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Abstract

With the raise of diseases related with unhealthy lifestyles such as heart-
attacks, overweight, diabetes, etc., encouraging healthy and balanced patterns
in the population is one of the most important action points for governments
around the world. Furthermore, it is actually even a more critical situation
when a high percentage of patients are children and teenagers whose habits con-
sist merely in eating fast or ultra-processed food and a sedentary life.

The development of healthy and balanced menu plans becomes a typical task
for physicians and nutritionists, and it is at this point that Computer Science
has taken an important role. Discovering new approaches for generating healthy
and balanced, as well as inexpensive menu plans will play an important part in
banish of diseases from actual and new generations.

In this Master Thesis, a recently proposed Evolutionary Algorithm has been
compared to other state-of-art evolutionary algorithms for solving the Menu
Planning Problem. In order to evaluate the performance of the developed al-
gorithm, an exhaustive experimental assessment was made. Firstly, we focused
on evaluating the parameter setting of the algorithm so afterwards the best con-
figuration found could be compared with other well-known algorithms.

Keywords: menu planning, computer science, evolutionary computing, multi-
objective optimisation
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Chapter 1

Motivation

1.1 Description of the Master Thesis

In this Master Thesis, the main intention is to develop an evolutionary algo-
rithm for solving the well-known Menu Planning Problem (MPP). The MPP is
an optimisation problem which is based on designing menu plans under some
restrictions. Although there is a lot of different kinds of algorithms for solving
such a problem, a high percentage of published papers use evolutionary com-
putation due its large benefits like robustness, reliability, global-search ability
and its simplicity [12–14,18,21].

Concretely, this Master Thesis will be focused on solving a recently proposed
MPP formulation with an evolutionary algorithm called Multi-objective Evolu-
tionary Algorithm based on Decomposition [28] and compare its performance
with other state-of-art algorithms such as Nondominated Sorting Genetic Algo-
rithm II (NSGA-II) [5] and Strength Pareto Evolutionary Algorithm 2 (SPEA
2) [15].

1.2 State of the art

The Menu Planning Problem (MPP) is a well-known NP-Hard problem, which
was firstly proposed in 1960 [19]. In essence, the MPP consists of finding a set
of dishes combination which satisfies some restrictions of budge, variety and
nutritional requirements for a period ofn days. In addition, it can include other
constraints such as user preferences, cooking time or the number of meals each
day. Even though there is not consensus about the number of objectives that
a MPP’s formulation may have, in almost every formulation the cost of the
menu plan is considered as one of the main objectives to be optimised [18, 19].
But, it also supports other objective functions, like maximising the variability
or minimising the cooking time.

Furthermore, the MPP can be studied as a multi-objective problem [20] if
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On the healthy and balance menu planning automatisation 5

the amounts of nutrient requirements and cost of the meals are considered as
independent objectives. This approach leads to reduce the MPP to a Multi-
dimensional Knapsack Problem (MDKP) where the maximum amount of each
nutrient define the limits of the multiple dimensions. However, the MPP has
also been studied as a single-objective problem where the total cost of the meals
is considered as the typical objective function. For instance, a single-objective
approach for the MPP is in [18]. In this particular research, the authors pro-
posed an evolutionary approach to solving the 5-day Single-Objective Menu
Planning Problem composed by three meals daily. In addition, the set of con-
straints that the researchers defined to this problem are moderately different
from the usual constraints set for the typical MPP. In this occasion, the authors
set the student age group, the school category, school duration time, school loca-
tion, variety of preparations, the maximum amount to be paid for each meal and
finally, and the lower and upper limits of macro-nutrients as the constraints set
to be satisfied for each solution to be considered feasible. Within this research,
the authors used the standard Genetic Algorithm (GA) for the computational
experiments. The results obtained compared with a Greedy-based approach
demonstrated that the GA was able to outperform the Greedy-based approach
when the limit values of the meals are fixed at R$ 2.00 for breakfast, R$ 4.00
for lunch and R$ 2.00 for the snack. (BRL - R$ 1.0 USD - $ 0.31).

At the same time, in [10], the authors referred to the Two-phase Cooking N-
day Menu Planning Problem where the objective is to maximise the preferences
among the selected foods in the menu plan. The conditions which shape the
set of constraints that must be satisfied are three. The total cooking time
of any day must not exceed the limit specified, only foods that which allow
two-phase cooking can be selected for two-phase cooking and finally, the food
cannot be repeated more times than a certain repetition constraint. In order
to face this problem, the researchers used a simple greedy method prioritising
the user-specified preferences with the cooking time of each food.

