures. The results are shown in Table 

III: the thermal factors B are all negative for the protein data ( )DwB p << 0, differences ( )DwB d  - 

( )DwB p  are all positive. If the same procedure is applied to the other test data up to derivative 

resolution the results fit better with expectations (see Table III again). Indeed positive Bp  values are now 

obtained and the differences ( )DwB d  - ( )DwB p  are again all positive (and highly correlated with the 

corresponding differences obtained at 4Å resolution). 

The reason of the “anomalous” behaviour at 4Å resolution can be in mediately understood from 

Figs.2 and 3 where Wilson plots for native APP and FIS data are shown. 
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Fig. 2: APP - Wilson plot. a) Is the native driffraction data up to derivative 
resolution (2Å); b) Is the native diffraction data up to 4Å resolution 
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In each figure Wilson plots for the data up to 4Å resolution and up to derivative resolution are 

shown together with the corresponding least squares straight lines. It is easy seen that the impressive 

errors in the estimated K and B values at 4Å resolution are consequence of Debye effects. Indeed the 

radial distribution of diffracted intensities of proteins has always a through at about 6Å and a peak at 

about 4.5Å (Richardson & Richardson, 1985). The problem is now to understand if errors in the 

normalizing step can hinder the success of the phasing process or damage its efficiency. That really 

occurs for small molecules (Subramanian & Hall, 1982; Hall & Subramanian, 1982a,b; Cascarano, 

Giacovazzo & Guagliardi, 1992). Does the same occur for macromolecules, where ∆ (and not |E| ) 

quantities are used? This is not so obvious since ∆ parameters are more sensitive to the ratio K / Kd p  

and to the difference B Bd p−  rather than to their absolute values. 

In order to answer the above question we used ∆´ values of TAQ (4Å resolution data) to estimate, 

via  
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Fig. 3: FIS - Wilson plot. a) Is the native driffraction data up to derivative 
resolution (3.2Å); b) Is the native diffraction data up to 4Å resolution 
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  [ ] [ ]A / R R R //
p

/
H

' ' '= +− −2 23 2
3 2

3 2
3 2σ σ σ σh k h k h k h k∆ ∆ ∆ ,  (III.1) 

 

the triplet invariants among the 986 reflections with the largest values of |∆´|. A is the concentration 

parameter of the distribution  

 

  [ ]P( ) ( ) exp( cos )Φ Φ|R ,R ,R ,S ,S ,S I A Aoh k h k h k h k− −
−

≅ 2
1

π  

 

derived by Giacovazzo, Cascarano & Zheng (1988). Short statistics are shown in Table IV-(a). 

Triplets are divided into two subsets, positive and negative estimated triplets: Nr is the number of triplets 

having |A|>ARG, % is the percentage of triplets whose cosine sign is correctly estimated, <|Φ|°> is the 

average of the absolute values of the triplet phase Φ. 

It is inmediately seen that the number of triplets estimated negative is abnormally higher than the 

number of triplets estimated positive. This has no physical meaning and is mainly due to errors in the 

normalizing procedure. As a consequence the percentage of correctly estimated negative triplets is 

smaller than 50%, and this seriously endangers the success of the phasing process. A similar result is 

obtained for FIS at 4Å resolution (see Table IV-(b) ) by using the 643 reflections with the largest value of 

|∆´|. 

Different statistics are obtained for NOX and BPO (see Tables IV-(c),(d),(e)). 

For NOX a too large percentage of the triplets found among the 564 reflections with the largest 

values of |∆´| have |A| value between 0.0 and 0.2, but there is no systematic error in the estimation of the 

sign of the triplets. For BPO (Pt derivative), only 35 triplets have  |A|≥0.2, and for BPO (Au derivative) 

only 3455 have  |A|≥0.2. Again no systematic error is found in the estimation of the sign of the triplets. 

The above results indicate that the normalizing procedure described before is unable to carefully 

control at 4Å resolution the various parameters playing a role in the scaling process. That constitutes a 

bad premise for the success of the subsequent phase determination procedure. This was confirmed when 

we applied the phasing process described by Giacovazzo, Siliqi & Spagna, (1994) and Giacovazzo, Siliqi 

& Zanotti, (1995) to data up to 4Å resolution for all the test structures (see Apendix I). 
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Table IV-(a): Statistical calculations for triplets invariants estimated via (III.1) at 4Å resolution. 

 

 

 

 

Table IV-(b): Statistical calculations for triplets invariants estimated via equation (III.1) at 4Å resolution 

 

 

 

TAQ (Hg derivative) 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

1.6 6255 52 87 32302 48 88 

2.0 5389 53 86 28693 48 88 

2.6 3470 53 86 20132 48 88 

3.2 1998 54 85 12620 48 88 

3.8 842 57 82 5997 48 88 

4.4 282 60 78 2680 47 88 

5.5 70 60 82 561 47 88 

FIS 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

0.4 7660 55 84 42340 49 89 

0.8 5947 56 83 29277 49 89 

1.2 3232 57 81 14135 48 88 

1.6 1523 58 80 6144 48 88 

2.0 724 56 82 2537 49 90 

2.6 223 53 85 669 44 85 

3.2 62 48 88 148 42 81 

3.8 7 43 96 13 31 70 
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Table IV-(c): Statistical calculations for triplets invariants estimated via (III.1) at 4Å resolution 
 

 

 

 

Table IV (d): Statistical calculations for triplets invariants estimated via equation (III.1) at 4Å resolution 

 

 

 

 

Table IV (e): Statistical calculations for triplets invariants estimated via equation (III.1) at 4Å resolution 

NOX 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

0.0 31477 54 85 18523 54 95 

0.2 100 76 52 23 61 101 

0.4 1 0 178    

BPO (Au derivative) 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

0.0 24151 68 69 25849 67 110 

0.2 2348 78 58 1107 80 124 

0.4 120 86 44 75 84 139 

BPO (Pt derivative) 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

0.0 33101 64 73 16899 70 113 

0.2 28 93 42 7 86 137 
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Results are shown in Table V. It is not a surprise that the procedure does not succeed in the 

majority of the cases (i.e., for APP, M-FABP, BPO, FIS, NOX, and TAQ(Hg) ). Only E2 and CARP are 

satisfactorily phased while for TAQ(Pt) a solution is found but with an appreciable mean phase error. 

 

 

 

 
Table V: Application of the phasing procedure described by Giacovazzo, Siliqi & Spagna (1994); 
Giacovazzo, Siliqi & Zanotti (1995) at 4Å resolution data. Order of solution is the order of the trial 
solution as ranked by CFOM. NPHAS is the number of the phased reflexions, Error is the average phase 
error calculated with respect to published phases values. 

 

 

 

The question is now if a more accurate normalizing procedure can be found which is able to 

overcome the difficulties met with 4Å resolution data and possibly to improve the accuracy of the phasing 

process also with data at higher resolution. Such a technique is described in the next sections. 

 

The normalization procedure by histogram matching 

For R and S larger than or close to unity the factor T is so close to unity that ∆´may be replaced 

by ∆. The advantage of the quantity ∆ is that its distribution may be readily calculated (see Apendix II). 

This has been done by Giacovazzo, Siliqi & Zanotti (1995), where, in order to guess about the number of 

Structure Code Order of Solution NPHAS Error (w-Error) 

APP - - - 

CARP 2 348 42 (37) 

E2 2 1696 30 (30) 

M-FABP - - - 

BPO (Au) - - - 

BPO (Pt) - - - 

FIS - - - 

NOX - - - 

TAQ (Pt) 1 3194 66 (57) 

TAQ (Hg) - - - 
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phases to involve in the phasing process, the probability distribution function P(∆) has been obtained as 

a function of the parameter [ ] [ ]σ σ σ= 2 2H p/ . We will see now that P(∆) can play a basic role also 

in the normalizing process. 

Let ∆T be a positive threshold for ∆, n
T∆

+  be the number of positive ∆‘s for which ∆ ∆> T, 

n
T∆

−  be the number of negative ∆ for which ∆ ∆> T. Since P(∆) is not an even function, the ratio 

 

  RPM n n
T T

= + −
∆ ∆/  

 

is expected to be larger than unity for any value of σ and for any ∆T. In Fig.4 we show RPM curves 

for different values of σ. 

RPM increases with σ, and, for a given σ, increases with ∆T. Its value is strictly correlated with 

the ratio K / Kd p : errors in the estimate of this ratio will produce anomalous values of RPM. For 

example, if Fd  values are scaled so as they are larger than their true values the number of positive ∆‘s 

will exceed the expected value. In the converse case the number of negative ∆‘s will be larger than the 

expected value. In general the experimental P(∆) curve is modelled by different sources of errors: 

besides the scaling error, also wrong estimates of the difference B Bd p−  (as a consequence of the 

scaling error), errors in measurements, lack of isomorphism, etc. will generate anomalies in P(∆). It is 

therefore instructive to compare for all the test structures (see Figs.5 - 8) the theoretical ∆ curves with 

those obtained from measurements at 4Å resolution in accordance with the normalization procedure 

described by Giacovazzo, Siliqi & Spagna (1994). APP and FIS curves are shown in Fig.5,together with 

the teoretical curve at σ ≅ 0 35. . CARP, E2 and NOX curves are shown in Fig.6 together with the 

theoretical curve at σ ≅ 0 08. . TAQ curves are shown in Fig.7, together with expected curve at 

σ ≅ 0 06. . M-FABP and BPO curves are shown in Fig.8 together with expected curve at σ ≅ 0 06. . 
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Fig.4: RPM curves for some representative values of σ against the threshold ∆T 

 

 

Fig. 5: P(∆) distribution curve theoretically expected at σ=0.35 and corresponding 
experimental curves of APP and FIS, obtained by the normalizing procedure described 
by Giacovazzo, Siliqi & Spagna (1994) at 4Å resolution. 
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Fig. 6: P(∆) distribution curve theoretically expected at σ=0.08 and corresponding 
experimental curves of CARP, E2 and NOX, obtained by the normalizing procedure 
described by Giacovazzo, Siliqi & Spagna (1994) at 4Å resolution. 

 

Fig. 7: P(∆) distribution curve theoretically expected at σ=0.06 and corresponding 
experimental curves of TAQ (Pt derivative) and TAQ (Hg derivative), obtained by the 
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normalizing procedure described by Giacovazzo, Siliqi & Spagna (1994) at 4Å 
resolution. 

 

Fig. 8: P(∆) distribution curve theoretically expected at σ=0.06 and corresponding 
experimental curves of BPO (Au and Pt derivative) and M-FABP, obtained by the 
normalizing procedure described by Giacovazzo, Siliqi & Spagna (1994) at 4Å 
resolution. 

 

 

 

We note that: 

a) APP, NOX, M-FABP, TAQ (Pt) and BPO curves are too sharp. As a consequence the |∆|’s are 

underestimated and reliable triplets are weakly discriminated from unreliable ones. This explains the 

anomalous triplet statistics of NOX and BPO shown in Table IV-(c),(d),(e). 

b) FIS and TAQ (Hg) curves are markedly shifted towards left. As a consequence, the ratio RPM will 

generally be smaller than its expected value and the percentage of negative triplets will be abnormally 

high. This explains the bad triplet statistics shown in Tables IV-(a) and (b) for TAQ (Hg) and FIS. 

c) E2 and CARP curves are sufficiently close to the theoretical ones. It is therefore not surprising that 

among the test structures, only E2 and CARP (see Table V) were satisfactorily phased by the 

procedure described by Giacovazzo, Siliqi & Spagna (1994) and Giacovazzo, Siliqi & Zanotti (1995). 

The above observations suggest that P(∆) may be conveniently used as a target distribution with 

which the experimental curves should comply. We do this according to the following procedure: 
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1. the Bp  value is found by standard Wilson method using all the reflections up to native resolution. 

2. ∆ B B Bd p= −  and R K / KK d p=  are found by differential Wilson plot. Then Bd  and Kd  are 

set to B B Bd p= + ∆  and K K Rd p K= ⋅ . 

3. The scale factor Kd  is suitably modified in order to satisfy the expected RPM at the chosen σ value 

for ∆T=0. 

4. Histogram matching techniques are (Zhang & Main, 1990) applied to transform the experimental 

curve into the P(∆) distribution expected at the chosen σ value.  The next equation 

 

  [ ] [ ]A / R R R //
p

/
H

= +− −2 23 2
3 2

3 2
3 2σ σ σ σh k h k h k h k∆ ∆ ∆   (III.2) 

 

is then applied to the ∆ values so obtained for estimating triplet invariants. 

It is instructive to compare triplet statistics obtained by the new procedure (see Table VI) with 

statistics shown in Table IV. It is immediately seen that systematic errors in the triplet sign estimation for 

FIS and TAQ (Hg) are avoided by the new normalizing procedure. Furthermore triplet statistics for NOX 

and BPO is largely improved: the range of G values in Tables VI-(c),(d),(e) is quite reasonable, and good 

triplets are more efficiently discriminated from unreliable ones. 

