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1 Resumen (Español)

En este trabajo se ha realizado un estudio de las propiedades estructurales, elásticas y
vibracionales del AgGaSe2, cuya estructura pertenece a la familia de las calcopiritas, y de su
evolución con la presión. Se utilizan cálculos computacionales basados en primeros principios
(Ab Initio) que permiten obtener de forma precisa simulaciones de las propiedades que
experimentalmente serían costosas de estudiar o difícilmente accesibles en los laboratorios. Este
tipo de herramientas permiten estudiar el comportamiento de los materiales cuando se someten
a condiciones extremas de presión y temperatura que se dan, por ejemplo, en el interior de La
Tierra. La estructura y propiedades dinámicas de un cristal determinan una amplia variedad de
comportamientos, tanto micro como macroscópicos: difracción, constantes elásticas, absorción,
scattering... Se utilizará el software Vienna Ab-Initio Simulation Package (VASP) [1] para
la realización de los cálculos teóricos a partir de las posiciones atómicas obtenidas de la literatura.

Se comenzará este trabajo explicando brevemente en la Sección 3 la estructura del material
estudiado: AgGaSe2, explicando qué es lo que diferencia a las calcopiritas del resto de
compuestos y por qué la configuración atómica de este tipo de compuestos les confiere unas
ciertas características únicas. Se buscará en la bibliografía las posibles aplicaciones en las que
las calcopiritas, gracias a su amplia variedad de interesantes propiedades, pueden ser utilizadas
y cómo, en las últimas décadas, se han realizado diversas investigaciones, tanto experimentaales
como teóricas, sobre dichas propiedades.

Posteriormente, en la Sección 4, se dará una breve explicación de la base teórica en la
que se basan los cálculos realizados. El objetivo principal de las simulaciones por ordenador
es la resolución de la ecuación de Schrödinger mediante métodos Ab Initio para obtener las
propiedades de diversos materiales. Uno de los métodos más utilizados, y que se usará en este
trabajo, es la teoría del funcional de la densidad: DFT (Density Functional Theory). Este
método utiliza las densidades electrónicas de los múltiples átomos que conforman el material
y resuelve el sistema de ecuaciones formado por las múltiples ecuaciones de Schrödinger:
ecuaciones de Kohn-Sham.

Para facilitar la resolución de las ecuaciones, la DFT utiliza diferentes aproximaciones para
la energía de canje y correlación. La aproximación por defecto de VASP es la LDA (Local
Density Approximation), donde el funcional de la energía únicamente depende de los valores de
la densidad electrónica, y no de sus derivadas. Además de la LDA, existe una gran variedad de
aproximaciones, algo más complejas, que incluyen términos que dependen de la derivada de la
densidad: las denominadas GGAs (Generalized Gradient Approximations). En este trabajo se
utilizará tanto la aproximación LDA, como las GGAs de PBE (Perdew-Burke-Ernzeerhof) y su
revisado para sólidos PBEsol [2].

Siguiendo con la parte de resultados, en la Sección 5 se obtendrán los parámetros de red
del compuesto: a y c de la celda unidad (debido a que en condiciones normales, la estructura
más estable es la tetragonal: a = b) y el parámetro u característico de las calcopiritas; así como
el módulo de bulk (B0) y su derivada (B′0). Ajustando el comportamiento de los parámetros
de red, en función de la presión, por mínimos cuadrados, se obtendrán las compresibilidades
lineales en la red (κa y κc) en función de la presión además de la ecuación que gobierna el
comportamiento de u con la presión.
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Después, usando la celda primitiva para reducir el coste temporal de cálculo, se obtendrán
las 6 constantes elásticas que caracterizan a las estructuras tetragonales (C11, C12, C13, C33,
C44 y C66) a presión cero, así como su evolución con la presión, y se comparará el resultado
que se obtiene para B0 del ajuste de la ecuación de estado de la energía frente al volumen con
el valor procedente de las constantes elásticas. Se analizará la variación de estas constantes con
la presión, hasta los 12 GPa aproximadamente. Se observará que una determinada constante
elástica (C44) se vuelve negativa en torno a los 2 GPa, lo que es indicativo de que a esa
presión se podría producir una transición de fase. Los valores obtenidos se compararán con
diversos cálculos teóricos, realizados mediante diferentes approximaciones, y con resultados
experimentales. Se estudirán también las condiciones de estabilidad y se determinará que la
estructura es mecánicamente inestable a presiones superiores a los 3 GPa approxidamente.

Para finalizar, con la ayuda del software PHONOPY [3], se obtendrán los fonones del
sistema y la evolución de su frecuencia con el aumento de la presión en el punto Γ de la primera
zona de Brillouin hasta la misma presión que en el caso de las constantes elásticas (≈ 12 GPa).
Estos cálculos son de gran importancia ya que ciertas transiciones de fase pueden asociarse al
ablandamiento de los modos de frecuencias bajas. Veremos que uno de los modos de los fonones
se ablanda sobre los 3 GPa indicando que la estructura es dinámicamente inestable (al igual
que lo era mecánicamente sobre la misma presión por la constante elástics C44). Se realizará
un estudio de las curvas de dispersión siguiendo el camino Γ-X-P -N -Γ-M de los puntos de la
primera zona de Brillouin hasta una presión de 3 GPa; además obtendremos las densidades de
estados de los fonones (tanto parciales como totales) y podremos analizar qué átomos tienen
una mayor contribución en los diferentes modos. Se utilizará una supercelda 2x2x2 para esta
última parte y, debido al gran tiempo de cálculo requerido por el software, se limitará su
obtención a la aproximación PBEsol.

Para no sobrecargar el trabajo con un gran número de gráficas, se representarán sólo los
resultados obtenidos con la aproximación PBEsol (a excepción de las curvas de energía frente a
volumen) ya que, como se verá posteriormente, proporciona los parametros de red más cercanos
a los valores experimentales. Con esta aproximación se obtienen unos resultados intermedios
comparados con las otras dos aproximaciones. Sin embargo, cuando se muestren los valores
calculados en las diversas tablas, sí que se indicarán los resultados obtenidos con las tres
aproximaciones.
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2 Abstract

In this work we have perform a study of the structural, elastic and vibrational properties of the
chalcopyrite AgGaSe2 and their evolution under pressure. Computational calculations based
on first principles have been used to obtain the results. They allow to obtain, in a precise way,
simulations of results which experimentally would be very costly or hard to reproduce in the
laboratories. This kind of tools allow the study of the behaviour of the materials when they are
under extreme pressure and temperature conditions which exist, for example, in the interior of
the Earth. We will use the Vienna Ab-Initio Simulation Package (VASP) [1] software to make
the theoretical calculations using the atomic positions obtained from the literature.