Eventually, another study where the MPP is faced as a single-objective prob-
lem was considered in [24]. Here, the authors set up a mathematical model to
solve the MPP considering only one objective function. The goal of the model
is to minimise the budget provided by the government subject to the restriction
of trying to maximise the variety of dishes. Furthermore, the model tries to
create menus in such a way they maximise the nutritional requirements. For
the computational experiments, the researchers implemented an Integer Pro-
gramming algorithm in Matlab using LPSolve. Furthermore, the given results,
taking into account that the optimal solution was found within one second, are
compared to other heuristics, like GA.

As it can be seen, there is a certain variety within the optimisation methods
for solving the single-objective MPP approach. Despite that, Evolutionary
Computation (EC) techniques, such as GA, are mostly cited in the related
bibliography as a suitable choice [18–20].
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This Master Thesis is focused on developing, analysing and comparing differ-
ent well-known multi-objective evolutionary algorithms for solving real-world
instances of a multi-objective variant of the MPP.



Chapter 2

Background

2.1 Optimisation Problems

An Optimisation Problem (OP) is a problem which has a score function and
bounds where the main task is to find a input that optimises the score func-
tion. Optimisation problems can be categorised as discrete optimisation prob-
lem (DOP) or Continuous Optimisation Problem (COP) whether the variables
of the problem are discrete or continuous. Formally speaking, an OP can be
described as follows:

min f(x), x ∈ χ, s.t. Ω

where χ ⊂ Zn is the search space defined over a set of n decision variables
x = (x1, x2, ..., xn), f : χ → R is the score function and Ω is the restrictions
set in x. This is the definition for a minimisation DOP, although it would be
equivalent for a maximisation DOP changing min f(x) by max f(x). The same
happens for a COP, if in addition the decision variables are set over Rn instead
of Zn .

Furthermore, optimisation problems may have more than one score function
and they are called Multi-Objective Optimisation Problems (MOOP). This is
the primary field of study in this work so, hereinafter all the references to
optimisation problems in this work will be to MOOP.

2.1.1 Multi-Objective Optimisation Problems

Multi-Objective Optimisation Problems (MOOPs) are optimisation problems
which have two or more objective functions to optimise and those objective
functions can take opposite directions (thinking about directions as minimise
or maximise). Besides, a MOOP can be discrete or continuous considering
whether the variables of the problem are discrete or continuous.
Formally speaking, a MOOP can be described as finding a vector x inside the
problem’s search space χ in such way that optimises the vector of objective
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functions f(x) [6]:

min f(x) = (f1(x), f2(x), ..., fk(x)), x ∈ χ
gi(x) ≤ 0, i = 1, 2, ..., q.

hi(x) ≤ 0, i = 1, 2, ..., p.

where x = (x1, x2, ..., xn) ∈ Zn, are the objective functions to optimise fi :
Zn → R, i = 1, ..., k being n the number of decision variables and gi : Zn →
R, i = 1, ..., q and hi : Zn → R, i = 1, ..., p are the problem’s restriction
functions.

Moreover, the standard method for evaluating and distinguish the quality
between solutions for a MPP is the well-known Pareto method optimality [6].
The Pareto optimality is based on the non-dominance principle [6, 25]. On
the one hand, dominance means that given two solutions for a MOOP, one
solutions dominates the other one when it has as least the same quality for
every objective and, it has strictly more quality for one of them than the other
solution. Formally, this can be expressed as follows [6]:

A � B ⇔∀i ∈ {1, 2, ..., n} ai ≤ bi,

and ∃i ∈ {1, 2, ..., n}, ai < bi

On the other hand, it is the direction conflict between objectives which leads
to solutions with trade-offs between those objectives. So, at this point it is where
the non-dominance appears. The non-dominance refers the situation where a
solution it is not dominated by any other solution of the problem. That means
that it can not be found any other solution to the problem which increases the
quality of any objective without irredeemably decreases the quality of another
one. Non-dominated solutions may be found at the limits of the search space
(χ) and are those which shape the Pareto set.