The application of the phasing procedure to the new ∆‘s at 4Å resolution data gives the results 

shown in Table VII. 

We note: 

a) CARP and E2, for which a solution was found in Table V, are again solved. 

b) A satisfactory solution is now found for APP, M-FABP, BPO and NOX. It is worthwhile 

stressing the spectacular result obtained for BPO. A noisy solution is also found for FIS and TAQ (Pt) 

even if with the penalty of a large mean phase error. 
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Table VI-(a): Statistical calculations for triplets invariants estimated via (III.2) after histogram 
normalizing procedure at 4Å resolution. 
 

 

 

 
Table VI-(b): Statistical calculations for triplets invariants estimated via (III.2) after histogram 
normalizing procedure at 4Å resolution. 
 

TAQ (Hg derivative) 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

0.4 22413 53 86 14520 51 91 

0.8 21982 53 86 14103 51 91 

1.2 12875 53 85 7088 52 92 

1.6 57608 54 84 2731 52 92 

2.0 2260 55 84 919 52 92 

2.6 484 54 85 183 50 90 

3.2 82 54 87 26 54 99 

3.8 5 40 105 3 0 43 

FIS 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

0.2 31019 55 84 18981 54 95 

0.4 16948 56 84 7094 56 96 

0.8 3232 59 80 923 57 97 

1.2 657 59 80 141 55 96 

1.6 148 56 82 22 64 106 

2.0 27 59 81 1 100 138 
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Table VI-(c): Statistical calculations for triplets invariants estimated via (III.2) after histogram 
normalizing procedure at 4Å resolution. 
 

 

 

 

 
Table VI-(d): Statistical calculations for triplets invariants estimated via (III.2) after histogram 
normalizing procedure at 4Å resolution. 

 

NOX 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

0.2 25465 56 83 24535 55 96 

0.4 24365 58 82 20432 56 97 

0.8 6519 62 76 5211 61 103 

1.2 1901 66 70 1457 67 110 

1.6 593 70 67 473 70 114 

2.0 190 76 56 146 80 124 

2.6 33 79 54 21 95 143 

3.2 4 100 33 3 100 152 

BPO (Au derivative) 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

0.4 25072 69 68 24928 68 111 

0.8 4936 77 56 3891 77 121 

1.2 788 84 60 84 89 114 

1.6 139 90 39 96 93 137 

2.0 18 94 33 14 100 144 
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Table VI-(e): Statistical calculations for triplets invariants estimated via (III.2) after histogram 
normalizing procedure at 4Å resolution. 

 

 

 

 

 
Table VII: The phasing procedure is applied by using the histogram matching normalizing procedure 
described in the text, at 4Å resolution data. Order of solution is the order of solution as ranked by CFOM. 
NPHAS is the number of the phased reflexions, Error is the average phase error calculated with respect to 
published phase values, w-Error is the weighted error. 

The histogram matching normalizing procedure at derivative resolution 

BPO (Pt derivative) 

 Positive estimated triplets Negative estimated triplets 

|ARG| Nr % <|Φ|°> Nr % <|Φ|°> 

0.4 24937 71 65 24028 71 114 

0.8 3809 81 53 3161 82 127 

1.2 542 87 44 437 91 139 

1.6 92 92 34 56 96 149 

2.0 12 100 28 3 100 162 

Structure Code Order of Solution NPHAS Error (w-Error) 

APP 2 143 38 (36) 

CARP 3 391 44 (40) 

E2 1 1750 35 (32) 

M-FABP 1 580 58 (54) 

BPO (Au) 1 2583 30 (23) 

BPO (Pt) 1 2442 24 (19) 

FIS 43 835 68 (60) 

NOX 1 740 58 (42) 

TAQ (Pt) 5 3867 71 (70) 

TAQ (Hg) - - - 
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It is useful to check if the normalizing procedure described by Giacovazzo, Siliqi & Spagna, 

(1994) might be successfully applied at derivative resolution to all our test proteins, and also to cases like 

FIS, NOX and TAQ (Pt derivative) for which only low quality derivatives are available. Whe show in 

Figs. 9 - 12 the experimental curves P(∆) at derivative resolution together with the theoretical curve 

calculated for the representative σ value. 

 

 

 

Fig. 9: P(∆) distribution curve theoretically expected at σ=0.35 and 
corresponding experimental curves of APP and FIS, obtained by the 
normalizing procedure described by Giacovazzo, Siliqi & Spagna (1994) at 
derivative resolution data. 
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Fig. 10: P(∆) distribution curve theoretically expected at σ=0.08 and 
corresponding experimental curves of CARP, E2 and NOX, obtained by the 
normalizing procedure described by Giacovazzo, Siliqi & Spagna (1994) at 
derivative resolution data. 

 

 

Fig. 11: P(∆) distribution curve theoretically expected at σ=0.06 and 
corresponding experimental curves of TAQ (Pt derivative), obtained by the 
normalizing procedure described by Giacovazzo, Siliqi & Spagna (1994) at 
derivative resolution data. 
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Fig. 12: P(∆) distribution curve theoretically expected at σ=0.06 and 
corresponding experimental curves of BPO (Au and Pt derivative) and M-
FABP, obtained by the normalizing procedure described by Giacovazzo, Siliqi 
& Spagna (1994) at derivative resolution data. 

 

 

 

Comparison of Figs. 5 - 8 with Figs. 9 - 12 shows that: 

a) the APP curve in Fig. 9 is shifted towards right, and the fit with the theoretical curve improves. 

On the contrary the FIS curve does not remarkably change with resolution. 

b) While E2 and CARP do not change with resolution (they remain sufficiently good) the fit of 

NOX and BPO is remarkably better at derivative resolution. 

c) The M-FABP experimental curve strongly improves at high resolution. 

One can conclude that the normalizing procedure proposed by Giacovazzo, Siliqi & Spagna, 

(1994) improves as resolution increases. It is not a surprise then that the phasing process described in 

papers Giacovazzo, Siliqi & Spagna, (1994) and Giacovazzo, Siliqi & Zanotti, (1995) works well at 3Å 

or higher resolution, even if for NOX with the penalty of a large mean phase error (see Table VIII). 

If the histogram matching normalizing procedure is used the phasing process produces the result 

shown in Table VIII. For NOX it should be noticed that the order of solution is 7. However the three 

trials with order 1,2,3, are also solutions, even if with a larger phase error (73°, weighted error 67°). By 
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comparing the effects of the old normalizing procedure with those produced by the new one we conclude 

that the new normalizing procedure is preferable. 

 

 

 

 
Table VIII: The phasing procedure is applied at derivative resolution data by: a) using the normalizing 
procedure described by Giacovazzo, Siliqi & Spagna (1994) and Giacovazzo, Siliqi & Zanotti (1995) (old 
in the Table); b) the histogram matching normalizing procedure described in the text (new in the Table). 
Order of solution is the order of solution as ranked by CFOM. NPHAS is the number of the phased 
reflexions, ERR is the average phase error calculated with respect to published phase values. 100 trials 
have been calculated. 

 

 

 

Structure 

Code 

Procedure Order 

of 

Solution 

NPHAS Error (weighted) 

APP old 

new 

3 

2 

810 

988 

46 (43) 

45 (41) 

CARP old 

new 

2 

2 

2111 

2443 

50 (46) 

51 (48) 

E2 old 

new 

3 

2 

3218 

3662 

40 (37) 

41 (36) 

M-FABP old 

new 

1 

1 

1231 

3330 

50 (47) 

54 (51) 

BPO (Au) old 

new 

1 

1 

8307 

8343 

28 (19) 

28 (20) 

BPO (Pt) old 

new 

- 

1 

- 

7908 

- 

34 (25) 

FIS old 

new 

- 

92 

- 

1242 

- 

67 (69) 

NOX old 

new 

4 

7 

1827 

1842 

67 (60) 

68 (61) 

TAQ (Pt) old 

new 

- 

- 

- 

- 

- 

- 
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Discarding false solutions 
When we applied the normalizing procedure give by Giacovazzo, Siliqi & Spagna, (1994) we 

calculated various FOM’s for differents trials and then we combined them in order to pick up the correct 

solution. Recognizing the correct solution among different trials is not a simple task for protein structures 

(Woolfsoon & Yao, 1990; Giacovazzo, Guagliardi, Ravelli & Siliqi, 1994). Figures of merit used in our 

procedure for picking the correct solution from the trial solutions are based on the theory described in 

two papers (Cascarano, Giacovazzo & Viterbo, 1987; Cascarano, Giacovazzo & Guagliardi, 1992 b) with 

some modifications in order to take advantage of the information contained in the derivative data. We 

will briefly introduce them: 

The first FOM is MABS. It is defined as: 

 

  MABS = < >∑ ∑α αh
h

h
h

 

 

where 
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  [ ] [ ]A / R R R /j
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p
/

Hj j j j
= +− −2 23 2

3 2
3 2

3 2σ σ σ σh k h k h k h k∆ ∆ ∆  

 

MABS gives a measure of the consistency of the triplet estimates but it is not used as an active 

FOM for picking (in combination with others) the correct solution. 

The second FOM is ALFCOMB where 

 

  ( )ALFCOMB = − < >∑ ∑α α σαh h
h h

h
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and 

 

  < >= ∑α h A D Aj j
j

1( )  

 

  [ ]σαh
2 2

2 1
21

2
1 2= + −∑ A D A D Aj j j

j
( ) ( )  

 

This expression for the variance holds in the absence of errors in measurements and in their 

mathematical treatment as well as in the presence of perfect isomorphism between native and derivative 

structures. If this is not the case, as for real data, the variance cannot be perfectly calculated and is 

probably underestimated by σαh
. Accordingly, we used 2σαh

 instead of σαh
 in ALFCOMB. 

The third FOM is PSICOMB. It depends on the ratios α σαh
h

' / ' , where 
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This expression relies on the expectation that the distribution of the psi-zero triplets should be as 

random as possible. The weak reflections that constitute psi-zero triplets with the NLAR reflections are 

characterized by small values of both R and |∆´|. 
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The fourth FOM is CPHASE. It is based on negative and positive estimated triplets phases Φ j . 

Therefore we calculate the ratio 

 

  A / Aj j
j

j j
j

cos cosΦ Φ∑ ∑ < >  

 

Finally, a combined figure of merit, CFOM, integrates the indications arising from ALFCOMB, 

PSICOMB and CPHASE. 

Each FOM must lie between zero and one and is expected to be one for the correct solution. In the 

practice cases, the FOM’s often are not maximal for the correct structure: This suggests to the reader 

some inefficiency, but they are sufficiently good for most practical purposes. When applied to our test 

structures the FOM’s produce the following results. 

Only in the case for M-FABP the correct solution correspondes with highest value for CFOM, but 

that seemed to be the exception, not the role. Indeed for CARP and E2 the solutions with highest value of 

CFOM were devoid of structural meaning, while for APP the correct solution had CFOM quite similar to 

that of a false solution (Giacovazzo, Siliqi & Spagna,1994). More efficient FOM’s seem necessary for 

discriminating the correct solution from the false. In their absence it would be useful to be able to fix 

some criteria which could help to discard the false solutions with high values of CFOM. The scenario 

may be the following. Suppose that the phasing procedure has produced various trial solutions at the end 

of the phase extension process described by Giacovazzo, Siliqi & Zanotti, (1995). They are ranked in 

order of CFOM. Then: 

1. difference Fourier syntheses with coefficients  

 

  ( )exp(i )F Fd p p− φ  

 

are calculated for the solutions with the highest values of CFOM. The maxima in the map should 

provide heavy-atom positions. 

2. Such parameters are defined according to the phase refinement process (Dickerson, Kendrew & 

Strandberg, 1961). 
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Table IX: Heavy atom positions from Fourier synthesis with coefficients (Fd - Fp)exp(iφp) for 
the highly ranked trial solutions ( derivative resolution data ). 

Structure 

Code 

Set CFOM Heavy atom 

positions 

Height of the 

peaks 

   x y z  

APP 1 

2 

3 

0.68 

0.57 

0.36 

0.50 

0.75 

0.50

0.29 

0.45 

0.31 

0.50 

0.23 

0.33

369 

250 

243 

CARP 1 

2 

3 

0.77 

0.57 

0.39 

0.00 

0.76 

0.47

0.00 

0.17 

0.31 

0.00 

0.09 

0.38

112 

192 

133 

E2 1 

2 

3 

1.00 

0.96 

0.55 

0.00 

0.21 

0.09

0.00 

0.07 

0.00 

0.50 

0.20 

0.09

185 

397 

119 

M-FABP 1 

2 

0.40 

0.35 

0.89 

0.09

0.06 

0.15 

0.74 

0.59

648 

670 

BPO (Au) 1 

 

2 

 

3 

0.89 

 

0.88 

 

0.63 

0.41

0.78 

0.59

0.21 

0.15 

0.94

0.03

0.11 

0.03

0.11 

0.15 

0.06 

0.78

0.81 

0.28

0.31 

0.15 

0.55

446 

320 

636 

541 

410 

293 

BPO (Pt) 1 

 

2 

0.85 

 

0.74 

0.41

0.78 

0.04 

0.11

0.03

0.11 

0.04 

0.11 

0.78

0.81 

0.04 

0.11

446 

320 

1304 

246 

NOX 1 

2 

7 

0.77 

0.61 

0.56 

0.24

0.76

0.74

0.11

0.11

0.11 

0.47

0.27

0.77

526 

537 

775 
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3. If the refined positional parameters concide with an allowed origin of the protein space group then the 

trial solution is discarded from the set of reliable ones. 