To begin with, in Section 3 we will explain in a brief way the structure of the material under
study: AgGaSe2, explaining the importance of the chalcopyrite structure of the compounds,
their possible applications and how the unique properties of this type of compounds make them
different from other crystals with similar structure.

Later, in Section 4 we will make a brief explication of the theoretical base on which the
calculations are based. The main goal of the computer simulation is to solve the Schrödinger
equation using Ab Initio methods to obtain the properties of any material. One of the methods
more used in the literature, and the one which we will use in this work, is the Density
Functional Theory (DFT). This method uses the electronic densities of all the atoms which
form the material and it solves the equation system formed with all the Schrödinger equations:
Kohn-Sham equations. DFT can use multiple approximations for the exchange-correlation
energy to solve the problem: the denominated GGAs (Generalized Gradient Approximations).
The default approximation of the VASP software is the LDA (Local Density Approximation),
where the energy functional only depends on the values of the electronic density, and not in
their derivatives. In this work, we will use both the LDA approximation and the GGAs PBE
(Perdew-Burke-Ernzeerhof) and its revised form for solids PBEsol [2].

In Section 5, the structural parameters of the unit cell of the compound will be obtained:
a and c; as well as the Bulk modulus (B0) and its derivative (B′0). Adjusting by least squares
we will obtain the linear compressibilities of the unit cell parameters (κa, κc) and the equation
of evolution of u when increasing pressure. Afterwards, we will calculate the elastic constants
up to 12 GPa and we will compare the value of B0 obtained from the fit of the energy-volume
curve with the value given by the elastic constants and with the experimental values to check
the validity of the calculations. We will observe that the elastic constant C44 suffers a softening
around 3 GPa which could indicate a phase transition from the tetragonal structure stable at
atmospheric conditions. The study of the Generalized Born stability conditions will confirm
that the system becomes mechanically unstable around 3 GPa.

Thanks to the PHONOPY software [3] and employing the data for the optimized cells, we
will calculate the phonons of the system and their frequency behaviour under pressure at the
Γ-point of the first Brillouin zone. The dispersion curves inside this zone will be obtained too,
as well as the phonon density of states (both partial and total). We will show that the system is
not only mechanically unstable above 3 GPa, it is also dynamically unstable. A 2x2x2 supercell
will be used for these calculations. Due to the large amount of time needed by the software,
this part of the work will be done using the PBEsol approximation only.
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The figures shown in this work will correspond to the results obtained with the PBEsol
approximation (except from the energy-volume curves) since it gives intermediate results
between the three approximations and the more similar ones to the experimental results.

3 Introduction

The compound AgGaSe2 belongs to the ternary chalcopyrite family (I-III-VI2: I = Ag, Cu; III
= Ga, In, Al; VI = S, Se, Te) and shows the crystalline structure corresponding to the tetragonal
spatial group I 4̄2d with four formula per unit cell. This kind of compound are isoelectronic with
respect to the zinc-blend structure II-VI. An ideal chalcopyrite would correspond to a zinc-blend
supercell formed by two unit cells in the c-direction; but in real chalcopyrites, the introduction
of two different atoms replacing the divalent atom in the zinc-blend, one monovalent and one
trivalent, induces a distortion in the tetragonal structure (c/2a 6= 1), resulting on a compression
of the c-axis, due to the different electronegativities, and the displacement of the Se-atoms
from their ideal positions by a characteristic parameter u (u 6= 0.25). This displacement of the
Se-atoms makes that the distance between the Se and Ag-atoms were different than the Se-Ga
distance (See Fig.1). All of the peculiarities of chalcopyrite compounds arise from the relative
ordering of the two bounds between the incorporated atoms.

Figure 1: Unit cell of AgGaSe2: Ag in grey, Ga in red and Se in green.

Although some electronic and vibrational properties of chalcopyrite compounds show
similarities with their cubic homologous, fact that has been used to study these structures
[4], there exist an anomalous behaviour of the band gap between the chalcopyrites and their
zinc-blend analogous [5]. In AgGaSe2, the band gap increases with temperature until reaching
a maximum around 70 K and then it decreases from 110 K [6], linearly in both parts.

AgGaSe2 presents a direct gap between the valence and conduction bands at the Γ-point
and this gap, as well as in all these compounds, increases with pressure.

Chalcopyrites have a lot of practical applications, from their use in photovoltaic plates
due to their semiconductor character, to their application in non-linear optics thanks to the

6



birefringence they show or their use in laser as doubling frequency crystals. Contrary to the
chalcopyrite compounds in which Ag is substituted by Cu, Ag-chalcopyrites show a negative
thermal expansion coefficient for the c-axis [7].

Classic photovoltaic plates show a great deficiency when one refers to the ability of
transforming solar light into electricity. Although the theory of the photovoltaic effect is well
known, the problem arises when we refer to the efficiency of the plates. The combination
of various compounds allows the plates to increase their efficiency by absorbing photons
which would be wasted [8], [9], [10]. The great flexibility, low cost and low weight makes the
chalcopyrites a good alternative to solar cells based on Si. Besides, the combination of various
materials on a multipanel cell could improve the efficiency of such solar panel up to 40% [11].
Due to its narrow gap, AgGaSe2 is a great candidate to infrared detectors as well as it has
shown others interesting detector properties, such as room-temperature radiation detector [12].

Chalcopyrites have a great application in laser physics too. They are a great candidate to
build IR oscillators [13] thanks to their large transparency region and non-linear properties [14].
Their anisotropy allows them to be useful at frequency conversion [15], specially in IR region
with CO2 lasers [16], being even able to generate the fourth harmonic [17]. The third harmonic
can also be generated and, with the inclusion of some In in the formula, it can be construct so
that it is 90o phase-matched as Takaoka & Kato discover [18]. This way, we can expand the
range of frequencies in which the IR-lasers usually work. The introduction of some In in the
formula allows to vary the band gap [19] and to increase the efficiency of the second harmonic
generator [20].
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4 Theoretical Introduction

4.1 Density Functional Theory

To obtain the physical properties of the system, we need to solve the Schrödinger equation of
the crystal, minimizing the energy in relation with the electronic and nuclei positions [21]. The
Hamiltonian of the system is the sum of the contributions of all the elements of the system:

Ĥ = −
∑
I

~2

2MI
∇2
I −

~2

2me

∑
i

∇2
i +

1

2

∑
I,J(I 6=J)

ZIZJe
2

| RI −RJ |

+
1

2

∑
i,j(i 6=j)

e2

| ri − rj |
−
∑
i,I

ZIe
2

| RI − ri |
(1)

where RI and ri are the nuclei and electronic positions respectively, MI and me their masses,
ZI the I-nuclei charge and e the electron charge.