2.2 Evolutionary Algorithms

Nowadays, there are many methods for solving MOOPs but they can be classi-
fied merely in two types of methods: approximated methods and exacts methods.
The different categories of exact and approximated methods can be seen in the
Figure 2.1.

On the one hand, exacts methods are those which ensure that, if there is an
optimal solution to the facing problem they will be able to find it. However,
even though these methods guarantee reaching the optimal solution they have a
important drawback on its performance. Assuring the optimal solution implies
increasing the computational work and hence more time to obtain the solution.

On the other hand, approximated methods are very popular nowadays even
though they do not guarantee reaching the optimal solution for a problem.
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Figure 2.1: Optimisation methods

Nevertheless, approximated methods can obtain high quality solutions in an
assumable time due they set a balance between computational performance
and solution quality.

Approximated methods can be divided in two categories: heuristic algorithms
and meta-heuristics algorithms. However, this work it is focus primarily in
meta-heuristics algorithm and even more specifically in the field of evolutionary
algorithms.

Evolutionary algorithms (EA) develop the metaphor of natural evolution,
the survival of the fittest individual [8]. This is, given a population of individ-
uals in some environment with limited resources, the competition for surviving
causes natural selection and the fittest individuals are more likely to survive
and reproduce. Nevertheless, there are several variants of EA, some of them
are:

1. Genetic Algorithms [2, 22,27].

2. Evolutionary Strategies [4, 11].

3. Differential Evolution [1, 9, 26,29].

Moreover, there is a specific group of evolutionary algorithms for solving
multi-objective problems known as Multi-Objective Evolutionary Algorithms (MOEAs).
MOEAs can be classified in many different subgroups considering the main ap-
proach underlying the algorithm [30]:

• MOEAs based on decomposition, i.e., MOEA/D [17,28].

• Pareto-based MOEAs, i.e., NSGA-II [5] and SPEA-2 [15].
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• Indicator-based MOEAs, i.e., IBEA [31].

Considering the field of optimisation problems, the natural evolution metaphor
can be specified as the following set of steps:

1. The problem to solve and its bounds is the environment with limited
resources.

2. A set of random initial solutions for the given problem are the first indi-
viduals at generation zero.

3. The population of individuals reproduce between each other applying ge-
netic operators to generate offspring. Commonly combination and muta-
tion.

4. At each generation, the individuals within a population compete and the
fittest individuals (the better quality solutions) survive.

5. Steps three and four are repeated until reaching the stop condition.

Generally, the aforementioned metaphor can be shown as a pseudocode [8]:

Algorithm 1 Pseudocode of an EA.
1: INITIALISE population with random candidate solutions
2: EVALUATE each candidate
3: while not StopCriteria satisfied do
4: SELECT parents
5: RECOMBINE pairs of parents to obtain the offspring
6: MUTATE the offspring
7: EVALUATE new offspring
8: SELECT individuals from among parents and offspring for the next

generation

9: end
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2.3 Considered Formulation for the Menu
Planning Problem

In this particular case, a novel formulation of the Menu Planning Problem
proposed for school cafeterias is considered. The authors defined two objectives:
meal cost and variety of dishes. On the one hand, as usual in MPP, one goal
is to minimise the total cost of the meal plan generated. Since the meal plan
is designed for school cafeterias, the authors considered three meals in each
menu: first course, second course and dessert. Formally, the meal plan cost can
be defined as follows:

min C =
n∑

i=1

cfci + csci + cdi

where C is the total cost of the menu plan and cfci, csci, cdi represent the cost
of the first course, second course and dessert in n days.

On the other hand, an assorted menu plan is a must for children in order to
avoid them to annoy about the food. For that reason, the second objective is
to minimise the level of repetition of dishes and food groups in a certain menu
plan.

min LRep =
n∑

i=1

vtablei +
pfc
dfci

+
psc
dsci

+
pds
ddsi

+ vFGi

Where LRep is the level of repetition to be minimise, vtablei represents the com-
patibility between the courses cfci, csci, cdi for day n, p is a penalty constant for
every kind of course and d stands for the number of days since the course was
repeat for the last time. Finally, vFGi

is the penalty value for repetition of food
groups in the last five days.

Additionally, in order to consider that a menu plan as feasible, it must satisfy
some restrictions about a set of nutritional requirements (N). The nutritional
requirements considered in this formulation are the following:

• Folic acid.

• Calcium.

• Energy (Kcal).