Steps 1, 2 and 3 are executed in sequence without user intervention. 

Why such a process should work? Readers customed with direct phasing of small molecules know 

that in symmorphic space groups the so called “uranium solution” occurs quite frequently. It is marked by 

a high consistency of triplet phases, which are all close to zero. An observed Fourier synthesis would 

produce a huge maximum at an allowed origin. This type of false solution may be recognized and 

therefore discarded by special FOM’s like the psi-zero and negative quartet criteria. Since the psi-zero 

FOM described in Figures of merit is not highly discriminating for macromolecules and the negative 

quartet criterion is not among the used FOM’s, the calculation of the difference Fourier synthesis is an 

efficient substitute of the specific FOM’s. It is worthwhile emphasizing that a difference Fourier 

synthesis for proteins should not provide huge maxima at the allowed origins as for small molecules: 

since our phasing procedure uses a nearly equivalent number of positive and negative triplets, peak 

intensities in the maps corresponding to the “uranium solutions” are similar to peak intensities 

corresponding to true heavy-atom positions. 

In Table IX we show, for each test structure and for the trial solutions highly ranked by CFOM, 

the heavy atom positions as obtained after some cycles of Fourier-least squares calculations. Data 

corresponding to the correct solution are in bold character. If use is made of the information in Table IX 

the correct solution is unambiguoisly recognized. 

 

Conclusions 
A more robust normalizing procedure has been designed which makes explicit use of the 

distribution P(∆). Histogram matching procedures are used to obtain an optimal fit of the observed ∆ 

distribution with the expected one. The new ∆‘s are statistically more meaningful and are able in most 

cases to overcome the disturbing effects provoked on the Wilson method for data up to 4Å resolution by 

the presence of strong Debye effects. 

A method is also suggested for discarding some false solutions provided by our multisolution 

technique. Since FOM’s cannot safely work for isomorphous data where the signal is often comparable 

with the noise, an a-posteriori check on the heavy atom positions allows to discard those trials which 

correspond to what are called “uranium solution” in the small molecule direct methods applications. 
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Appendix I 
 

The phasing procedure 
We can described the procedure in differents steps in order to better understanding the process. 

 

Step 1. Selection of the reflections to phase 

The reflections to phased should be characterized by: 

(a) high values of ∆, in order to guarantee a reliable phase assignment. 

(b) Non-vanishing values of R, in order to provide, once phased, useful information for electron density 

maps. Accordingly, the NREFL reflections ( those for which both |F |p  and |F |d  are available from 

measurements and symmetry independent) are partitioned into two subsets: 

1.- The subset including the reflections with the smallest R values. Their number is chosen to be the 

minimum between 1000 and 25% of NREFL. Some of these reflections, i.e. those with ∆≤0.2, 

will be used for constructing PSI0 triplets (it is made with two larger value and one small of R). 

Let NPSI be the number of reflections with small values of R and ∆ that are actually 

involved in PSI0 triplets. 

2.- The subset { }γ 1  including NREFL - NPSI reflections. According to the preceding section, we 

should try to phased about 52% of the NREFL reflections, i.e. those characterized by the largest 

∆ values (accessible phases). 

 

Step 2. The first batch 

By default, 60% of the reflections in { }γ 1  (those with the largest R values) are selected. The 

cumulative distributions of the ∆‘s relative to such reflections is calculated, giving the number n of 

reflections with ∆ larger than a fiven value. The threshold TR ∆1 is chosen as the value of ∆ 

corresponding to n ≈800. The statistical solvavility criterion is applied: if it is satisfied then 

NLAR n1 =  is the number of reflections which will be phased first, otherwise NLAR1 is increased 

until the criterion is satisfied. The NLAR1 reflections are said to constitute the subset BATCH1. 
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Step 3. The next batch 

Let NLAR2  be the number of reflections (among the NREFL - NPSI - NLAR1 reflections) 

with ∆>TR TR∆ ∆2 1≡ . They will constitute the subset BATCH2 . 

The remaining NREFL - NPSI - NLAR1 - NLAR2  reflections are divided into subsets (i.e. 

each BATCHi  for i > 2 contains about 400 reflections), the ith subset being associated with a given 

threshold TR i∆  for ∆. Since TR TRi i∆ ∆+ ≤1 , the reflections in BATCHi  will have ∆ larger 

than the reflections in BATCHi 1+ . The last TR ∆  value will coincide with a minimal value of ∆ that 

we can be used in the phasing procedure TR F∆ . 

 

Step 4. A supplementary batch 

In order to impove the continuity in the Fourier map, an additional number of reflections in the 

low sinθ λ/  range is phased. The corresponding subset (i.e. BATCHLast ) will involve reflections 

with sin (sin )maxθ λ θ λ/ / /≤ 2, provided 

∆ ≥ TR F∆  x 0.95 x 0.85 for reflections with restricted phase value 

∆ ≥ TR F∆  x 0.95  for reflections of general type. 

 

Step 5. Triplet calculation 

Let { }Tii  be the set of triplet invariants among the reflections in BATCHi  and let { }Tij  be the set of 

triplets constituted by one reflection in BATCHi  and two reflections in BATCH j . In the procedure, 

we only calculated the sets { }Ti1 for i=1,2,... and we store for each ith set up to 50000 triplets ( the most 

reliable ones). 

 

Step 6. The phasing procedure 

The phasing procedure is a multisolution one, where starting sets of phases are generated by a 

random process (Baggio, Woolfson, Declercq & Germain, 1978). Random phases are given to 

NLAR/ 2 reflections (Burla, Cascarano, & Giacovazzo, 1992) with unit weights for the origin and 

enantiomorph-fixing reflections and with weight equal 0.8 for the rest. Cycles of weighted tangent 

refinement are first applied to the NLAR/ 2 reflections and, after convergence the phasing process is 

extended to NLAR  reflections. As in SIR88 (Burla, Camalli, Cascarano, Giacovazzo, Polidori, Spagna 
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& Viterbo, 1989) and SIR92 (Altomare, Cascarano, Giacovazzo, Guagliardi, Burla, Polidori & Camalli, 

1994), a weighted tangent formula is used for phase extension and refinement: 

 

  
tan sin( ) cos( )φ β φ φ β φ φh k h k k h k

h h

= + +

=

− −∑ ∑j
j

j
j

j j j j
/

T / B
  (A.I.1) 

 

where β j  is defined by the equation 

 

  D D A D Dj j j1 1 1 1( ) ( ) ( ) ( )β α α= −k h k     (A.I.2) 

 

and 

 

  α h h h= +( )T B /2 2 1 2        (A.I.3) 

 

The reliability parameter α h  of any determined phase φh  is modified according to the 

agreement between the calculated and the expected value of α h . In particular, if α h  is larger than the 

expected value 

 

  < >= ∑α h A D Aj j
j

1( )       (A.I.4) 

 

then the calculated α h  is replaced by 

 

  ( )[ ]< > − − < >α α α σαh h h h
exp 2 2 1 3
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The weighting scheme is designed to drive phases towards values that minimize the difference 

between α  and < >α  by reducing in the tangent refinement the importance of the phases with too 

large values of α . 

The NLAR1 reflections in BATCH1  are phased according to above descriptions. Among the 

various trials provided by the multisolution approach, the most probable one is chosen as a seed for the 

subsequent phase extension. 

The set BATCH2  is phased from BATCH1  by using the { }T21  triplets: phases are then refined 

by making use of the triplets { } { }T T11 21∪ . Since TR TR∆ ∆2 1≡ , the average accuracy of the phases 

in BATCH2  is expected to be very close to that of the reflections in BATCH1 . Therefore, for i > 2, 

the set BATCHi  is phased from BATCH1  by using the { }Ti1  triplets: phases are then refined by using 

the set of triplets { } { } { }T T Ti11 21 1∪ ∪ . It is worthwhile noting that every set of phases so obtained is 

referred to the same origin, that fixed for set BATCH1 . 
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Appendix II 
 

The probability distribution function P( |∆| ) 
According to Hauptman (1982), 

 

  
[ ] [ ]

[ ]
P( ) ( ) ( ) exp ( ) ( )

x ( ) ( )

R,S RS / R S /

I RS /o

= − − + −

−

4 1 1

2 1

2 2 2 2

2

α α

α α
  (A.II.1) 

 

where 

 

  [ ] [ ]α σ σ≅ 
2 2

1 2

p d

/
/  

 

We first express (A.II.1) in terms of the pseudo-normalized structure factors S'  and R' , 

 

  
( ) ( )[ ]{ }P( ) exp

x ( )

R' ,S' R' S' / R' / S'

I R' S'

H p d p

o

= ∑ ∑ − ∑ ∑ +4

2

2 2
 (A.II.2) 

 

Then we introduce the change of variable ∆ = −S' R'  and (A.II.2) becomes 

 

  

( )
( )[ ]{ }

[ ]

P( ) ( )

x exp

x ( )

R' , / R' R'

R' R' / R'

I R' R'

H p
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o

∆ ∆

∆ ∆

∆

= ∑ ∑ +
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+

4

2 2

2

2 2 2  (A.II.3) 

 

For -3.75 ≤ x ≤ 3.75, I xo ( )  may be approximated by a polynomial in even powers of t (see Abramowitz 

& Stegun, 1972), where t = x/3.75. For large values of R'  it is not easy to compute (A.II.3) directly. For 
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3.75 < x < ∞ , we approximate I xo ( )  by Q t x x /( )exp( ) −1 2 , where Q is a suitable polynomial of 

order 8 in terms of t −1 . 

We obtain 

 

  
( ) [ ]

( )[ ]
P( ) ( ) exp ( ) ( )

x ( )exp

R' , / R' R'

Q t R' /

/
H p

/

H p

∆ ∆ ∆= ∑ ∑ − +

− ∑ ∑

2 2 1 2 2 1 2

2
  (A.II.4) 

 

Then, 

 

  P( ) P( ) d∆ ∆=

∞

∫ R' , R'
0

                (A.II.5a) 

 

for positive values of ∆ , and 

 

  P( ) P( ) d∆ ∆
∆

=
−

∞

∫ R' , R'                  (A.II.5b) 

 

for negative values of ∆  (the limits of integration are because R' S'= − ∆  has be positive). Finally, 

 

  P( ) P( ) P( )∆ ∆ ∆= + + −       (A.II.6) 

 

The distribution P( )∆  normaly is calculated by numerical methods and for reason of simplicity the 

( )∑ ∑H p/ is replaced by [ ] [ ]σ σ σ= 2 2H p/ . Curves corresponding to various values of σ  are 

shown in Fig. A.II.1. 
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Fig. A.II.1: P(∆) distribution for selected values of σ 
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Chapter IV 
 

 

Phasing up to derivative resolution 
 

Introduction 
Two pioneristic papers by Hauptman (1982 a,b) showed how direct methods may be integrated 

with isomorphous replacement techniques. The triplet phase invariant of the native protein 

Φ = − − −φ φ φh k h k  was estimated via a von Mises distribution whose reliability coefficient A 

depends on an intricate interrelationship among the six moduli Rh , Rk , Rh k− , Sh , Sk , Sh k− . 

Hauptman approach has been reconsidered by Giacovazzo, Cascarano & Zheng (1988): a simpler 

distribution 

 

 [ ]P( ) ( ) exp( cos )Φ Φ|R ,R ,R ,S ,S ,S I A Aoh k h k h k h k− −
−

≅ 2
1

π   (IV.1) 

 

was obtained, where 

 

 [ ] [ ]A / R R R //
p

/
H

= +− −2 23 2
3 2

3 2
3 2σ σ σ σh k h k h k h k∆ ∆ ∆    (IV.2) 
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and ( )∆ = − ∑F F /d p H
/1 2  is the pseudo-normalized difference (with respect to the heavy-atom 

structure). Since [ ] [ ]σ σ σ σ3 2
3 2

3 2
3 2/ //

H
/

p
>> , the Cochran parameter is often negligible with 

respect to the term including pseudonormalized differences: this last may attain large values even for 

large proteins. Since ∆ ∆ ∆h k h k−  may be positive or negative, positive as well as negative triplets can 

be identified via (IV.2). 