Once defined the Hamiltonian, the time-dependent Schrödinger equation:

ĤΨ(RI ; ri) = EΨ(RI ; ri) (2)

where Ψ(RI ; ri) is the wave function of the system and E the energy, allows us to obtain all the
properties of the system under study. Due to the great difficulty in resolving this problem, it is
common, and advisable, to use some approximations that simplify the problem and that keep
their ab initio character. Thus, ab initio calculations are very precise, but, as almost anything
in physics, they need some approximations.

The main approximation is the adiabatic or Born-Oppenheimer one. It is based on the fact
that the electrons are much lighter than the atomic nuclei and, as the electric forces between
them are of the same order, the velocity of the electrons is much higher than that of the nuclei.
This means that one is able to treat the problem splitting the movement of the nucleus from
the electrons and to suppose that the electrons are affected by a static potential generated by
the static nuclei.

Density Functional Theory (DFT) is the most used approximation to obtain the ground state
of the electrons using first principles. It is used to describe the multielectronic system under the
action of an external potential (Vext), and the Hamiltonian is:

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i,j(i 6=j)

e2

| ri − rj |
(3)

This theory was formulated by Hohenberg & Kohn [22] and it is based on two theorems:

1. For any particle system interacting with an external potential Vext(r), the potential is
determined exclusively by the particle density on the ground state n0(r) and, therefore, as Ĥ
is determined by Vext(r), the system properties are determined by n0(r).

2. For any Vext(r), the energy is an unique functional (E[n]) of the particle density n(r).
Minimizing this functional with respect to the variations of n(r) will allow us to obtain
the energy and density of the ground state.
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This functional can be expressed as:

E[n] =

∫
Vext(r)n(r)dr + F [n] (4)

where F [n] is an independent functional of the external potential (atomic units are used). It
has to satisfy that

∫
n(r)dr = N (where N is the total number of electrons on the system).

When the system is formed by N non-interacting electrons in the presence of an external
potential, Kohn & Sham [23] found out that the functional F [n] is just the functional of the
kinetic energy Ts[n]. Then, following this approach, an interacting system has an energy:

E[n] =

∫
Vext(r)n(r)dr +

1

2

∫
n(r)n(r′)
| r− r′ |

drdr′ + Ts[n] + Exc[n] (5)

where Exc[n] is the exchange correlation energy and the second term correspond to the Hartree
energy.

Solving self-consistently the set of Schrödinger equations for one particle,{
−1

2
∇2 + Veff (r)

}
ψi(r) = εiψi(r) ; i = 1...N (6)

which correspond to the Kohn-Sham equations, the ground state density of the system formed
by N interacting electrons can be obtained. This density is given by n(r) =

∑N
i=1 | ψi(r) |2.

The effective potential for an electron system in the ion external potential is:

Veff (r) = Vext(r) +
1

2

∫
n(r)

| r− r′ |
dr′ + µxc(n(r)) (7)

being

µxc(n(r)) =
∂Exc[n(r)]

∂n(r)
(8)

However, the exact form for the exchange correlation functional is unknown. It is necessary
to make approximations and to suppose an exchange correlation energy which can be a local
or quasi-local functional. The LDA approximation supposes that the exchange correlation
energy is the same at any point that the density of an homogeneous electron gas ε(n(r)). LDA
approximates the energy functional as:

Exc[n] =

∫
n(r)ε(n(r))dr (9)

When the density n(r) varies slowly, LDA obtains great results and is one of the approximations
most used in the literature.

It exists different approximations for Exc[n] that improve the final results given by the LDA
approximation when we treat with solids or molecules. This kind of approximations include a
density gradient, from there their name: Generalized Gradient Approximations (GGAs). In
general, LDA overestimates the cohesion energy and the GGAs underestimates it.

To solve the one-particle Kohn-Sham equations in an external effective potential, the wave
functions are expanded in different bases. Typically there are three basic approximations that
can be applied:
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• Plane waves basis set: to use plane waves, we require Fourier transformations between the
real and reciprocal spaces. It is easy to use with Ab Initio methods, but a great number
of plane waves are needed to obtain the potentials and the wave functions correctly.

• Localized atomic-like orbitals (LCAOs): it requires a lower number of orbitals for each
atom but it is difficult to get a good convergence.

• Atomic spheres methods: close to the nuclei, magnitudes behave similarly to atomic ones,
and in the interatomic regions, those magnitudes vary slowly. This method combines
both the advantages of the plane waves and the localised functions, but it is difficult to
implement.

The wave function has oscillations as it approaches the nucleus of an atom and the
Coulombic potential has a singular point when r tends to 0. However, since the scattering
theory states that the properties of the valence electrons are only affected by the external part
of the potential, we can use a pseudopotential and a pseudo-wavefunction function which set a
cutting radius. Outside this radius, both the pseudopotential and the pseudo-wavefunction are
similar to the real ones; but in the internal region, the pseudopotential lacks of the singularity
at r = 0 and the pseudo-wavefunction does not have the oscillations (See Fig.2).

Figure 2: Representation of the pseudopotential and pseudo-wavefunction with respect to the
real ones [24].

In the case of crystals, the potential in which the electrons are immerse is periodic due to
the positions of the nuclei. Crystals are formed by the repetition, in the three spatial directions,
of the unit cell. This periodicity really simplifies the Kohn-Sham equations. It can be applied
the Bloch theorem to the wave functions and they can be written as the product of a plane
wave and a function with the same periodicity of the crystal.
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Using the periodicity of the crystal, each electronic wave function can be expressed as sum
of plane waves:

ψn,k(r) =
∑
G

Cn,k+Ge
i(k+G)·r (10)

where the sum runs over the reciprocal lattice vectors G, n is the band number and k is a
vector of the Brillouin zone. It is necessary to take into account all the k-points of the filled
states to get the correct state density, but the electronic wave functions in close k-points are
nearly identical. The most popular method to get an accurate result in the Brillouin zone using
a small number of k-points is the Monkhorst-Pack scheme [25].