• Phosphorus.

• Fat.

• Carbohydrate.

• Iron.

• Magnesium.

• Potassium.

• Protein.

• Selenium.

• Sodium.

• Vitamin A.

• Vitamin B1.
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• Vitamin B2.

• Vitamin B6.

• Vitamin B12.

• Vitamin C.

• Vitamin D.

• Vitamin E.

• Iodo.

• Zinc.

There is also a vector R in which the minimum and maximum amount of
each nutritional requirement is stored. So formally speaking, a menu plan is
feasible only if

∀n ∈ N : Rminn
≤ In ≤ Rmaxn

where In is the amount of the n-nutritional requirement in the menu plan.
Lastly, the set G of food groups considered for the available meals is:

• Meat.

• Cereal.

• Fruit.

• Dairy.

• Fish.

• Vegetable.

• Shellfish.

• Legume.

• Pasta.

• Others.



Chapter 3

Algorithms

At this point, it will be introduced the Evolutionary Algorithms compared in
this Master Thesis. With a view to have variety of MOEAs, every algorithm it
is based on a different MOEA approach [30]:

• Based on decomposition: Multi-objective Evolutionary Algorithm Based
on Decomposition.

• Based on Pareto optimality: Non-dominated Sorting Genetic Algorithm
II and Strength Pareto Evolutionary Algorithm 2.

3.1 Multi-objective Evolutionary Algorithm
Based on Decomposition

Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) is
an evolutionary algorithm for multi-objective optimisation proposed by Qingfu
Zhang and Hui Li in 2007 [28]. The underlying idea behind this algorithm is to
decompose a multi-objective optimisation problem into a number of scalar op-
timisation sub-problems and optimise them simultaneously. It also harnesses in
the well-known feature of Pareto optimal solutions to a MOOP, which sustains
that an optimal solution for a scalar optimisation problem with an objective
function as the aggregation of all the fi could be the same as the Pareto optimal
solution for the MOOP [28].

The decomposition approach of MOEA/D takes place where the algorithm
decomposes a MOOP into N sub-problems and simultaneously optimises ev-
ery single sub-problem at each generation. Furthermore it establish some re-
lations between sub-problems and organised them in neighbourhoods. These
neighbourhoods are shaped by sub-problems which coefficient vectors are very
similar to each other and every single sub-problem is optimised based on its
neighbouring sub-problems information. Therefore, the optimal solution for
two neighbouring sub-problems should be very similar [28].

13
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On the other hand, the process of decompose a MOOP into N sub-problems
can be done from some different approaches. However, as the authors referred
in [28], in this Master Thesis the MOEA/D uses the Tchebycheff Approach [17]
to decompose a MOOP. Formally, the Tchebycheff Approach it is defined as
follows:

min gte(x|λ, z∗) = maxmi=1{λi|fi(x)− z∗i |}
where z∗ = (z∗1, ..., z

∗
m) is the reference point with the best solution founds so

far for each sub-problem and λi = (λi,1, ..., λi,m) is a even spread weight vector
for each sub-problem i.

In addition, MOEA/D version implemented in this paper works as follows.
It takes a MOOP, the population size, a stopping criterion and the number of
neighbours for each neighbourhood. The number of sub-problems in this imple-
mentation are the MOOP’s objectives. Then, it starts by randomly generate N
even spread weight vectors and compute the Euclidean distance between each
others to shape the neighbourhoods, generates an initial random population
and computes the reference point Z∗. After the initialisation phase, it goes into
the main loop where, until the stopping criteria is not satisfied, the algorithm
preforms theses steps for each individual of the population:

• Reproduction: generates a new child individual from two randomly se-
lected neighbours l, k.

• Improve: maintains the new child under the limits of the problem’s search
space.

• UpdateZ: updates the reference point by comparing it with each new child
individual.

• Update Neighbours: if the new child individual performs better than any
neighbours, replaces the neighbour with the brand new individual.

Finally, MOEA/D returns the Pareto Front points found.