Hauptman’s as well as Giacovazzo, Cascarano & Zheng formulas succeded when applied to 

calculated data, but failed when applied to real experimental data. The common believe was that the 

experimental data were too inaccurate to be used in direct methods applications: in particular the general 

feeling was that lack of isomorphism between native and derivative structure combined with errors in the 

experimental data and/or in their mathematical treatment hinder any success when direct phasing 

procedures are applied to experimental data even if the structure solution could be straightforwardly 

solved via ideal error-free data. 

The entire situation has been reconsidered by Giacovazzo, Siliqi & Ralph (1994), which focused 

the attention onto the case in which diffraction data of one isomorphous derivative are available. It was 

shown that in such a case the direct ab-initio solution of protein structures is feasible in principle. 

Giacovazzo, Siliqi & Spagna (1994) described a direct procedure successfully applying the formula by 

Giacovazzo, Cascarano & Zheng to real data. The approach was remarkably different from the typical 

procedures used for small-molecule crystal structure solution: the crucial innovations concerned the 

normalization process (of the derivative with respect to the native protein), the phasing procedure, and 

the figures of merit for finding the correct among the various solutions provided by the random starting 

phase approach. It was shown that a certain number of reflexions (roughly speaking, less than 0.15 of the 

total number of reflexions up to the derivative resolution) could be phased with a limited phase error. 

The main limitation of the procedure described by Giacovazzo, Siliqi & Spagna (1994) was the 

small number of phased reflexions (rather than the quality of the assigned phases). As a consequence, the 

corresponding electron density maps suffered by severe series truncation effects. However the assigned 

phases were of such a high quality that they could be used as a starting point for a reliable phase 

extension process. This was just the aim of the paper by Giacovazzo, Siliqi & Zanotti (1995): the 

probability distribution function P( )∆  was derived, which suggested, as a rule of thumb, to extend the 

phasing process to reflexions with | | .∆ ≥ 0 5. The result was that about 40% of the measured reflections 

(up to derivative resolution) could be phased without paying too much in terms of the quality of the new 

phases. The phase extension process was fast and could be run in a completely automatic way. 
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The following drawbacks were still limiting the usefulness of the procedure described by 

Giacovazzo, Siliqi & Zanotti (1995): (a) a non negligible number of reflections with ∆  < 0.5 but large R 

value remained unphased: phasing them could valuably contribute to make interpretable the electron 

density maps. (b) The solution with the highest figure of merit was not always the correct solution; (c) 

The phasing procedure could not be applied when the derivative resolution was about 4Å or lower. (d) 

Pseudo-centrosymmetric phases were provided in specific space groups. 

The points (b) - (c) were discussed in other work of Giacovazzo, Siliqi & Gonzalez-Platas (1995): 

a more robust normalizing procedure was designed which made explicit use of the distribution P( )∆ . 

Histogram matching procedures were used to obtain an optimal fit of the observed ∆ distribution with the 

expected one. The new ∆‘s proved statistically more meaningful and were able in most of the cases to 

overcome, for data up to 4Å resolution , the disturbing consequences provoked on the Wilson plot by 

strong Debye effects. A method was also suggested for discarding the false solutions: an a posteriori 

check of the heavy atom positions allows to discard the trials corresponding to the so called (in small 

molecule direct methods applications) “uranium solutions”. 

It may be shown now (Giacovazzo, Siliqi, Gonzalez-Platas, Hecht, Zanotti, Krauss & York, 1995) 

show that all the reflexions up to derivative resolution may be phased in principle, so improving the 

quality of the final electron density map. The various sources of errors are shortly analysed, in order to 

provide higher insight into the limits and the advantages of the phasing method. Owing to such errors it is 

also suggested that about 0.20 of the total number of reflexions up to derivative resolution can be omitted 

from the phasing procedure without causing valuable impoverishment of the quality of the electron 

density map. 

In Table I we show the code name, the space group and the crystallochemical data of our test 

structures, in Table II the relevant parameters concerning the diffraction data are given. 

 

The scaling procedure and the sign inversion of ∆ 

According to (IV.1) and (IV.2) the expected value of the triplet phase Φ  mostly depends on the 

value of ∆ ∆ ∆h k h k− . If ∆ ∆ ∆h k h k−  is sufficiently large and ∆ ∆ ∆h k h k− > 0  then Φ  is expected 

close to zero; if ∆ ∆ ∆h k h k−  is large and ∆ ∆ ∆h k h k− < 0  then Φ  is expected close to π. 

Relationships (IV.1) and (IV.2) were obtained on assuming perfect isomorphism between native and 

derivative structures. 
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Table I: Code name, space group and crystallochemical data for test structures. 
(1) Glover, Haneef, Pitts, Wood, Moss, Tickle & Blundell (1983) 
(2) Hetch et al. (1994) 
(3) Mattevi, Oblomova, Schulze,Kalk, Westphal, De Kok & Hol (1992) 
(4) Zanotti, Scapin, Spadon, Veerkamp & Sacchettini (1992) 
(5) Hetch et al (1993); Hetch et al (1993) 

 

 

 

 

 

 

Table II: Relevant parameters for diffraction data of test structures. 

 

 

Structure Code Space Group Molecular Formula Z 

APP (1) C 2 C190N53O58Zn 4 

BPO (2) P 21 3 C2744N712O1073 12 

E2 (3) F 4 3 2 C1170N310O366S7 96 

M-FABP (4) P 21 21 21 C667N170O261S3 4 

NOX (5) P 41 21 2 C1034O704N299S2P1/8 8 

Structure 

Code 

Native Derivative 

 RES(Å) NREFL Heavy atom [σ2]H /[σ2]p RES(Å) NREFL 

APP 0.99 17058 Hg 0.23 2.00 2086 

BPO 2.35 23956 Au 

Pt 

0.06 

0.06 

2.78 

2.78 

15741 

14786 

E2 3.00 10388 Hg 0.08 3.00 9179 

M-FABP 2.14 7595 Hg 0.06 2.15 7125 

NOX 3.00 4619 Pt 0.08 3.00 4619 
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Owing to lack of isomorphism and/or errors in the experimental data and/or in their mathematical 

treatement one ∆ could invert its sign with respect to the sign corresponding to ideal error-free data: then 

the expected triplet phase should change by π. 

High frequency of the sign inversion for ∆ deteriorates the efficiency of our direct phasing 

procedure. In Fig.1 (this is Fig.8 in Giacovazzo, Siliqi & Spagna, 1994) the percentage of the reflexions 

that undergo sign inversion for ∆ '  was shown for APP, CARP, E2 and M-FABP. 

 

 

 

Fig.1: Percentage of reflections that undergo sign inversion for ∆´ as a result of the 
normalization process in Giacovazzo, Siliqi & Spagna (1994) and of physical sources of 
error (mostly lack isomorphism and error in measurements). Experimental data are used. 

 

 

 

Such a figure discouraged any attempt at phasing reflexions with small ∆ '  values because the 

frequency of the sign inversion for them is too large; in particular it was larger than 0.5 for very small 

∆ ’s, that is, worse than for randomly distributed signs. In order to understand the reason of such a 

0.0

0.2

0.4

0.6

0.8

1.0 Pinv   

0.0 0.5 1.0 1.5 2.0
|∆'|     

APP

CARP

E2

M-FABP

 



Phasing up to derivative resolution 

80 

systematic error let us compare Fig.1 with Fig.2 (this is the Fig.7 in Giacovazzo, Siliqi & Spagna, 1994), 

where, for calculated error free data, the percentage of ∆ '  which undergo sign inversion as a result of 

the mere normalization process is given. 

 

 

 

Fig.2: Percentage of reflections that undergo sign inversion for  ∆´ as a result of the 
normalization process derived by Giacovazzo, Siliqi & Spagna (1994). (Calculated 
error-free data). 

 

 

 

We observe that the frequency of the sign inversion at small ∆  values in Fig.2 is extremely 

large, with a trend very close to the inversion frequency depicted in Fig.1. As a consequence, phase 

extension to reflexions with small ∆ '  value is fruitful in the practice only if a normalization procedure 

is available which avoids the systematic errors at small ∆ '  values shown in Fig.2. 

Let us now apply the normalization process described by Giacovazzo, Siliqi & Gonzalez-Platas 

(1995) to ideal error-free data in order to evaluate the percentage of the reflections which undergo sign 
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inversion for ∆ as a consequence of the mere mathematical data treatment. The results is shown in Fig.3: 

the inversion frequency [called here (P )inv n] is practically negligible up to ∆  = 0.08, and is never 

larger than 0.4, so confirming the higher efficiency of the new normalization process. 

 

 

 

Fig.3: Percentage of reflexions which undergo sign inversion for ∆ as a result of the 
normalization process described by Giacovazzo, Siliqi & Gonzalez-Platas (1995) 
(calculated error-free data). 

 

 

 

In order to have a countercheck that such a normalization process allows a fruitful phase extension 

to small ∆  values we show in Fig.4 the inversion frequency for the test structures in Table I as 

obtained by applying to the experimental data the normalization procedure described by Giacovazzo, 

Siliqi & Gonzalez-Platas (1995). 
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Fig.4: Percentage of reflexions that undergo sign inversion for ∆ as a result of the 
combination of mathematical data treatment (i.e., the normalization process), block of 
isomorphism and errors in measurements. 

 

 

 

The inversion frequency in Fig. 4 is dramatically smaller at low ∆  than in Fig.1; this confirms 

the higher quality of the normalization procedure proposed by Giacovazzo, Siliqi & Gonzalez-Platas 

(1995), and suggests that even reflexions with ∆  smaller than 0.5 could be conveniently phased. 

The problems are now: Is it worthwhile phasing all the reflexions up to derivative resolution, or 

can some reflexions be excluded from the phasing process without detriment for the quality of the 

electron density map? How to select the reflexions to which it is worthwhile extending the phasing 

process? Can some general criteria be fixed? We will show that a minimum threshold for |∆| and the 

standard deviation associated to reflection intensity measurements are sensible criteria to be applied. 

 

The average phase error as a function of ∆  
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Figure 4 shows that for experimental data Pinv  ≤ 0.50. The maximum value is attained close to 

∆ ≅ 0 , where the combined effect of the mathematical treatement of the data (see Fig. 3) and of the 

lack of isomorphism make the experimental sign of ∆ completely unreliable. A reasonable criterion has 

to be found balancing the advantage of employing more data and the disadvantage that the extra data may 

have a higher phase error. 

The phasing process described by Giacovazzo, Siliqi & Zanotti (1994) and Giacovazzo, Siliqi & 

Gonzalez-Platas (1995) extends step by step the phase determination to batches of reflexions with 

progressively smaller values of ∆ . The trend of the phase extension process as a function of a threshold 

TR ∆  may be deduced from Table III, where, for each batch, we give the number of reflections 

(NREFL), the cumulative average phase error (ERR) and the weighted cumulative phase error (W-ERR). 

A better insight can be obtained by calculating the differential average phase error (ERRD). While ERR 

refers to all the reflexions with ∆ ∆> TR , ERRD refers only to the NREFLD reflexions with ∆  

between the current TR ∆  value and the preceding one. 

Both ERR and ERRD increase by decreasing TR ∆  values, but ERRD in a dramatical way. 

However extending phases to a larger number of reflexions improves the quality of our electron density 

map ρ  (Lunin & Woolfson, 1993). This may be monitored by calculating the correlaction factor 

(CORR) between ρ  and the “correct” map ρmod  (obtained via model phases, all reflexions up to 

derivative resolution included): 

 

 

( ) ( )
CORR =

−

− −

ρ ρ ρ ρ

ρ ρ ρ ρ

mod mod
/

mod mod
/

2 2 1 2 2 2 1 2  

 

In Table III CORR is given for the various maps calculated by using reflexions with ∆ ∆> TR . 

CORR increases with decreasing values of TR ∆  except for very small TR ∆  values. It may be argued 

from Table III that reflexions with ∆ ≤ 01.  do not provide valuable additional information to the 

electron density map, so that they could be skipped from the phasing process. 
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APP 

TR∆ NREFL ERR (W-ERR) NREFLD ERRD (W-ERRD) CORR 
0.0 2107 62.4 (57.9) - - 0.494 

0.1 1864 60.1 (56.6) 243 75.5 (79.6) 0.494 

0.2 1623 56.9 (54.5) 241 81.7 (81.3) 0.496 

0.3 1396 54.1 (52.8) 227 73.9 (72.7) 0.496 

0.4 1173 50.4 (49.9) 223 73.7 (73.5) 0.494 

0.5 980 48.2 (48.1) 193 61.6 (61.1) 0.487 

BPO (Au) 

TR∆ NREFL ERR (W-ERR) NREFLD ERRD (W-ERRD) CORR 
0.0 15731 62.3 (56.3) - - 0.461 

0.1 13929 59.2 (54.5) 1802 86.6 (85.6) 0.464 

0.2 12159 56.2 (52.6) 1770 75.1 (74.4) 0.461 

0.3 10452 53.1 (50.4) 1707 68.6 (67.3) 0.459 

0.4 8865 50.3 (48.3) 1587 68.2 (67.3) 0.448 

0.5 7389 47.7 (46.2) 1476 62.4 (61.6) 0.429 

BPO (Pt) 

TR∆ NREFL ERR (W-ERR) NREFLD ERRD (W-ERRD) CORR 
0.0 14777 62.9 (57.0) - - 0.468 

0.1 13089 59.8 (55.2) 1688 86.5 (86.5) 0.469 

0.2 11427 56.6 (53.1) 1662 81.8 (81.7) 0.468 

0.3 9832 53.8 (51.1) 1595 74.1 (73.4) 0.462 

0.4 8329 50.9 (48.9) 1503 69.8 (68.6) 0.450 

0.5 6971 48.4 (46.8) 1358 63.6 (62.3) 0.437 
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Table III: Cumulative average phase error (ERR) and differential average phase error (ERRD) when the phasing 
process is extended to reflexions with |∆| > TR∆ (experimental data). For each threshold TR∆ the value of the 
correlation factor (CORR) between our electron density map and the “correct” map obtained via model phases is 
given. 