The plane wave basis set in which the wave functions are expanded must be, at first,
infinite. However, in practise, plane waves with small kinetic energy have a more important
Cn,k+G-coefficient. We can truncate the plane waves set at a maximum energy Ecutoff and to
eliminate the plane waves with greater energies. This Ecutoff is:

~2

2me
| k + G |2< Ecutoff (11)

As Ecutoff increases, the error when calculating the total energy becomes smaller. Its value
must be chosen so that the system properties would have correctly converged.

From here, the quantities in which we are interested can be obtained by solving the
Kohn-Sham equations in a self-consistent way. The pseudopotential V pseudo

ext is obtained from
the atomic positions of the system and this leads to a first electronic charge density nin(r).
With this density we get a new effective potential and, solving again the Kohn-Sham equations,
a new density nout(r). One can repeat this process until the potentials and the densities
converge. To be sure that the system has converged in a relaxed geometry, the forces over the
atoms must be close to zero. Those forces are calculated using the Hellman-Feynman theorem.

4.2 Elastic Constants

Elastic constants characterise the behaviour of a system when it is submitted to an external
strain. They are defined as the second derivative of the energy with respect to the strain tensor
per unit volume. They are given by the relation:

Cijkl =
σij
εkl

(12)

where εkl and σij are the strain and stress tensor components respectively. By symmetry, the
elements of Cijkl can be reduced to a 6x6 matrix Cij and its number of components depends on
the symmetry of the system [26].

To calculate the elastic constants of a system, the unit cell is slightly deformed changing the
Bravais lattice vectors from R = (a,b, c) to R′ = (a′,b′, c′) using the tension matrix:

R′ = R

1 + exx
1
2exy

1
2exz

1
2exy 1 + eyy

1
2eyz

1
2ezx

1
2eyz 1 + ezz

 (13)
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The crystal’s deformation induces a change in the total energy of the system given by:

U =
Etot − E0

V0
=

1

2

6∑
i=1

6∑
j=1

Cijeiej (14)

where E0 is the non-deformed system energy. This definition of the energy allows to define the
stability criteria to know if a determined structure is stable or not. A lattice is dynamically
stable if U is positive for any small deformation. This fact imposes some restrictions on the
possible values of the elastic constants Cij : the Born stability criteria [27].

Depending on the crystal structure, the symmetry of the lattice reduces the number of the
independent elastic constants and thus the stability relations change in terms of the symmetry
[28]. Beside, the relations change when pressure is taken into account too. When we will
obtain the elastic constants for the range of pressures under study, we will also study five
stability criteria for the tetragonal structure. In this case, the relations of stability used are the
generalized Born stability criteria. For a tetragonal crystal under hydrostatic pressure, these
generalized criteria are:

C11 − P > 0 ; C44 − P > 0 ; C66 − P > 0

C11 − C12 − 2P > 0 ; (C33 − P )(C11 + C12)− 2(C13 + P )2 > 0 (15)

The violation of one or more stability criteria indicate that the structure under study is
mechanically unstable.

Another important fact related with the elastic constants is that they allow us to obtain the
bulk modulus of the system. We can use two approximations to obtain it: the Voigt [29] and
the Reuss [30] approximations.

BV =
1

9
(2(C11 + C12) + C33 + 4C13) (16)

BR =
(C11 + C12C33 − 2C2

13

C11 + C12 + 2C33 − 4C13
(17)

as well as others structural factors like compressibility factors, shear modulus, Young modulus
or Poisson ratio [31]. They are also related to the linear compressibilities of the lattice
parameters. For the tetragonal structure under study, the linear compressibilities are given by:

κa =
C33 − C13

C33(C11 + C12)− 2C2
13

(18)

κc =
C11 + C12 − 2C13

C33(C11 + C12)− 2C2
13

(19)

In Section 5 we will compare the results given for the linear compressibilities κa and κc obtained
from the fit of a and c against pressure and the ones given by the elastic constants as a method
of testing that the results are correct.
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4.3 Phonons

The vibrations induced on a crystal by moving the atoms from their equilibrium positions
are denominated phonons. At being displaced, the atoms suffer a recovering force that
makes them to vibrate at a certain characteristic frequencies. These vibrations determine a
great variety of physical properties of materials and, in some cases, they can be related with
phase transformations, specially the lower frequency modes. The appearance of an imaginary
frequency mode could indicate that the structure is dynamically unstable.

Considering an infinite periodic crystalline material with N unit cells and n atoms per cell,
we define the displacements of the j-atom in the L-lattice vector cell as:

ujL = rjL − r0,jL (20)

where r0,jL is the equilibrium position of the j-atom in the L-lattice vector cell. The static
energy of the crystal E is expanded on a Taylor series using these displacements:

E = E0 +
1

2

∑
jj′LL′

uTjLDjLj′L′uj′L′ + ... (21)

where E0 is the zero pressure static energy and DjLj′L′ the second derivative 3x3 matrix of the
energy with respect to the displacements:

(DjLj′L′)αβ =
∂2E

∂(ujL)α∂(uj′L′)β
(22)

where α and β correspond to the Cartesian coordinates (x, y and z). Notice that there is no
linear term because the static energy is minimum at equilibrium.

Making use of the harmonic approximation, we suppose that the atoms vibrate inside an
harmonic well around the equilibrium position and that these vibrations are small compared to
the interatomic distances. With this approximation, the Taylor expansion series is truncated at
second order and the movement equation for each atom sets as:

mjüjL = FjL =
∑
j′L′

DjLj′L′uj′L′ (23)

where mj is the j-atom mass and FjL the force over the atom at position jL. There exist one
equation for each Cartesian coordinate for each atom (3nN equations in total) and each of them
have one solution for the displacement in terms of planes waves:

ujL = εkνje
i(k·L−ωkνt) (24)

The displacement vector (εkνj) gives the propagation direction of the atomic displacements
wave and k represents the vectors of the first Brillouin zone. ν is the index that runs over the
possible solutions of k and goes from 1 to 3n. The atomic displacements wave (or its linear
combinations) is what is known as a phonon.