Concretely, the algorithm can be outlined as follows:
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Algorithm 2 MOEA/D.
1: SetRandomWeightVectors
2: EuclideanDistance
3: GenerateRandomPopulation
4: InitializeZ
5: while not StopCriteria satisfied do
6: for all sub-problem do
7: l,k = getRandomNeigbours
8: child = reproduce(l, k)
9: child = improve(child)

10: updateZ(child)
11: updateNeighbouringSolutions(child)

12: end

3.2 Non-dominated Sorting
Genetic Algorithm II

Nondominated Sorting Genetic Algorithm II, as well known as NSGA-II was
proposed in 2002 by K. Deb and A. Pratap and S. Agarwal and T. Meyarivan
to mitigate the major difficulties of nondominated sorting MOEAs [5]. In fact,
this algorithm is an improvement of the previously algorithm is an improvement
of the previously suggested algorithm NSGA [16] algorithm NSGA [23] in 1994
by N. Srinivas and Kalyanmoy Deb.

The main improvements of NSGA-II over NSGA is a fast nondominated
sorting approach with complexityO(MN 2) that replaces the previous one which
has complexity O(MN 3) [5](considering M the number of objectives and N the
population size) and the selection operator of NSGA-II which comes to solve
the lack of elitism of the previous NSGA version.

The fast nondominated sorting procedure starts by computing the domina-
tion count np which is the number of solutions that dominates p and next,
the set of solutions dominated by p called Sp. Then the procedure continues
identifying all Pareto Fronts and ranking the solutions in different fronts by its
np [5]. An example of the fast nondominated sort procedure can be seen at the
following pseudocode.
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Algorithm 3 Fast Nondominated Sort.
1: for all individual p in population do
2: Sp = ∅
3: np = 0
4: for all individual q in population do
5: if p ≺ q then
6: Sp = Sp ∪ {q}
7: else
8: if q ≺ p then
9: np = np + 1

10: if np = 0 then
11: prank = 1
12: F1 = F1 ∪ {p}
13: i = 1
14: while fi 6= ∅ do
15: Q = ∅
16: for all p ∈ Fi do
17: for all q ∈ Sp do
18: nq = nq − 1
19: if nq = 0 then
20: qrank = i+ 1
21: Q = Q ∪ {q}
22: i = i+ 1
23: Fi = Q

24: end

NSGA-II algorithm is quite simple and it can be seen in the pseudocode down
below.

Algorithm 4 NSGA-II.
1: P = CreateInitialPopulation(N)
2: FastNondominatedSorting(P)
3: while not StopCriteria satisfied do
4: BinaryTournamentSelection(P)
5: Q = CreateOffspring(P)
6: R = Combine(P, Q)
7: FastNondominatedSorting(R)
8: P = SelectNIndividuals(R, N)

9: end
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3.3 Strength Pareto Evolutionary Algorithm
2

Likewise NSGA-II is an improvement of its predecessor NSGA, the Strength
Pareto Evolutionary Algorithm 2 (SPEA-2) was published in 2001 by Eckart
Zitzler, Marco Laumanns and Lothar Thiele as a new version of SPEA algorithm
proposed in 1999 by Zitzler and Thiele [7]. Essentially, the SPEA 2 differs
with SPEA in a fine-grained fitness assignment strategy, a density estimation
technique, and an enhanced archive truncation method [7]. The basis of both
SPEA and SPEA 2 algorithm are that they uses a standard population (P) and
also an archive (P ) or external population and follows theses steps:

• Create an initial random population of size N and an empty archive.

• Then all nondominated individuals are sent to the archive.

• If the size of the archive increase over the limit N , new archive individuals
are deleted preserving the nondominated front.

• Both population and archive individuals are evaluated and a fitness value
is assigned to each of them.

• After the evaluation, the mating selection phase comes.

• When the parents are selected, genetic operators are applied to generate
offspring and replace the old population.

Although those are the foundations of SPEA and SPEA 2, SPEA 2 has two
improvements in fitness assignment and environmental selection. On the one
hand, in an effort to avoid that individuals dominated by the same archive
individuals have the same fitness, each individual i in P and P have a strength
value S(i) indicating the number of individuals it dominates [7].

S(i) = |{j|j ∈ Pt + Pt ∧ i � j}|

After computing the strength of each individual, a Raw fitness value (R) is
calculated for each individual.

R(i) =
∑

j∈Pt+Pt,j�i

S(j)

In the case where most individuals do not dominate each other, R it is not
enough so an adaptation of the k -the nearest neighbour algorithm is included
for additional density information. In this particular case, authors use k as the
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result of the square root of the sample size, so k =
√
N +N . Then, the density

of each individual is calculated as follows.