The role of the standard deviation of the intensity measurements 

E2 

TR∆ NREFL ERR(W-ERR) NREFLD ERRD (W-ERRD) CORR 
0.0 7756 59.8 (53.4) - - 0.539 

0.1 6868 56.2 (51.6) 888 87.6 (87.6) 0.539 

0.2 5991 52.3 (49.2) 877 82.6 (82.3) 0.538 

0.3 5143 48.8 (46.7) 848 73.5 (74.5) 0.532 

0.4 4369 45.5 (44.3) 774 67.3 (67.3) 0.527 

0.5 3644 42.6 (42.0) 725 60.3 (60.4) 0.507 

M-FABP 

TR∆ NREFL ERR (W-ERR) NREFLD ERRD (W-ERRD) CORR 
0.0 7122 69.4 (64.0) - - 0.401 

0.1 6301 66.4 (62.3) 821 92.6 (92.4) 0.401 

0.2 5499 64.2 (60.8) 802 81.5 (81.0) 0.398 

0.3 4727 61.3 (58.9) 772 81.5 (79.7) 0.393 

0.4 3998 58.9 (56.9) 729 74.8 (73.2) 0.379 

0.5 3337 56.1 (54.7) 661 73.0 (70.9) 0.367 

NOX 

TR∆ NREFL ERR (W-ERR) NREFLD ERRD (W-ERRD) CORR 
0.0 4613 77.7 (72.6) - - 0.281 

0.1 4084 75.7 (71.4) 529 93.1 (92.8) 0.281 

0.2 3559 74.7 (70.5) 525 82.3 (81.6) 0.280 

0.3 3065 72.9 (69.1) 494 86.2 (84.2) 0.280 

0.4 2595 71.6 (67.8) 470 80.3 (79.4) 0.277 

0.5 2163 69.5 (65.7) 432 82.1 (80.0) 0.269 
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While the effects of the lack of isomorphism are a-priori unpredictable, the effects of the errors in 

measurements may be partially controlled by exploiting the standard deviation ( )σ F  usually associated 

to the structure factor modulus F . The value of ( )σ F  is probably an underestimate of the total error 

since it takes into account only errors coming out from the statistical fluctuations in the X-ray intensity 

and neglects systematic variations like inaccuracy in absorption corrections, misalignement of the crystal, 

etc. However ( )σ F  provides a reasonable estimate of the relative reliability of different measurements 

and therefore can be used for estimating the percentage of sign inversion for ∆ caused by counting errors 

in intensity memasurements. 

Let us suppose that errors in measurements are distributed according to the normal distribution: 

then 

 ( ) ( ) ( )σ σ σ∆ ≅ +



 ∑−F Fp d H

/1 2. 

 

On the first approximation the variable ( )y /= ∆ ∆σ  may be considered to be distributed, in absence 

of systematic errors, according to [ ]N y; y ,m 1  where ( )[ ]y /m m= ∆ ∆σ  is the value of y obtained 

from measurements. For positive ∆  values (but the final results will hold also for negative values of ∆ ) 

the probability of the sign inversion is equal to the integral 

 

 [ ]N dy; y , ym 1
0

−∞
∫         (IV.3) 

 

If the normalized variable z y ym= −  is substituted to y , the probability of the sign inversion 

due to counting errors is equal to 

 

 ( ) [ ] ( )P N d exp d ( )inv c

yy

mz; , z z / z y
mm

= = − −











= −

−∞−∞

−

∫∫ 0 1 1
1
2

2 12
π

Φ  (IV.4) 

 

which is tabulated in standard books. 
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Φ ( )ym  is the well known error function: for reader usefulness we show ( )Pinv c  in Fig. 5. The 

Figure suggests that: (a) ( )Pinv c is about 0.15 for reflections with ( )∆ ∆/ σ = 1 . Since the 

robustness of the phasing method can bear larger sign inversion frequency, even reflections with 

( )∆ ∆/ σ ≤ 1  can be fruitfully involved into the phasing process. A more reasonable criterion may 

be to include reflexions with ( )∆ ∆/ .σ ≥ 080 : that corresponds to ( )Pinv c .≅ 0 20. Such a criterion 

does not characterize a fixed percentage of the reflexions, since this number depends on the quality of the 

data. 

 

 

Fig.5: The sign inversion frequency for ∆ as a result of the counting errors in intensity 
measurements (experimental data). 

 

 

 

The efficiency of the criterion may be judged from Table IV, where, for the various test structures, 

the average phase error (as calculated by our phasing procedure) is given for the reflexions with 

( )∆ ∆/ .σ ≤ 080 . It is immediately seen that such reflexions, once phased, should not add relevant 

information to the electron density map, and could therefore be excluded from the phasing process. 
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Table IV: NREF is the number of reflexions with |∆|/σ(|∆|) < 0.8; ERR is the average 
phase error for such reflexions (W-ERR) is the weighted average phase error. 
(*) σ(|F|) are not available for this structure. 

 

 

When reflexions with ( )∆ ∆/ .σ ≤ 080  or ∆ ≤ 01.  are excluded from the procedure the 

CORR values shown in Table V are obtained. The Table shows that the average phase error of the phased 

reflexions is markedly smaller than in Table III at TR ∆ = 0 , and that no structural information is lost 

by applying the above omit criteria. 

 

 

 

Table V: For each test structure the number of reflexions with |∆|/σ(|∆|) > 0.8 and |∆| > 0.1 are 
given, together with the average phase error and the correlation coefficient CORR of our map with 
the model electron density map. 
(*) Only the criterion |∆| > 0.1 is used. 
 
 

The relation between traditional isomorphous derivative techniques and direct 

methods 

Structure Code NREF ERR (W-ERR) 

APP(*) - - 

BPO (Au) 3196 82.6 (81.4) 

BPO (Pt) 2455 85.2 (84.4) 

E2 1352 90.8 (90.8) 

M-FABP 1376 89.7 (89.5) 

NOX 440 95.4 (95.4) 

Structure Code NREFL ERR (W-ERR) CORR 

APP(*) 1864 60.1 (56.6) 0.494 

BPO (Au) 12449 56.9 (52.9) 0.463 

BPO (Pt) 11736 57.2 (53.4) 0.470 

E2 6240 53.2 (49.5) 0.540 

M-FABP 5664 64.1 (60.5) 0.402 

NOX 4039 75.4 (71.2) 0.285 
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Our procedure (generically defined as DMT, direct methods techniques, from now on) is able to 

estimate Φ  in absence of any information on the heavy-atom structure. Traditional isomorphous 

derivative techniques (from now on referred as AT, algebraic techniques) estimate single phases provided 

the heavy-atom structure is known. A first question may be: are DMT and AT estimates consistent? In 

order to answer the above question we will analyze a few practical cases. 

Let us suppose that ∆1, ∆2, ∆3 are all positive and large. Then DMT suggest Φ ≈ 0 , where 

“≈“ stays for “probably equal to”. Once the heavy-atoms have been located the AT suggest: 

 

 if ∆1 0> , φ φp H1 1
≈         (IV.5a) 

 if ∆2 0> , φ φp H2 2
≈         (IV.5b) 

 if ∆3 0> , φ φp H3 3
≈ .        (IV.5c) 

 

Summing (IV.5a)-(IV.5c) gives 

 

 Φ Φ≈ H          (IV.6) 

 

where H H H1 2 3 0+ + =  and ΦH H H H= + +φ φ φ
1 2 3

. If ∆1 , ∆2 , ∆3  are sufficiently large 

also EH1
, EH2

, EH3
 will be large (by definition ∆i HE

i
≤ ). If the number of heavy atoms in 

the unit cell is small (as usual) then ΦH  is expected close to zero, so that DMT and AT triplet estimates 

agree. When one of the ∆i ’s is relatively small DMT and AT may diverge since ΦH  is expected far 

from zero. 

Suppose now that ∆1 0> , ∆2 0>  and ∆3 0< . Then DMT suggest Φ ≈ π  and AT 

provide, once the heavy atoms have been located, the following indications: 

 

 if ∆1 0> , φ φp H1 1
≈         (IV.7a) 

 if ∆2 0> , φ φp H2 2
≈         (IV.7b) 

 if ∆3 0< , φ φ πp H3 3
≈ + .       (IV.7c) 

Summing (IV.7a)-(IV.7c) gives 

 

 Φ Φ≈ +H π ,         (IV.8) 
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which again agrees with DMT estimates only if ΦH ≈ 0 . Two questions now arise: (1) Is the condition 

ΦH ≈ 0  fulfilled in the practice for most of the cases? (2) If DMT and AT diverge which ones should 

be considered more reliable? 

As for the first question we show in Table VI for E2 the average value of < >Φ H  calculated for 

all the reflexions with ∆ > 0 84. . It is easy seen that < >Φ H  is far from beeing close to zero in 

most of the cases. Since the number of heavy atoms in the unit cell is small the high value of < >Φ H  

is rather surprising. However all becomes clear when one considers that, because of the “errors” above 

discussed, large experimental values of ∆  are often associated to smaller values of RH . In the practice 

a non-negligible percentage of reflexions with ∆ > 0 84.  show RH  values markedly smaller than 

0.84. 

 

 

Table VI: E2: The values < >ΦH  for selected ranges of 

[ ]GH / /
H

E H E H E H= 2 3 2
3 2

1 2 3σ σ . NTRIP is the number of triplet 

invariants for which < >ΦH  is calculated (TR∆=0.84). 

 

 

The statistics does not qualitatively change (see Table VII) if calculations are made for all the 

triplets used in the phasing process (i.e., for TR ∆ = 0 ). 

 

GH  NTRIP < >ΦH  
0.0   -   0.2 15292 85.9 

0.2   -   0.4 25129 79.2 

0.4   -   0.8 66819 68.0 

0.8   -   1.2 51528 53.7 

1.2   -   1.6 30043 41.8 

1.6   -   2.0 17011 33.6 

2.0   - 15.0 18163 25.9 
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Table VII: E2: The values < >ΦH  for selected ranges of 

[ ]GH / /
H

E H E H E H= 2 3 2
3 2

1 2 3σ σ . NTRIP is the number of triplet 

invariants on which < >ΦH  is calculated (TR∆=0.0). 

 
 

We have so far proved that DMT and AT are not equivalent methods even if they are correlated 

with each other. If their estimates diverge which one should be considered more efficient? The results 

shown in the preceding section suggest the larger efficiency of DMT methods: which is the source of 

such an effectiveness? 

 

 

 

Fig.6 a: Triplets with phase value symmetry restricted to (0,π), having 

ΦH H H H= + + =φ φ φ π1 2 3 . ∆ ∆ ∆1 2 3 0> : according to (IV.1) the triplet phase is 

expected to be 2π but the true value is π. 
 
 

GH  NTRIP < >ΦH  
0.0   -   0.2 176086 85.6 

0.2   -   0.4 224541 78.8 

0.4   -   0.8 446161 67.4 

0.8   -   1.2 295015 53.1 

1.2   -   1.6 165372 41.5 

1.6   -   2.0 90630 33.7 

2.0   - 15.0 105796 25.3 
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      FH3
  Fp3
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Fig.6 b: Triplets with phase value symmetry restricted to (0,π), having 
ΦH H H H= + + =φ φ φ π1 2 3 . ∆ ∆ ∆1 2 3 0< : according to (IV.1) the triplet phase is 

expected to be π but the true value is 2π. 
 

 
 

 

Let us first examine the case of triplets with phase value symmetry restricted to (0,π), and having 

ΦH = π . In Fig. 6a we show the case in which ∆ ∆ ∆1 2 3 0> : according to DMT Φ  is expected to 

be zero while its true value is π. In Fig. 6b the case ∆ ∆ ∆1 2 3 0<  is depicted: according to (IV.1) Φ  is 

expected to be π while the true value is 0. In both the cases the AT successfully phase the three reflexions 

while DMT fail. 

Let us now consider the so called “cross-over” case: despite the condition ∆ > 0  the sign of Fp 

is reversal with respect to FH , and ( )cos ψ φd p− < 0 . Triplets with one or more reflexions showing 

cross-over cannot be correctly estimated by (IV.1) even if ΦH = 0 . 