Substituting on the movement equation (Eq.23):

mjω
2
kνεkνj =

∑
j′

(∑
L′

Dj0j′L′eik·L’

)
εkνj′ (25)
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with L = 0 referring to the reference unit cell. Defining ηkνj as:

εkνj =
1
√
mj

ηkνj (26)

it allows us to define the matrix between brackets in Eq.(25) as:

Djj′(k) =
1

√
mjmj′

∑
L′

Dj0j′L′eik·L’ (27)

This way, this equation becomes:

ω2
kνηkνj =

∑
j′

Djj′(k)ηkνj′ (28)

where D(k) is the dynamical matrix (the collection of all the 3x3 n matrices in one 3nx3n
squared matrix). Transforming the dynamical matrix to the real space we get the constant
force matrix C(L)jαj′β :

C(L)jαj′β =
1

√
mjmj′

∂2E

∂(uj0)α∂(uj′L′)β
(29)

Joining all the atomic displacements in the displacement vector ηkν , one can put all the equations
in one unique eigenvalues equation:

ω2
kνηkν = D(k)ηkν (30)

where diagonalizing the dynamical matrix allows us to get the frequencies and the eigenvectors
of the phonons (ωkν and ηkν respectively). Eigenvectors are also known as the normal modes
or polarisation vectors. As the dynamical matrix is Hermitian (Dij = D∗ij), the squares of
the frequencies are real numbers and the eigenvectors of the phonons can be chosen as an
orthonormal set.

Using the previous theory, there exist two main Ab Initio methods to calculate the frequency
of the phonons: the frozen phonons method and the density functional perturbation theory
(DFPT) [32]. The method that we will use on this work will be the first one [3], despite the
fact that DFPT does not need the use of supercells. DFPT is based on the calculation of the
frequencies from the response of the system using perturbation theory.

The frozen phonons method calculates the frequencies from the energy differences or
the forces that appear on the atoms when they are slightly displaced from their equilibrium
positions a distance u. By making series of small displacements and calculating the total energy
and forces over the atoms, using the Hellman-Feynman theory, the interatomic force constants
and the dynamical matrix of the system are obtained. As mentioned before, diagonalizing the
dynamical matrix, one can get the frequency of the phonons. The displacement of the atoms
needs to be small enough so that the harmonic approximation were still valid, but no too small
for the energy change to be insignificant. The main problem of the frozen phonons method is
that it only allows to make calculations easily at the Γ-point (k=0). To be able to get results
in other points, this method needs the use of supercells.
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In our study, we will not include the study of the LO-TO splitting (it is possible to include
it using the Born effective charges and the dielectric constant in order to take into account the
effect of the electric field).

5 Results and Discussion

5.1 Overview of the simulation

Before starting the discussion of the results obtained in this work, it is important to shortly
remember all the aspects of the following simulations. The energy was obtained making use of
the Density Functional Theory (DFT) implemented in the Vienna Ab-initio Simulation Package
(VASP). The pseudo potentials were employed with the Projector Augmented Wave scheme
(PAW) [33]. The energy-volume curves, lattice parameters, linear compressibilities and elastic
constants were calculated using the Local Density Approximation(LDA) and, from the great
variety of Generalized Gradient Approximations (GGAs), the Perdew-Burke-Ernzeerhof (PBE)
approximation and its revised form for solids (PBEsol). In the case of phonons, due to the very
large time required by the computational calculations, we only use the PBEsol approximation
since it is the approximation which gives the better structural results.

The energy cutoff for the planewave basis was set in 400 eV and it was kept in this value for
all the following calculations. To consider that the structure is relaxed (optimized configuration)
difference between two consecutive steps was set in 10−6 eV for the energy and to 0.004 eV/Å
for the forces on the atoms. The maximum number of ionic steps was 100 for the structural
calculations. The integration on the Brillouin zone was performed with a grid of 30x30x30
k-special points obtained with the Monkhorst-Pack scheme [25]. For the calculation of the
elastic constants a grid of 6x6x6 kpoints was used with only one ionic step, since we do not have
to let the structure to relax if we want to calculate the elastic constants. The elastic tensor is
determined by performing six distortions of the lattice and deriving the elastic constants from
the strain-stress relationship [34]. For the calculation of the phonons, the convergence achieved
in energy was 10−7 eV to improve the accuracy of the results and we use 30 kpoints. These
convergence parameters were used after performing very careful convergence tests.

5.2 Structural Parameters

Thanks to the data provided by the literature, using the lattice vectors and the atomic positions
in the unit cell, we were able to simulate the structure at different pressures and volumes to study
the behaviour of the compound and to obtain the relaxed state at 0 GPa. We have simulated
the structure till a pressure of 12 GPa (approximately) in all three approximations (LDA, PBE
and PBEsol). To observe correctly the minimum in the energy-volume curve, negative pressures
have been simulated too. The points calculated are fitted with the Murnaghan equation of state
[35] to obtain the relaxed volume (V0), the bulk modulus (B0) and its first derivative (B′0).

We can see in Fig.3 a bigger concentration of calculated points around the minimum of
each curve to get a better adjustment at the minimum. We see that the energy range in which
the minimum is localised is quite similar for the PBE and PBEsol approximations, while the
LDA gives a more negative result. We can observe that the parabolic behaviour is only valid
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Figure 3: Energy of the system versus the volume of the unit cell in the three approximations for
the exchange-correlation energy (LDA, PBE and PBEsol). Points represent the values calculated
and the solid line the adjustment.

near the minimum, where the curves have a very parabolic form, but when we separate from
the minimum, the curve is wider by the right than from the left; i.e. more energy is needed to
compress the crystal than to stretch it. The values obtained for V0, B0 and B′0 compared with
the data of others authors are shown in Tab.1.

V0 (Å3) B0 (GPa) B′0

This work
LDA 377.479 67.099 4.361
PBE 413.898 50.472 4.228

PBEsol 390.773 59.947 4.260
Asokamani et al. [36] 390.44 59.86 -
Chahed et al. [37] 376.574 64.624 4.7017
Chen et al. [38] 411.39 50.7 5.02

Ouahrani et al. [39] 414.482 53.07 4.0076
Orlova et al. [40] 390.7 46 -

Table 1: Comparison of values of the volume (V0), bulk modulus (B0) and its derivative (B′0) at
zero pressure.