D(i) =
1

σki + 2

Finally, the fitness value (F ) of each individual is defined as the sum of its raw
fitness plus its density.

F (i) = R(i) +D(i)

On the other hand, the archive updating procedure of SPEA 2 is slightly dif-
ferent from SPEA. Primarily, it ensures two aspects [7]:

• The number of individuals in the archive maintain is regular.

• The truncation method prevents boundary solutions being removed.

The environmental selection begins by copying all nondominated individuals
from archive and population which have a fitness value F lower than one to the
archive for the next generation.

Pt+1 = {i|i ∈ Pt + Pt ∧ F (i) < 1}

After finishing this step, if the archive is fully filling, the environmental selection
is completed. Under other conditions, new individuals are added to the archive
if it is too small or deleted in other case to fit the size N .

All the previous description of SPEA 2 algorithm can be outlined in the
following pseudocode.

Algorithm 5 SPEA 2.
1: P = CreateInitialPopulation(N)
2: P = CreateEmptyArchive;
3: while not StopCriteria satisfied do
4: ComputeFitness(P,P )
5: EnvironmentalSelection;
6: BinaryTournamentSelection;
7: Recombination;
8: Mutation;

9: end



Chapter 4

Experimental Evaluation

In this chapter, the experimental evaluation of MOEA/D will be introduced.
The algorithm and the experimental evaluation were developed through the
same framework called Metaheuristic-based Extensible Tool for Cooperative
Optimisation (METCO) 1 proposed in [16]. In addition, the experiment were
executed on a Debian GNU/Linux computer with four AMD Opteron processors
at 2.8GHz and 64 GB RAM. Each run was repeated 25 times considering 1e8
evaluations as the stop criteria.

Furthermore, with the aim of statistically supporting the conclusions ex-
tracted, the following the evaluation procedure was applied. The hypervol-
ume (HV) [3] was the metric selected to compare the different configurations
of MOEA/D and the Shapiro-Wilk, Levene, ANOVA or Welch test were con-
sidered for results which follow a normal distribution or Kruskal-Wallis test
otherwise.

4.1 Instances

For this evaluation, a total number of 67 different courses were available group
together in three different files:

• lst: 19 starters.

• lmc: 34 main courses.

• lds: 14 desserts.

Besides, the structure of every file is an CSV file with the following fields:

• Name of the course.

• Price of the course.

1Available at: https://github.com/PAL-ULL/software-metco
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• Binary list of different allergens in case whether the course contains or
not the allergen.

• Incompatibilities.

• Amount of the different nutrients.

• Food groups which belongs the course.

4.2 Parameter Setting

In this preliminary experiment, the main goal was to find which values of the
MOEA/D [28] parameters provide the best configuration facing the MPP for-
mulation considered in this Master Thesis. The list of MOEA/D parameters
is:

• Population size.

• Neighbourhood size.

• Mutation probability that was set at 0.05.

• Crossover probability which was set at 1.

At this point, it is worth mentioning that MPP takes one parameter which
defines the number of different days, for which the menu plan will be designed,
that in this preliminary experiment was set to 20 days. The comments of the
authors of MOEA/D algorithm in [28] about the performance of the algorithm
with very small or large neighbourhood sizes and the effect of the population
size on its performance were took into account when designing this experiment.
Bearing the above in mind, a wide range of values were considered. Particularly,
five different values for the population size and neighbourhood size were set in
order to obtain 25 different configurations of MOEA/D. The values are:

• Population size: 25, 80, 140, 190, 250.

• Neighbourhood size: 0.4, 0.3, 0.25, 0.2, 0.16 percentage of the total pop-
ulation size.

Table 4.1 shows the ranking of all MOEA/D configuration for a 20-days MPP
related to the hypervolume values obtained at the end of the executions. The
ranking (R) was calculated considering the number of times that one config-
uration statistically outperforms other configurations (W) and the number of
times that it was outperformed by other configurations (L):

R = W − L
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Configuration A statistically outperforms configuration B if the p-value, ob-
tained after performing a pairwise comparison of both approaches by following
the statistical testing procedure described at the beginning of this chapter, is
lower than the significance level α = 0.05 , and if at the same time, A provides
a higher mean and median of the hypervolume at the end of the runs.