 

 

 
 
 
 
 

 
     ∆1 0> , φ p1

0= , φH1
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  FH1

 
 
 
     ∆2 0> , φ p2

0= , φH2
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 Fp2
  FH2

 
 
 
     ∆3 0< , φ p3

0= , φ πH3
=  

  Fp3
 

 
 Fd3

  FH3
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Fig.7: Triplet with phase values symmetry restricted to (0,π) having ΦH = 0 . The third reflexion 
shows a “cross-over”. 

 

 

 

As an example, let us consider (see Fig. 7) the case in which: (a) the three reflexions forming the 

triplet have symmetry restricted phase values to (0,π); (b) the ∆i , i=1, 2, 3 are all positive; (c) the third 

reflexion shows a cross-over. Then (IV.1) will always estimate Φ ≈ 0  while, correctly, AT would 

provide 

 

 φ φp H1 1
≈          (IV.9a) 

 φ φp H2 2
≈          (IV.9b 

 φ φ πp H3 3
≈ +         (IV.9c) 

 

from which, by summation, 

 

 Φ Φ≈ + =H π π .        (IV.10) 

 

What can we conclude about the relative reliability of DMT and AT from the above examples? 

Unlike DMT, AT require the prior information on the heavy atom structure. Extracting it from the 

experimental data requires a preliminary work, but, once available, the knowledge of FH  constitutes a 

valuable supplementary information. Thus, if we focuse our attention on a single triplet there is no doubt 

that the DMT estimate of Φ , derived in absence of any information on the heavy-atom structure, is 

     ∆1 0>  
 Fp1

  FH1
 

 
     ∆2 0>  
 Fp2

  FH2
 

 
 
  FH3

 

     ∆3 0>  
 
 Fd3

  Fp3
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equivalent or inferior to the AT estimate. However DMT have a basic advantage: reflexions are phased 

by combining the indications provided by hundred, and often by thounsand triplets. This cooperative 

action can drive phases towards reliable values, so compensating the lack of information on the heavy-

atom substructure and generating the supplemental advantage of DMT. Furthermore, direct methods 

algorithms, so efficient for the crystal structure solution of small molecules, can be used to automatize the 

entire phasing procedure. In conclusion, AT and DMT are expected to provide highly correlated electron 

density maps of similar quality. Once the information on the heavy atom structure becomes available it 

may be hoped that such a supplemental source of information will improve the phase prediction by DMT. 

 

About the quality of the electron density maps 
For some of the test structures the mean-phase error is sufficiently low to suggest that the electron 

density maps could be directly interpreted. We discuss here the quality of the various maps calculated at 

the end of our procedure. 

APP - Fig. 4 suggests high quality experimental data and good isomorphism between native and 

derivative. The map resulted easily interpretable. 

BPO - Fig. 4 indicates that experimental data are of high quality, with good isomorphism 

between native and derivative. The structure was solved via two derivatives (Au and Pt): 

the heavy-atom positions were identified from difference Patterson maps. The native 

Fourier maps, calculated for the resolution range 10.0 to 2.8Å from MIR phases was 

interpretable for both derivatives and showed clear separation of solvent and protein 

regions. 

E2 - Fig. 4 suggests very high quality of the experimental data and very good isomorphism 

between native and derivative. The structure was originally solved via one Hg and two Pt 

derivatives: in particular the Hg derivative was of excellent quality and has been used in 

the tests here described. The SIR map is inmediately interpretable. 

M-FABP - Fig. 4 indicates a relatively good isomorphism between native and derivative. The 

structure was solved using both multiple isomorphous replacement (Hg, Pt) and molecular 

replacement procedures. Our map is close to be interpretable. 

NOX - Fig. 4 indicates a quite bad isomorphism between native and derivative. The structure was 

solved by using multiple isomorphous replacement techniques (5 derivatives). The P6 cis-

Pt derivative is used in our calculations. The map if for from beeing interpretable. 
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Conclusions 
This paper is the conclusion of a series which, starting from the theoretical results obtained by 

Hauptman (1982a,b) and by Giacovazzo, Cascarano & Zheng (1988) has been devoted to make those 

achievements practicable. The phasing procedure designed throughtout this series can be commented as 

follows: without any information on the heavy-atom positions the phasing process is able to provide in 

favourable cases electron density maps which nay be directly interpreted. The process is able in principle 

to phase all the reflexions up to the derivative resolution and may be accomplished in a fully automatic 

way, so adding appeal to the method. Too bad isomorphism between the native and the derivative hinder 

the success. However the practical tests here described suggest that our method has a reserve of power 

with with respect to standard SIR methods. 

 



Phasing up to derivative resolution 

96 

References 
Giacovazzo, C., Cascarano, G. & Zheng, C.-D. (1988). Acta Cryst. A44, 45-51. 

Giacovazzo, C. & Gonzalez-Platas, J. (1995). Acta Cryst. A51, 398-404. 

Giacovazzo, C., Siliqi, D. & Gonzalez-Platas, J. (1995). Acta Cryst. A51, 000-000. 

Giacovazzo, C., Siliqi, D., Gonzalez-Platas, J., Hecht, H., Zanotti, G., Krauss, N & York, B. (1995). In 

preparation. 

Giacovazzo, C., Siliqi, D. & Ralph, A. (1994). Acta Cryst. A50, 503-510. 

Giacovazzo, C., Siliqi, D. & Spagna, R. (1994). Acta Cryst. A50, 609-621. 

Giacovazzo, C., Siliqi, D. & Zanotti, G. (1995). Acta Cryst. A51, 177-188. 

Glover, I., Haneef, I., Pitts, J., Woods, S., Moss, D., Tickle, I. & Blundell, T. L. (1983). Biopolymers, 22, 

293-304. 

Hauptman, H. (1982a). Acta Cryst. A38, 289-294. 

Hauptman, H. (1982b). Acta Cryst. A38, 632-641. 

Hecht, H., Erdmann, H., Park, H., Sprinzl, M., Schmid, R. D. & Schomburg, D. (1993). Acta Cryst. A49, 

Suppl. 86. 

Hecht, H., Sobek, H., Haag, T., Pfeifer, O. & Van Pee, K. H. (1994). Nature Struct. Biol. 1, 532-537. 

Lunin, V., Y. & Woolfson, M., M. (1993). Acta Cryst. D49, 530-533. 

Mattevi, A., Obmolova, G., Schulze, E., Kalk, K. H., Westphal, A. H., De Kok, A. & Hol, W. G. J. 

(1992). Science, 255, 1544-1550. 

Zanotti, G., Scapin, G., Spadon, P., Veerkamp, J. H. & Sacchettini, J. C. (1992). J. Biol. Chem. 267, 

18541-18550. 

 



The use of the partial structure for Proteins 

97 

 

 

 

 

 

 

 

 

 

 

Chapter V 
 

 

The use of the partial structure information in ab-initio 

solution of Proteins by Direct Methods 
 

Introduction 

According to the tangent formula (Karle & Hauptman, 1956), 
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    (V.1) 

 

θh  is the most probable value of φh . Its reliability depends on the concentration parameter 

 

  ( )α h h h= +T B
/2 2 1 2

       (V.2) 
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Relationship (V.1) has practically solved the phase problem for small molecules. Its application to 

two small proteins (i.e., APP, a 36-residue hormone, and rubredoxin from Desulfovibrio vulgaris), both 

with data up to atomic resolution, attained a notable succes. Relation (V.1) is strictly connected with 

Sayre (1952) equation 

 

  E
L

E Eh k h k
k

= −∑1
       (V.3) 

 

which, with respect to (V.1), imposes additional restraints on the moduli of the structure factors. 

Specific reasons make difficult the application of (V.1) to proteins of usual size: a) the flattness of 

the probability distribution P( )Φ ; b) the limited data resolution; c) the difficulty in finding the correct 

phase set, if obtained, among the various trial solutions. 

The problem has been reconsidered by Giacovazzo, Guagliardi, Ravelli & Siliqi (1994). Their 

results may be so summarized: 

a) in absence of phase information  

 

  z /h h h
=< >α σα        (V.4) 

 

may be considered as the ratio “signal-to noise”. < >α h  is the expected value of α h , given by 

 

  < >=
=
∑α h G D Gj j
j

r

1
1

( )       (V.5) 

 

and σαh
2  is the variance of α h , given by (Cascarano, Giacovazzo, Burla, Nunzi & Polidori, 1984) 

 

  [ ]σαh
2 2

2 1
2

1

1
2

1 2= + −
=
∑G D G D Gj j j
j

r
( ) ( )     (V.6) 

 

b) the statistical solvability criterion was formulated according to which (V.1) can be successfully 

applied to a given set of diffraction data if the relation 

 

  z ≥ Tr          (V.7) 
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is satisfied by a sufficiently high percentage of large normalized structure factors. Tr  represents an 

acceptable inferior limit for the “signal-to-noise” ratio (say Tr ≅ 3). 

c) For proteins of usual size z ≤ Tr  for a large percentage of reflexions. In these conditions Sayre 

relation is not satisfied, the application of the tangent formula does not succeed and the correct 

solution cannot be recognized among the others. 

When the diffraction data of one isomorphous derivative are available one can use a mathematical 

technique (Hauptman, 1982) that integrates direct methods and isomorphous replacement techniques. 

Then then triplet reliability parameter G is replaced by (Giacovazzo, Cascarano & Zheng Chao-de, 1988) 

 

  [ ] [ ]A / R R R //
p

/
H

' ' '= +− −2 23 2
3 2

3 2
3 2σ σ σ σh k h k h k h k∆ ∆ ∆  . 

 

The α parameter is consequently modified into 

 

  < >=
=
∑α h A D Aj j
j

r

1
1

( )  

 

When A is used, the condition (V.7) is satisfied by a sufficiently high percentage of large 

normalized structure factors. This suggested that ab-initio direct solution of proteins is feasible when 

diffraction data from one isomorphous derivative are additionally available. 

Some drawbacks still limit the usefulness of the procedure for the ab-initio phasing of the protein 

in order to provide an interpretable electron density maps. These are: 

1. the quality of the final phased depends on the quality of the atom derivative. 

2. Even if the number of phases reflexions is sufficiently large for several practical purposes a non 

negligible number of reflections with | |∆ ≅ 0 but large R values remain unphased. Their 

contribution to the electron density map is therefore lost. 

3. The overall phase error is moderately large: its reduction should provide a better definition of the 

protein envelop. 

4. No method is suggested for extending phases beyond the derivative resolution. 

5. Pseudo-centrosymmetrical phases are obtained in specific space groups. 

We wants to check the feasibility of a phasing method which exploits as prior information the 

electron density map eventually available after the application of the techniques involving isomorphous 
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derivative data. Therefore, in order to better understand the present theory we will briefly introduce some 

general aspects of the theories that recover the entire structure from a partial one. 

 

Recovery of the full structure from a partial one: current methods 
We quote the various methods which are currently used for completing the crystal structure from a 

fragment. 

Weighted Fourier syntheses 

Woolfson (1956) and Sim (1960) (see also Main, 1979) suggested that the use of Fourier 

syntheses with weighted terms W | F|exp(i )φπ  would reveal the unknown atomic positions better than 

the usual syntheses with | F|exp(i )φπ . These and related Fourier methods use essentially the 

information contained in the distributions 

 

  [ ]P( )
1

2 ( )
exp cos( )φ φ

π
φ φπ π πh h h h h h|R ,R ,

I G
G, ,

o
,≅ −   (V.8) 

 

where G R R / b,= 2 h h hπ  and [ ]b |F |q , qh h= ∑ + ∑π
2 . This equation is a von Mises distribution: 

φπ ,h is the expected value of φh  and the reliability of the distribution φ φπh h≅ ,  increases with G. 

Tangent recycling methods 

According to Karle (1970) (see also Hull & Irwin, 1978), a phase φπ is accepted if 

|F | |F|π η> , where η is the fraction of the total scattering power contained in the fragment and where 

|F| is associated with an |E| .≥ 15. This approach emplirically exploits the same distribution as in the 

above case, because it aims to select high products |E E|π . Tangent recycling uses a large starting set of 

φπ ’s in order to compensate for wrong estimations. In each tangent cycle the a priori structural 

information is only used for defining a good starting set. 

Tangent recycling methods applied to difference structure factors 

In the procedure proposed by Beurskens, Prick, Doesburg & Gould (DIRDIF, 1979) difference 

structure factors ( )∆ F |F| |F |= − π πφexp (i )  are calculated and, in favourable cases, accepted for a 

first estimation of Fq . Weighted tangent formula is applied to the ∆F values in order to convert them to 

more probable Fq  values. It may be observed: (a) The difference structure factors are used in the tangent 

formula instead of the structure factors: the information about the correlation between E  and Eπ  is 
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obtained by suitable statistical criteria based on (V.8); (b) unfortunately the difference structure factors 

are unable to use the true Fq ’s and strict theoretical distributions involving, E ’s, Eπ ’s, φ ’s, φπ ’s 

simultaneously. 