All of the data shown in Tab.1 have been obtained theoretically using different methods,
except the data of Orlova et al. [40] which were obtained by X-ray diffraction. We see that
results on AgGaSe2 are scarce. The theoretical methods used by the rest of the authors
are: Tight Binding Linear Muffin Tin Orbital method within Atomic Sphere Approximation
(TBLMTO-ASA) and LDA of Asokamani et al. [36]; Linear Augmented Plane-Wave plus local
orbitals (L/APW+lo) of Chahed et al. [37]; Perdew and Wang GGA (PW91) of Chen et al.
[38] and PBE96 of Ouahrani et al. [39]. Comparing data we observe that our PBEsol results
are almost exactly the same as the results of Asokamani (in the absence of B′0) and our PBE
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ones to the results of Chen, while with LDA we obtain results similar to Chahed. Ouahrani also
obtains similar results that us using PBE. The volume experimentally determined by Orlova is
the same as our volume with PBEsol, so we can say that in terms of lattice parameters, this
approximation gives the better structural results; however, his value for B0 is smaller than any
of our approximations.

Another fact that came to mind when looking this results is that the bulk modulus varies
significantly from one approximation to another, but all of them give results greater than the
experimental value. One possible reason for this is that the experimental results do not have
access to negative pressures. Besides, our three approximations give similar results for B′0,
similar also to the ones reported by others authors. Other results found on the literature that
have not been included on Tab.1 show these same characteristics. It is well known that many
experimental values of B0 are affected by the limited number of data and the assumption of a
fixed value for B′0.

One interesting fact with the I-III-VI2 chalcopyrites is that they show a linear relation
between the bulk modulus and the equilibrium volume [36], being this smaller for the bigger
compounds. This authors have also found that the melting point is related with the bulk
modulus, and thus with the equilibrium volume. The melting point increases with B0 following
a linear relation and it is bigger for the compounds with smaller volumes.

Studying the variation of the volume with pressure has allowed us to observe the behaviour
of the structural parameters under pressure. The curves presented in the Fig.4 correspond to
the PBEsol approximation. The calculation for the other two approximations were made too
and they show a similar behaviour.

Figure 4: Evolution of the lattice parameters a and c, and the internal parameter u under
pressure in the PBEsol approximation.

The behaviour of the parameters is the expected, a reduction of their values due to the
pressure induced, until reaching 8 GPa. From here, a becomes nearly constant and it suddenly
increases at 10 GPa. This behaviour matches with the change in the slope of c at the same
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pressure. We can see that the decrease of c is much more pronounced than that of a wich,
which indicates that the tetragonal distortion (c/2a < 1) becomes more important with
pressure. This change in the evolution of a and c with increasing pressure could indicate a
phase transformation. Arora et al. [41] reported in a Raman spectroscopy study that AgGaSe2
actually undergoes over 3 phase transitions on the range under study in Fig.4: at 3, 5.1 and
8.3 GPa respectively. Another posterior study made by Tinoco et al. [42] reported in a
X-ray absorption spectroscopy the same three transformations, but with small changes in the
pressures. From the chalcopyrite structure, stable at zero pressure, AgGaSe2 transforms to a
mixture of two phases (the initial chalcopyrite one and an unidentified α-phase) at 2.6 GPa.
Then, from 5 to 10 GPa, the structure becomes orthorhombic and finally, at 10 GPa, it
undergoes another phase transformation to a tetragonal structure. Observing with more detail
the Fig.4 we can see that the first transformation is inappreciable on the plots.

Although in the present work we do not study the evolution under temperature, it can be
pointed out that [43],[44] while the a-axis expands with temperature, the c-axis compresses
with almost the same thermal expansion coefficient.

The values for the relaxed structure at 0 GPa obtained by the simulation are compared in
Tab.2 with other authors data.

a0 (Å) c0 (Å) u0

This work
LDA 5.849 10.989 0.2742
PBE 6.057 11.234 0.2794

PBEsol 5.931 11.094 0.2762
Asokamani et al.[36] 5.985 10.901 0.272
Chahed et al. [37] 5.838 11.022 0.275
Chen et al. [38] 6.0529 11.210 0.2794

Ouahrani et al. [39] 6.0579 11.2943 0.2788
Sharma et al. [45] 5.91 11.24 0.275

Lazewski and Parlinski [46] 5.916 10.879 0.276
Orlova et al. [40] 5.9915 10.8831 -

Table 2: Structural parameters of AgGaSe2 at zero pressure.

It is worth noting that LDA tends to underestimate the results with respect to the other
approximations when we refer to the structural parameters. This underestimation makes that
the bulk modulus predicted by LDA were bigger that the PBE and PBEsol ones as it is shown
in Tab.1.

Again, as in Tab.1, the only experimental values of Tab.2 are those of Orlova [40]. As
many of the theoretical methods of these authors have already been mentioned in Tab.1, we
will indicate only the new ones: Sharma et al. [45] use the Wu-Cohen GGA approximation
and Lazewski and Parlinski [46] use a different type of approximation (Universal Force Field
(UFF)) which they claim is faster and simpler, and thus more convenient for bigger structures.
Comparing results, we observe that, as in Tab.1, the results of the Chahed are closer to our
LDA results, and the results of Chen and Ouahrani are similar to our PBE results. This time,
Asokamani do not obtain results so close to our PBEsol values. Sharma gets a a0 close to our
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PBEsol one but a c0 value more similar to our PBE result, while Lazewski and Parlinski get
values between our LDA and PBEsol results. The experimental results of Orlova et al. for c0
is between our values for PBE and PBEsol, but the a0 value is closer to our LDA approximation.

We can see the great variety of results, but it is also true that no author gives an extremely
different result. Focusing on u0, we see that the differences are very small between all the
approximations. As can be seen, our results are in very good agreement with the experimental
data, from which they differ only 1% or 2%.

5.3 Linear Compressibility

Studying the variation of the structural parameters with pressure (Fig.4), we can obtain their
linear compressibilities. We have adjusted the calculated points by the least squared method
and knowing that

κa = −1

a

∂a

∂P
; κc = −1

c

∂c

∂P
(31)

we have obtained the linear compressibilities. The results for the PBEsol approximation are
shown in Fig.5.

Figure 5: Linear compressibilities (in GPa−1) of the lattice parameters a and c of AgGaSe2
under pressure for the PBEsol approximation.

As mentioned before, the results for the LDA and PBE approximations were calculated
too and the PBEsol results are approximately in the middle of these results. We observe
in Fig.5 that the linear compressibility of a (κa) becomes negative when this parameter, a,
start to increase instead of decreasing with pressure. This also happens for the other two
approximations, occurring at a higher pressure (10 GPa) with LDA and at a slightly higher
pressure for PBE. We observe that κc decreases with pressure till 4 GPa; but, as we will see
later, at this pressure the chalcopyrite structure is unstable. This behaviour is also observed
with the LDA and PBE approximations.
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As for the variation of the internal parameter u with pressure (Fig.4), we fit it by least
squared to a polynomial (Fig.6). Polynomials of different order have been proven, but the best
adjustment is obtained with a third order polynomial: u = A+BP + CP 2 +DP 3. The values
for the coefficients of the adjustment equation are shown in Tab.3.