Even though there is not a significant control of the best ranked configura-
tion in Table 4.1 with only 9 wins over 24 other configurations, the MOEA/D
configuration with a population size of 140 individuals and 42 individuals per
neighbourhood seems to be the best one. Thus, this is the configuration chosen
for the next experiment.

Configuration Min. 1st Qu. Median Mean 3rd Qu. Max. W L Ranking
MOEA D PopSize 140 Neihb 42 0.7161 0.7733 0.7839 0.7834 0.8087 0.8435 9 0 9
MOEA D PopSize 250 Neihb 50 0.7270 0.7635 0.7737 0.7775 0.7930 0.8213 2 0 2
MOEA D PopSize 80 Neihb 16 0.7306 0.7655 0.7787 0.7774 0.7945 0.8342 2 0 2
MOEA D PopSize 140 Neihb 35 0.7388 0.7583 0.7671 0.7728 0.7914 0.8188 1 0 1
MOEA D PopSize 190 Neihb 48 0.7216 0.7521 0.7670 0.7688 0.7842 0.8034 0 0 0
MOEA D PopSize 25 Neihb 10 0.7228 0.7563 0.7669 0.7686 0.7805 0.8250 0 0 0
MOEA D PopSize 25 Neihb 4 0.7363 0.7490 0.7628 0.7682 0.7817 0.8174 0 0 0
MOEA D PopSize 80 Neihb 13 0.7231 0.7563 0.7690 0.7691 0.7874 0.8143 0 0 0
MOEA D PopSize 25 Neihb 8 0.7384 0.7490 0.7725 0.7716 0.7884 0.7989 0 0 0

MOEA D PopSize 140 Neihb 28 0.7299 0.7583 0.7715 0.7715 0.7892 0.8005 0 0 0
MOEA D PopSize 80 Neihb 32 0.7256 0.7428 0.7708 0.7675 0.7840 0.8190 0 0 0
MOEA D PopSize 250 Neihb 62 0.7244 0.7577 0.7733 0.7702 0.7847 0.8189 0 0 0
MOEA D PopSize 80 Neihb 24 0.7234 0.7540 0.7710 0.7712 0.7843 0.8158 0 0 0
MOEA D PopSize 140 Neihb 22 0.7292 0.7504 0.7728 0.7684 0.7813 0.8231 0 0 0
MOEA D PopSize 250 Neihb 100 0.7328 0.7501 0.7775 0.7721 0.7925 0.8253 0 0 0

MOEA D PopSize 25 Neihb 6 0.7211 0.7506 0.7673 0.7706 0.7897 0.8300 0 0 0
MOEA D PopSize 250 Neihb 40 0.7158 0.7507 0.7737 0.7674 0.7811 0.8155 0 1 -1
MOEA D PopSize 190 Neihb 57 0.6755 0.7441 0.7698 0.7655 0.7809 0.8135 0 1 -1
MOEA D PopSize 140 Neihb 56 0.7149 0.7472 0.7704 0.7664 0.7799 0.8311 0 1 -1
MOEA D PopSize 250 Neihb 75 0.7078 0.7443 0.7664 0.7637 0.7765 0.8143 0 1 -1
MOEA D PopSize 190 Neihb 76 0.7374 0.7546 0.7694 0.7685 0.7818 0.8018 0 1 -1
MOEA D PopSize 25 Neihb 5 0.7299 0.7494 0.7683 0.7672 0.7802 0.8180 0 1 -1
MOEA D PopSize 80 Neihb 20 0.7269 0.7484 0.7676 0.7663 0.7732 0.8217 0 1 -1
MOEA D PopSize 190 Neihb 38 0.7224 0.7515 0.7643 0.7634 0.7780 0.8113 0 3 -3
MOEA D PopSize 190 Neihb 30 0.7280 0.7494 0.7581 0.7607 0.7698 0.7978 0 4 -4

Table 4.1: Ranking of all MOEA/D configurations
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4.3 Problem size variation

In this experiment, the main goal was to analyse how the problem dimension
affects in the performance of the best MOEA/D configuration found so far for
MPP. For that reason, other 25 independent executions of MOEA/D with 140
individuals in the population and neighbourhoods of 42 individuals were run
for instances of the MPP of 5, 10 and 40 days MPP. Table 4.2 below shows
the minimum, median, mean and maximum hypervolume values obtained. The
best MOEA/D configuration is compared to the best results for NSGA-II and
SPEA-2 for every different MPP instance. As it can be observed, both NSGA-
II and SPEA-2 outperformed MOEA/D in every different MPP instance with
statistically significant differences.