Joint probability distribution methods 

The prior information is exploited in order to obtain more accurate probabilistic formulas 

estimating Φ. Main (1976) generalized Cochran’s (1955) formula for the phase probability of a triplet in 

order to exploit some a priori knowledge about the structure. He considered different kinds of 

information: (a) randomly positioned atoms; (b) randomly positioned and randomly oriented atomic 

groups; (c). randomly positioned but correctly oriented atomic groups; (d) correctly positioned atoms. 

A mathematical derivation of Main’s formula was given by Heinerman (1977). In his formulation 

the normalized structure factor Eh  is defined 

 

  E
F

|F | /h
h

h
=
< >2 1 2

p.r.v
       (V.9) 

 

where < >|F |h
2

p.r.v  denotes the average of |F |h
2 , the variables being the primitive random variables. 

If a group of p atoms is assumed to be correctly positioned then q = N - p atomic positions are 

the primitive random variables. Then (V.9) may be written as 

 

  
[ ]

E
F

|F |, q
/h

h

h

=
+ ∑π

2 1 2       (V.10) 

 

When we know the position of p atoms, Main’s formula reduces to 

 

  [ ]P( )
1

2 ( )
exp cos( )Φ Φ|R ,R ,R

I Q
Q q

o
h k h k− ≅ −

π
   (V.11) 

 

where 

 

  Q q R R R R R R c, , ,exp(i ) ( exp i )= +− −2 h k h k h k h kπ π π πφ  
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Heinerman observed that (V.11) was not quite satisfactory in the practice and concluded that only 

high-order terms of the distributions could improve the accuracy of the formula.  

New insight into this method was afforded by Giacovazzo (1983). He considered that: (a) the 

atomic positions are assumed to be the random variables; (b) any normalized structure factor Eh  is 

considered as the sum of a fixed term E ,π h  arising from the atoms with known positions and of a 

random term Eq,h  arising from the atoms with unknown positions. Then 
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For the sake of simplicity we will denote E ,π h  and Eq,h  as pseudo-normalized structure factors. 

The basic result of this work was the conditional joint probability ( we have replaced the indices 

h, k, h-k by 1, 2, 3 respectively) 
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  (V.12) 

 

It coincides with the classical trivariate distribution of Karle & Hauptman when p = 0. 

From (V.12) one can obtain: 

 

  [ ] [ ]P( ) ( ) exp cos( )φ π α α φ ξh h|... Io≅ −
−

2
1

   (V.13) 

 

where α α α2
1
2

2
2= + , 

 

  

( )

[
]}

α φ

φ φ φ φ

φ φ φ φ

π π

π π

π π π π π π

1 2= +






+ − +

− + +

−

− − − −

− − − −

∑R R b
c

b b b

R R R R

R R R R

, ,

,

, , , , ,

h h h h
h k h k

k h k k h k k h k k h k

k h k k h k k h k k h k

cos

x cos( ) cos( )

cos( ) + cos( )

triplets

,

,

 

 

 

 

 



The use of the partial structure for Proteins 

104 

 

  

( )

[
]}

α φ

φ φ φ φ

φ φ φ φ

π π

π π

π π π π π π

2 2= +






− + +

+ + +

−

− − − −

− − − −

∑R R b
c

b b b

R R R R

R R R R

, ,

,

, , , , ,

h h h h
h k h k

k h k k h k k h k k h k

k h k k h k k h k k h k

sin

x sin( ) + sin( )

sin( ) - sin( )

triplets

,

,

 

 

 

  cos sinξ α α ξ α α= =1 2/ /  . 

 

From (V.13) the special tangent formula (V.14) arises: 

 

  tan φ α αh ≅ 2 1/        (V.14) 

 

The distribution (V.13) can be simplified if we replace Eh  and E ,π h  by the psuedo-normalized 

structure factors 
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Then we can rewrite (V.13) as 
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 (V.17) 

 

and 

 

  tanθ α αh = 2 1
" "/        (V.18) 

 

 

In (V.16) and (V.17)    and    stand for ‘real part of’ and ‘imaginary part of’ respectively. This form of 

the distribution allows understanding the next properties: 

a) the new formulas are now easily applicable; 

b) The triplet contribution is of order q /−1 2 (it’s replaced by [ ]σ σ3 2
3 2/ /

q
 if atoms are not equal). It’s 

worthwhile observing that q is just the number of independent random variables in our problem in 

analogy with N in the Cochran’s formula. 

c) E"
h  and E ,

"
π h  are not normalized structure factors: indeed 
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  < >= + ∑ ∑|E | /"
p q

2 1   < >= ∑ ∑|E | /"
p qπ

2  

 

so that < >|E |" 2  is always larger than unit, while < >|E |"
π

2  is larger or smaller than unity according 

to whether ∑ p  is larger or smaller than ∑q . The larger the a priori information, the smaller 

< − >|E E |' '
π

2  is. 

d) Equation (V.15) reduces to Sim’s (1959) formula if triplet contribution is not taken into account. 

e) The best estimate for φh , i.e. θh , is the phase of the complex vector 

 

  ( )( )E q E E E E,
" / "

,
" "

,
"

π π πh k k
k

h k h k+ − −−
− −∑1 2 .   (V.19) 

 

The larger its modulus α  is, the larger the expected accuracy of the estimation. According to (V.19), 

the vectorial differences ( )E E"
,

"
k k− π  and ( )E E"

,
"

h k h k− −− π  do influence the value θh . 

f) If p →0, then q →N, E"
π → 0 and (V.15) reduces to the classical Karle & Karke’s (1966) 

relationships. 

g) The larger is p, the less important in the average is the triplet contribution compared with Sim’s 

contribution. In particular, because of point (c), the triplet contribution vanishes when q →0. Then 

R"
h  and R ,

"
π h  are both infinite and, (V.15) approximates the Dirac δ φ φπ( )h h− , . 

h) From the above considerations, the following probabilistic relation is suggested: 

 

  E E q E E"
,

" / "
,

" "
,

"
h h k k

k
h k h k≅ + − −−
− −∑π π π

1 2 ( E )( E )   (V.20) 

 

which may be considered as a generalized Sayre’s (1952) equation emphasizing the fact that part of 

the structure is known. When q = 0 the equation (V.20) reduces to the trivial identity 

E E"
,

"
h h= = ∞π . When q = N then E"

π  = 0 and (V.20) reduces to the classical Sayre’s equation. 

When q ≠0, the prior information introduces new algebraic and probabilistic constraints so as to 

recentre E"
h  around E ,

"
π h . 
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Direct methods for high-resolution phase refinement for proteins 
While the ab-initio solution of protein structures is not within the capacity of traditional direct 

methods, their efficiency for phase refinement and extension is still under discussion. Since the first trials 

by Reeke and Lipscomb ( 1969), Weinzierl, Einsenberg & Dickerson (1969) and Coulter (1971), it was 

clear that a characteristic feature of the tangent formula is the following: a possible moderate 

improvement of the phases is frequently followed, after few cycles of refinement, by their deterioration. 

Phases diverge to a self-consistent incorrect set. The application of Sayre equation proved more stable 

even if much more time consuming: therefore some pragrams (for example, SAYTAN, see Woolfson, 

1993) introduce Sayre’s formula restraints in the tangent formula framework. A more general approach 

has been followed by Main (1990): the electron density map is improved by combining information from 

real and reciprocal spaces. The solution of large non-linear systems, as required by Sayre equation, is 

circumvented by the use of the conjugate-gradient method to calculate shifts of the electron density map. 

The information so obtained is combined (Cowtan & Main, 1993) with solvent flattening techniques 

(Wang, 1985), histogram matching (see Lunin, 1993), non-crystallographic symmetric averaging 

(Bricogne, 1974), and the use of a partial structure according to the method of Read (1986). The 

applications of such a method to practical cases show that the improvement of the electron density map is 

a product of the simultaneous use of the different techniques. 

A different point of view may be introduced. Let us suppose that the phase estimates (for example, 

by isomorphous derivative techniques) are available for a subset of reflexions and that the calculated 

electron density map is able to reveal the main features of the structure. The map may be supposed not 

interpretable in terms of chain tracing but showing the general envelope of the molecule. This envelope 

may be considered as the prior information for the subsequent steps: in particular, its inverse Fourier 

transform may be calculated and the values Fπ  (structure factor of a partial structure) are derived for the 

various structure factors. Then triplet invariants can be estimated via distribution like (V.12) derived by 

Giacovazzo (1983), instead than via 

 

  ( )P φ φ φp, p, p, p, p, p,, , |F |,|F |,|F |h k h k h k h k− −     (V.21) 

 

used by the tangent formula. The advantage of (V.12) with respect to the other methods may be so 

summarized: 

a) the electron density map is divided into two regions; the first coincides with the assumed partial 

structure, the second is “flattened” to zero and gives vanishing contribution to the values of Fπ . 
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b) The distribution can take full advantage of the known partial structure, which on the contrary is 

neglected in (V.21). 

c) The prior information proved to lead , by tangent refinement, to highly accurate estimates of the 

phases (Camalli, Giacovazzo & Spagna, 1985; Burla, Cascarano, Fares, Giacovazzo, Polidori & 

Spagna, 1989) at least for small molecule structures. 

The problem in now: is the supplementary information provided by (V.12) sufficient for reliably 

extending and refining the phases of macromolecules? The answer is not easy: the effectiveness of the 

process depends on the accuracy of the starting phases φπ , on the general correctness of the envelop, on 

the complexity of the entire structure. We want to explore first the feasibility of the method, by working 

in an ideal and therefore well controlled situation (Giacovazzo & Gonzalez-Platas, 1995). 

The probabilistic formula to apply is the equation (V.20) derived from (V.12): in terms of phases 

that is equivalent to 

 

  tanθ π πh = T B        (V.22) 

 

where 
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θh  is the most probable value of φh , and 

 

  ( )απ π π,
/

T Bh = +2 2 1 2
       (V.23) 

 



The use of the partial structure for Proteins 

109 

is its reliability parameter. 

 

The statistical z test when a partial structure is available 
In order to estimate the efficiency of (V.20) we should calculate, in accordance with (V.4), 

 

  z /, , ,π π αα σ
πh h h

=< >       (V.24) 

 

< >απ ,h  and σαπ ,h
 may be derived according to the following procedure: 

1. first we derive, from equation .(V.12), the marginal distribution 

 

  P( R R R R R )φ φ φ φ φπ π π π π πk h k h k h k h k h k h k h k, R , , , , , , , ," " "
,

"
,

"
,

"
, , ,− − − −  

 

The phase φh  is supposed unknown, as it occurs when we are interesed to < >απ ,h . Neglecting 

terms of order [ ]σ σ3 2
3 2/ /

q
 we obtain that ( )φ φk h k+ −  is distributed according to the von Mises 

distribution 

 

  M( ; )φ φ φ φπ πk h k k h k k+ +− −, , ,,q1  

 

where q ,1 k  satisfies the relation 

 

  D q D R R D R R,
"

,
" "

,
"

1 1 1 12 2( ) ( ) ( )k k k h k h k= − −π π  

 

( )φ φπ π, ,k h k+ −  is the expected value of ( )φ φk h k+ −  and q ,1 k  is the concentration parameter 

of the distribution. 

2. In an analogous way we obtain that ( )φ φπ ,k h k+ −  is distributed according to the Von Mises 

distribution 

 

  M( ; )φ φ φ φπ π π, , , ,,qk h k k h k k+ +− − 2  

 

where 
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  q R R,
"

,
"

2 2k h k h k= − −π . 

 

3. Also ( )φ φπk h k+ −,  is distributed according to 

 

  M( ; )φ φ φ φπ π πk h k k h k k+ +− −, , , ,,q3  

 

where 

 

  q R R,
"

,
"

3 2k k k= π . 

 

4. We recall that the distribution of the modulus α  of the resultant of r complex vectors Q j jexp(i )ν  

under the hypothesis that Qj  are distrubuted according to the von Mises distribution M( )ν θj j; ,q  

is the normal distribution (Cascarano, Giacovazzo & Guagliardi, 1992) N( )α α σ; ,< > 2  where 

 

  < >=
=
∑α Q D qj j
j

r

1
1

( )  

 

  ( )σ 2 2
2 1

2

1

1
2

1 2= + −
=
∑Q D q D qj j j
j

r
( ) ( )     (V.25) 

 

5. We apply the above results to the sets of vectors 
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where 

 

  

[ ]
[ ]
[ ]

Q / R R

Q / R R

Q / R R .

,
/

q
" "

,
/

q ,
" "

,
/

q
"

,
"

1 3 2
3 2

2 3 2
3 2

3 3 2
3 2

2

2

2

k k h k

k k h k

k k h k

=

=

=

−

−

−

σ σ

σ σ

σ σ

π

π

 

 

Then 

 

  
[

]

< >= + − −∑απ π, ,
"

, , , ,

, , ,

R Q D q Q D q

Q D q Q

h h k k
k

k k

k k k

2 1 1 1 2 1 2

3 1 3 4

( ) ( )

( ) +
  (V.27) 

 

where 

 

  [ ]Q / R R,
/

q ,
"

,
"

4 3 2
3 22k k h k= −σ σ π π  

 

< >απ ,h  reduces to < >α h  when no partial structure is available. 