Figure 6: Adjustment of the theoretical values of u for the three approximations.

Approx. A B (GPa−1) C (GPa−2) D (GPa−3)
LDA 0.2742 -0.00024 0.000017 -0.0000004
PBE 0.2795 -0.00067 0.000051 -0.000002

PBEsol 0.2761 -0.00041 0.000035 -0.000001

Table 3: Values of the coefficients of the adjustment polynomial.

We observe that all three approximations have negative coefficients for the odd powers of
the pressure. The D-coefficient is very small, but we have included it because the adjustment to
a second order polynomial were not so good as this of third order. The errors of the coefficients
are omitted, but it is worth mentioning that they increase from A to D. However, the error for
D was inferior to 10%.

The values obtained for the linear compressibility can be compared with other results from
the literature in Tab.4.

We observe in Tab.4 that Sharma is the only one that gets a bigger compressibility for a
than for c. There is no explanation why it is this way, even when all experimental data and
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κa (GPa−1) κc (GPa−1)

This work
LDA 0.0041 0.0066
PBE 0.0057 0.0085

PBEsol 0.0044 0.0077
Sharma et al. [45] 0.0062 0.0055
Lazewski et al. [47] 0.0042 0.0077
Orlova et al. [40] 0.00608 0.01007
Fouret et al. [48] 0.0047 0.00732

Table 4: Values of the linear compressibilities at zero pressure compared with other authors.

other theoretical calculations give the opposite result (κa < κc). Both Sharma and Lazewski
obtain their results by theoretical calculation while Orlova and Fouret are experimental (X-ray
diffraction [40] and inelastic neutron scattering [48] respectively). Sharma uses the Wu-Cohen
GGA [45] and Lazewski a general GGA [47]. Comparing results, we see that both Fouret and
Lazewski obtain results which are really close to our PBEsol ones, Orlova gets results even
greater than us with the PBE approximation and the values of Sahrma are difficult to interpret:
its value for κa is bigger than any of ours while κc is smaller. Our PBEsol results are in very
good agreement with the experimental ones of Fouret et al.

The values in Tab.4 allow us to obtain the bulk modulus. It is defined as the inverse of the
total compressibility of the crystal (B0 = 1/κT ), where:

κT = 2κa + κc (32)

Using the linear compressibility of Tab.4, the bulk modulus obtained is: B0 = 67.568, 50.251
and 60.606 GPa, respectively for the LDA, PBE and PBEsol approximations. We observe that
these values are very similar to the values obtained by the fit of the energy-volume curves in
Tab.1.

5.4 Elastic Constants

Due to the tetragonal structure of AgGaSe2, the number of independent constants are reduced
by symmetry to only six: C11, C33, C12, C13, C44 and C66. We compare the values obtained
with our simulations for the elastic constants at 0 GPa with other theoretical and experimental
results in Tab.5.

On a first look to the Tab.5, the first thing that comes to mind is the great variety
of results that appear depending on the author and the approximation employed for the
exchange-correlation energy. All the data correspond to theoretical calculations, except for
the experimental ones of Fouret et al. [48] obtained via neutron scattering. This lack of
experimental values for the elastic constants could be due to the difficulty of growing crystals
of this compound [51]. As said before, Ouahrani et al. [39] use the PBE96 approximation and
Lazewski et al. [47] a general GGA. Karki et al. [49] use the common LDA approximation and
Verma et al. [50] use a different method: ionic charge theory. Comparing results of Tab.5 we
observe that most of the values of the constants of Ouahrani are closer to our PBE results,
except for C44 which is closer to LDA, and that the results of Lazewski et al. are more similar
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C11 C33 C12 C13 C44 C66

This work
LDA 91.009 81.765 62.543 60.290 26.584 32.410
PBE 70.624 62.303 44.536 43.802 23.495 26.765

PBEsol 82.318 71.330 55.645 53.049 22.714 29.162
Ouahrani et al. [39] 74.95 59.57 41.03 43.03 30.10 21.62
Lazewski et al. [47] 86.4 72.4 55.2 52.9 20.3 25.3
Karki et al. [49] 92 70 60 56 26 17
Verma et al. [50] 83.6 96.5 52.3 61.1 35.4 32.2
Fouret et al. [48] 80.1 70.7 51.6 52.6 21.2 24.7

Table 5: Values of the elastic constants (in GPa) comparing our results with other author’s data.

to our PBEsol ones. On the other hand, since Karki uses the LDA approximation is normal
that its results were more similar to our LDA results (except for C33, which is more similar to
PBEsol and C66, smaller than any of ours). The results of Verma et al. vary between our LDA
and PBEsol results. Finally, it is worth noting that Fouret et al. results are very similar to
our PBEsol ones. Again we can see that the PBEsol approximation is the one that gets closer
results to the experiments.

The values obtained for the bulk modulus using the values of the elastic constants in
Tab.5 (Eq.16,17) are: BV = 70.00, 51.981 and 62.161 GPa and BR = 69.616, 51.699 and
61.562 GPa, respectively for the LDA, PBE and PBEsol approximations. Comparing with the
values shown in Tab.1 we see that they are in good agreement. They are also quite similar to
the values obtained with the linear compressibilities. This proves the consistency and goodness
of our simulations.

Applying Eqs.18,19 to calculate the linear compressibilities at zero pressure given by the
elastic constants we obtain: κa = 0.0041, 0.0055 and 0.0043 GPa−1; κc = 0.0065, 0.0083
and 0.0076 GPa−1 respectively for LDA, PBE and PBEsol. The difference between these values
and the ones from Tab.4 are minimum.

The evolution of these constants with pressure for the PBEsol approximation is shown in
Fig.7 (the studies for LDA and PBE where made too, but they are omitted since the results are
similar for the three approximations).