Menu plannings for 5 days
Configuration Min. Std Mean Max.
NSGA2 PopSize 250 pm 0.2 pc 0.8 0.956507 0.006186 0.969247 0.977835
SPEA2 ps 100 ArchSize 100 pm 0.2 pc 0.8 0.937224 0.007334 0.951471 0.964441
MOEA D PopSize 140 Neihb 42 0.747678 0.030129 0.827381 0.873078
Menu plannings for 10 days
Configuration Min Std Mean Max.
NSGA2 PopSize 250 pm 0.2 pc 0.8 0.934024 0.008141 0.948577 0.961192
SPEA2 PopSize 100 ArchSize 100 pm 0.2 pc 0.8 0.9237 0.008851 0.941078 0.955088
MOEA D PopSize 140 Neihb 42 0.743725 0.030455 0.783656 0.83404
Menu plannings for 20 days
Configuration Min. Std Mean Max.
SPEA2 PopSize 100 ArchSize 100 pm 0.1 pc 0.8 0.906556 0.011438 0.925087 0.945195
NSGA2 ps 250 pm 0.05 pc 0.8 0.940483 0.014064 0.921332 0.940483
MOEA D PopSize 140 Neihb 42 0.7161 0.03205 0.7834 0.8435
Menu plannings for 40 days
Configuration Min. Std Mean Max.
SPEA2 ps 100 ArchSize 100 pm 0.025 pc 0.8 0.891074 0.012357 0.910226 0.929
NSGA2 ps 250 pm 0.05 pc 0.8 0.886774 0.008034 0.9019 0.918159
MOEA D PopSize 140 Neihb 42 0.65815 0.033453 0.716339 0.783212

Table 4.2: MOEA/D performance comparison against best results of NSGA-II
and SPEA-2 with different MPP instance sizes.

Additionally, the Figure 4.1 shows how the average hypervolume value evolves
and both NSGA-II and SPEA-2 reach considerably higher values than MOEA/D.
With less than 0.2e8 evaluations, the average hypervolume value is noticeably
higher than the average value reached by MOEA/D at 1e8 evaluations. The
same comparison it is done in Figures 4.2, 4.3 and4.4 for 10, 20 and 40 days
MPP instances, respectively.
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Figure 4.1: Evolution of the average HV value for 5-days MPP at 1e8 evalua-
tions.
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Figure 4.2: Evolution of the average HV value for 10-days MPP at 1e8 evalua-
tions.
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Figure 4.3: Evolution of the average HV value for 20-days MPP at 1e8 evalua-
tions.
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Figure 4.4: Evolution of the average HV value for 40-days MPP at 1e8 evalua-
tions.
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Figure 4.5: Front approximation at 1e8 evaluations from best MOEA/D con-
figuration found facing 5-days MPP.
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Figure 4.6: Front approximation at 1e8 evaluations from best MOEA/D con-
figuration found facing 10-days MPP.
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Figure 4.7: Front approximation at 1e8 evaluations from best MOEA/D con-
figuration found facing 20-days MPP.
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Figure 4.8: Front approximation at 1e8 evaluations from best MOEA/D con-
figuration found facing 40-days MPP.



Chapter 5

Summary and conclusions

5.1 Conclusions and future work

As seen in Chapter 4, NSGA-II still being the state-of-art in Multi-Objective
Evolutionary Algorithms since it outperforms both SPEA-2 and MOEA/D with
statistically significant differences for this recently proposed MPP formulation.

Regarding MOEA/D algorithm, the quite simple version developed for this
Master Thesis does not obtain as high quality solutions as NSGA-II or SPEA-
2. In the experimental evaluation explained in Chapter 4, the population size
and neighbourhood size seems not to have a high impact into the perfomance
of the MOEA/D algorithm as it can be appreciated in the ranking from the
preliminary experimental evaluation in Table 4.1.

For further work, considering a new approach for initial weight generation
may be a interesting choice as well as a more depth experimental evaluation
with MOEA/D considering the mutation and crossover probability rate and
increasing the evaluation limit to 4e8 evaluations.
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Appendix A

Resources

All the work done in this Master Thesis can be found in the following Github
repository.
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https://github.com/marreA/MPP_TFM
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