6. The value of σαπ ,h
2  may be derived by applying in turn (V.25) to the terms (V.26) and then summing 

the contributions. 

The statistical solvability criterion (V.4) have been applied to the experimental data of the 

structures quoted in Table I (Giacovazzo & Gonzalez-Platas, 1995). 
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Table I: Code name, space group and crystallochemical data for test structures. 
(1) Glover, Haneef, Pitts, Wood, Moss, Tickle & Blundell (1983). 
 (2) Data by courtesy of R. Huber, MPI Martinsried, FRG. 
(3) Data from courtesy of C. Betzel, ENBL, Hamburg, FRG. 
(4) Hartmann, Steigemann, Reuscher & Parak (1987). 
(5) Zanotti, Scapin, Spadon, Veerkamp & Sacchettini (1992). 
(6) Mattevi, Obmolova, Schulze, Kalk, Westphal, De Kok & Hol (1992) 

 

 

 

 

 

 

Table II: Parameters defining protocol for calculations (see the main text for the symbols). 
 

 

For each test structure we give in Table II the resolution of the diffraction data (RES), the number 

of atoms (statistically calculated) in the primitive unit cell (N), the number of measured reflexions 

(NREFL), the number of large normalized structure factors (NLAR) among which triplet invariants 

Structure Code Space Group Molecular formula Z 

APP(1) C2 C190 N53 O58 Zn 4 

BPTI(2) P21 21 21 S9 O149 N84 C289 4 

LYSO(3) P43 21 2 S10 O286 N193 C613 8 

MYO(4) P21 Fe S4 O389 N220 C 817 2 

M-FABP(5) P21 21 21 C667 N170 O261 S3 4 

E2(6) F4 3 2 C1170 N310 O366 S7 96 

CODE RES(Å) N NREFL NLAR NTRIP 

APP 0.99 413 17058 700 8907 

BPTI 1.00 1860 17300 700 21759 

LYSO 1.69 7720 13622 700 24899 

MYO 1.50 2648 15903 1100 26796 

M-FABP 2.14 4076 7769 700 23012 

E2 3.00 40783 8136 400 23820 
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are calculated, the total number of triplets which contribute to the various α  values (NTRIP). For each 

structure we calculated the zh  values corresponding to the NLAR reflexions according to the definition 

(V.4), and the z ,π h  values according to the definition (V.24). 

Two different amounts of prior information were used for z ,π h  corresponding to different values 

of the diffraction ratio [ ] [ ]DR / pπ π
σ σ= 2 2  = 0.20, 0.40. In Figs. 1 - 6 we show the P( )z  and 

P( )zπ  curves. In general P( )z  curves do not satisfy the statistical solvability criterion: on the contrary 

the P( )zπ  curves are remarkarbly shifted towards the right and satisfy the criterion. 

 

 

 

 

Fig.1: APP: P(z) and P(zπ) curves 
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Fig.2: BPTI: P(z) and P(zπ) curves 

 

Fig.3: LYSO: P(z) and P(zπ) curves 
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Fig.4: MYO: P(z) and P(zπ) curves 

 

Fig.5: M-FABP: P(z) and P(zπ) curves 
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Fig.6: E2: P(z) and P(zπ) curves 

 

 

 

The only exception occurs for APP for which the prior information does not improve the 

distribution of the ratio “signal-to-noise”. At the moment we are unable to explain this discordant result. 

The shifts relative to the P( )zπ  curves increase with the amount of prior information: therefore larger 

information should make (V.20) more efficient. 

In order to collect the above observations in a simple sentence we can so conclude: Sayre relation 

(V.3) is expected to be violated for all test structures but for APP, while relation (V.20) is expected to be 

satisfied for all the test structures. In order to check this conclusion we calculated the following figures of 

merit. 
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In (V.28) Eh  and E"
h  stay for Rh hexp(i )φ  and R"

h hexp(i )φ  respectively; φh  is the true 

phase (derived from the refined published crystal structure). R  and R"  are respectively normalized and 

pseudo-normalized magnitudes derived from measurements. 

When FOM is calculated, the Sayre relationship is applied, and Ehcal  is obtained from the right-

hand side of (V.3) by using true phases ( )φ φk h k+ − . When FOMπ  is calculated, the formula (V.20) 

is applied, and E"
hcal  is obtained from the right-hand side of (V.20) by using the true values 

φ φ φ φ φπ π πk h k h k h k, , , ,, , ,− − . Large values of FOM and FOMπ  involve remarkable deviations (in 

terms of moduli and phases) of the calculated E’s from the observed ones and therefore indicate violation 

of (V.3) and (V.20). The results are shown in Table III. 

 

 

 

Table III: FOM and FOMπ values for the test structures. 
 

 

 

The FOM values are quite large, thus confirming that the Sayre relation is not satisfied. The FOMπ ’s 

are remarkably smaller than the corresponding FOM’s: the situation is still improved when DRπ  

increases. The comparison between the numerical values of FOM and FOMπ  confirms the 

significance of Figs. 1 - 6: a good correlation can be found between the shifts to right of the distribution 

P( )zπ  and the differences FOM - FOMπ . For example FOMπ  ≈ FOM for APP. 

CODE FOM FOMπ  

(DR )π = 0 20.  

FOMπ  

(DR )π = 0 40.  

APP 0.512 0.515 0.490 

BPTI 0.783 0.579 0.496 

LYSO 0.847 0.696 0.598 

MYO 0.800 0.632 0.497 

M-FABP 0.863 0.695 0.570 

E2 0.910 0.567 0.477 
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The values of FOM and FOMπ  in Table IV suggest that the accuracy of the phases determined 

via (V.22) is expected to be higher than for phases fixed by (V.3); the average accuracy should increase 

with DRπ . This expectation is confirmed by a supplementary test (see Table IV): we extracted the 

average phase error < > = < − >| | | |∆φ φ φo
cal
o

true
o  from FOM and FOMπ . The larger the amount 

of prior information is, the better the phase estimates are. 

 

 

 

 

Table IV: <|∆φ°|>=<|φ°cal - φ°true |>: mean phase error for Sayre relationship. <|∆φ°|>π : 

mean phase error for (V.22). 
 

 

 

A question could arise: is the value φhcal , as calculated from (V.22), closer in the average to 

φh true than the value φπ ,h ? In Table V we show the values < − >| |φ φπtrue
o o  for the different values 

of DRπ . If these are compared with the average phase errors in Table IV, the important role of the 

triplet contribution in the phasing process is realized. Thus, phases are estimated through (V.22) much 

better than through the Sim (1959) relationship. 

 

 

 

 

CODE < |∆φ°|> < |∆φ°|>π 

(DRπ = 0.20) 

< |∆φ°|>π 

(DRπ = 0.40) 

APP 23.7 20.0 18.4 

BPTI 27.1 21.5 16.4 

LYSO 45.1 32.1 25.4 

MYO 42.6 28.9 20.6 

M-FABP 46.3 32.7 23.3 

E2 52.8 23.4 17.7 
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Table V: Average phase errors according to Sim (1959) relationship. 

 

 

 

Tangent refinement 
It is wortwhile noting than in Table IV < ° >| |∆φ  is rather small even for the Sayre relationship. 

However it should not be concluded that Sayre relationship is satisfied. Indeed the correct criterion for 

deciding about the violation of (V.3) or (V.20) is the inspection of FOM and FOMπ because they 

simultaneously involve phases and moduli. If this is true, the values of FOM and FOMπ  should be 

useful indicators for foreseeing the behaviour of the tangent procedures. In particular they should 

measure the tendency of the tangent formulas (V.1) and (V.22) to diverge to self-consistent incorrect sets 

of phases. 

In order to confirm this property we started phase refinement from correct phase values according 

to (V.1) and to (V.22), and we checked the average phase error after convergence is attained. The 

threshold value TRα  (i.e., a reflexion is considered “phased” if α α≥ TR ) is multiplied by 0.65 each 

new cycle. The process stops for (V.3) if α α α−








 ≤∑∑ ∑pc

hh h
0 02.  where α pcis the α value 

in the preceding refinement cycle. When (V.22) is used απ  replaces α. The results are shown in Table 

VI. 

 

 

 

CODE 

| |φ φ π° − °true

(DR )π = 0 20.  

| |φ φ π° − °true  

(DR )π = 0 40.  

APP 39.5 29.8 

BPTI 47.1 24.4 

LYSO 46.5 30.1 

MYO 41.6 25.5 

M-FABP 43.2 29.4 

E2 30.7 20.8 
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Table VI: <|∆φ°|> after the application of the tangent formula to true phases. (%) is the percentage of the 

NLAR reflexions phased by the process. 

 

 

 

It may be noted: 

i) Not all the NLAR reflexions are phased at the end of the process. The percentage of phased reflexions 

is small for E2 when Sayre relation is used. 

ii) Phases remarkably diverge, except for LYSO, M-FABP and E2 when DRπ ≠ 0. 

iii) As a general trend (V.22) is more efficient than (V.1) but is still not satisfactory. 

Much better results are obtained by slightly modifying the refinement process. The progman stops 

when TRα ≤ 15.  (this condiction prevents unreliable phase assignments) or when the number of phased 

reflexions is larger than 0.85 * NLAR. This last condition avoids repeated cycles of refinement on the 

same set of phases: in these conditions, phases usually move towards autoconsistency and diverge from 

the true values. The results of the new procedure are shown in Table VII. 

 

 
 

CODE 

 

<|∆φ°|> 
(%) 

Sayre relation 

 

<|∆φ°|> 
(%) 

Rel. (V.22) 

(DRπ = 0.20) 

<|∆φ°|> 
(%) 

Rel. (V.22) 

(DRπ = 0.40) 

APP 43.2 

(99) 

41.7 

(99) 

43.5 

(99) 

BPTI 79.4 

(93) 

66.4 

(98) 

65.9 

(99) 

LYSO 40.2 

(88) 

31.2 

(91) 

24.5 

(95) 

MYO 68.0 

(98) 

62.1 

(99) 

57.6 

(100) 

M-FABP 41.8 

(87) 

30.0 

(89) 

23.1 

(93) 

E2 35.2 

(53) 

26.1 

(91) 

19.2 

(98) 
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Table VII: <|∆φ°|> after the application of the tangent formula to true phases. (%) is the porcentage of the 

NLAR reflexions phased by the process. The minimum threshold for TRα is 1.5. 

 

 

 

It may be noted: 

i) the number of phased reflexions is larger when relation (V.22) is used. In particular, the Sayre 

equation is still unable to fix for E2 the phases of about 0.68*NLAR reflexions. 

ii) The phase error is remarkably smaller for the relation (V.22): the error decreases when DRπ  

increases. 

The above conclusions confirm that the suggestions we derived from Figs. 1 - 6 are sound: the 

prior information on part of a crystal structure allows the successful application of (V.20) to 

macromolecules, that is the complete crystal structure may be in principle recovered when a partial 

structure is available. 

 

 
 

CODE 

 

<|∆φ°|> 
(%) 

Sayre relation 

 

<|∆φ°|> 
(%) 

Rel. (V.22) 

(DRπ = 0.20) 

<|∆φ°|> 
(%) 

Rel. (V.22) 

(DRπ = 0.40) 

APP 27.3 

(85) 

25.9 

(88) 

25.6 

(90) 

BPTI 36.4 

(88) 

24.5 

(92) 

14.6 

(88) 

LYSO 32.9 

(72) 

27.5 

(86) 

22.9 

(93) 

MYO 40.7 

(85) 

25.5 

(88) 

17.4 

(92) 

M-FABP 33.4 

(68) 

26.1 

(84) 

19.5 

(85) 

E2 30.8 

(32) 

23.3 

(87) 

16.9 

(93) 
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Conclusions 
It has been shown that relationship (V.20) is potentially able to estimate accurately the phases of a 

relevant number of reflexions provided some prior information is available on part of the structure. As a 

rule of thumb, a prior information about 30-40% of the structure should make (V.20) highly efficient. 

Relationship (V.20) can be used in two different ways: 

a) combined with the probabilistic techniques to improve the phasing process for reflexions up to the 

isomorphus resolution. In this case, the partial structure constitutes a supplementary derivative, the 

quality of which depends on the accuracy with which the partial structure is defined. Tangent 

refinement of this second derivative will produce phases that may be usefully combined with MIR 

phases. 

b) As a stand-alone technique that is particulary useful at resolution higher than the derivative resolution. 

In both cases, the use of (V.20) should be cyclic: the initial prior information is used for phase 

extension and refinement, which, in turn, should provide a better electron density map and therefore a 

better partial structure to use as new prior information. 
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