We observe that the elastic constant C44 becomes negative at 2 GPa and suddenly turns
to positive again at 3 GPa. In the LDA approximation this negative pike happens between
2.5 and 3.5 GPa and with PBE between 3 and 3.5 GPa. This behaviour is related with the
fact that a pressure induced phase transition could occurs around 3 GPa and that it is the
elastic constant C44 the one that is involved, as noticed for Derollez et al. [52] and by Klotz
et al. [53] with neutron scattering. We will comment later on this transition. This transition
has been observed by other authors previously [41],[42],[54], but without specifying what it was
due to. One thing that was known is that this pressure of the first transition in the AgGaX2

chalcopyrite (X = S, Se, Te) decreases with the size of the anion [41]. The other features
observed in Fig.7 (values of the other constants, the crosses between constants and the change
of tendency over 10 GPa) are almost identical in all three approximations used.
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Figure 7: Evolution of the elastic constants with pressure for the PBEsol approximation.

Focusing on C44, we show in Fig.8 its evolution under pressure in the three approximations.

Figure 8: Evolution of the elastic constant C44 under pressure for the three approximations
studied (LDA, PBE and PBEsol from top to bottom).

If we plot the five Born stability criteria described on Eq.15 , the results are shown in Fig.9.

On the first plot, it does not exist any instability. Referring to the second plot, we can
see that the generalized stability criteria related to the elastic constant C44 is violated around
3 GPa. So the structure becomes mechanically unstable around this pressure, as reported by
Arora et al. [41] and Klotz et al. [53] found via neutron scattering. In the third plot, the region
of pressures under study does not show any instability; but, opposite to the first plot, if the
tendency keeps when increasing the pressure we can estimate an instability around 14 GPa for
the PBE and PBEsol approximations, and around 18 GPa for LDA. On the forth plot, the
instability happens at 9 GPa for the three approximations. Finally, on the fifth plot we also
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Figure 9: Representation of the five Born stability criteria.

observe an instability between 7 and 8 GPa depending on the approximation used. However,
the structure under study is mechanically unstable at pressures higher than 3 GPa, as the first
criteria violated is the one related with C44. A transition to another phase probably occurs,
but the determination of this poschalcopyrite phase is beyond the scope of the present work.

5.5 Phonons

As the primitive cell of AgGaSe2 has two formula per cell (8 atoms), there exist 24 degrees of
freedom which implies the existence of 21 optical modes. Group theory gives for the irreducible
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representation:

Γ = 1A1 + 2A2 + 3B1 + 3B2 + 6E (33)

where six of them are doubly degenerated (E). The A2 modes are silent and the rest are
Raman active, being the B2 and E modes also infrared active.

Phonons were obtained, like the elastic constants, with the three approximations (LDA,
PBE and PBEsol), but the following figures correspond only to the results of the PBEsol
approximation and the differences with the other two approximations will be explained after
the figures. The values at zero pressure, ordered from lower frequency to higher in the PBEsol
approximation, are compared with data from others authors in Tab.6.

Irr. Repr. This work K. et al.
[49]

L. and P.
[55]

F. et al.
[48]

C. et al.
[56]LDA PBE PBEsol

E (RI) 0.792 0.833 0.699 0.78 0.60 0.81 0.81
B2 (RI) 1.727 1.574 1.615 1.80 1.85 1.76 1.74 (1.74)
B1 (R) 1.858 1.673 1.755 1.83 1.81 1.62 1.74
E (RI) 2.452 2.305 2.354 2.64 2.49 2.40 2.52 (2.52)
E (RI) 4.238 3.719 4.017 4.35 4.22 4.10 4.11 (4.14)
B1 (R) 4.805 4.411 4.615 4.68 4.76 4.68 4.80
B2 (RI) 5.023 4.323 4.730 4.77 4.75 4.95 4.65 (4.83)

A2 5.086 4.402 4.803 4.91 4.73 4.68 -
E (RI) 5.331 4.491 5.004 5.01 5.03 4.80 4.86 (4.95)
A1 (R) 5.436 4.872 5.217 5.46 5.39 - 5.43
A2 6.046 5.598 5.895 6.45 6.15 6.25 -

B1 (R) 7.261 6.634 7.001 7.35 7.17 7.10 7.58
E (RI) 7.271 6.663 7.041 7.55 7.39 7.10 7.64
B2 (RI) 7.362 6.705 7.098 7.64 7.39 8.20 7.55 (8.24)
E (RI) 7.350 6.770 7.119 7.61 7.57 7.60 7.52 (8.30)

Table 6: Irreducible representation and frequencies (THz) of the phonons at 0 GPa. In the
first column, in brackets, Raman (R), infrared (I) or both (RI) active are indicated. In the last
column, in brackets, the frequencies of the experimental LO modes.

From the data of Tab.6, both Karki et al. [49] and Lazewski and Parlinski [55] use Ab
Initio methods with the LDA approximation. Fouret et al. [48] and Camassel et al. [56] data
correspond to experimental results (obtained by neutron scattering and by Raman scattering
respectively). Due to this, the values of Karki and Lazewski are more similar to our LDA
results; however, there are some modes whose frequency is closer to our PBEsol results. Again,
the experimental values of Fouret and Camassel vary between our results for the LDA and
the PBEsol approximations. There are a few things that worth noting on these results: using
Raman scattering allows one to distinguish the splitting LO-TO, but it do not show the silent
modes. The PBE approximation gives results of smaller energy for all the modes, except from
the acoustic mode, whose value is the biggest of the three. In this work we do not consider
the effects of the electric field due to charges transfer between atoms. Therefore, the LO-TO
splittings have not been calculated. In table 5 we show only the TO modes They compare quite
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well with the experimental results.

We have also studied the behaviour of the phonons at the Γ-point with pressure using the
primitive cell till a pressure of 12 GPa.

Figure 10: Pressure evolution of the AgGaSe2 phonons for the PBEsol approximation.

It can be seen in Fig.10 that phonons can be grouped in different energy bands. First,
with almost identical energy at zero pressure, we have 4 modes in the zone of high energy
(1B1 + 1B2 + 2E) that slowly separate from each other when the pressure increases. In the
intermediate region, we have 7 modes (1A1 + 2A2 + 1B1 + 1B2 + 2E) where one of the
A2 modes is a bit more energetic than the others in all the range under study and the other
modes intersect each other with increasing pressure. Finally, in the lower energy region, there
are 4 modes (1B1 + 1B2 + 2E) which, opposite to the other modes, decrease in frequency
increasing with pressure. There also are three acoustic modes (B2 + E) whose frequency is
always very close to zero.

We see that the most important feature in Fig.10 is that one of the phonons (with
irreducible representation E) suddenly becomes negative around 2.5 GPa. Therefore, this
indicates the chalcopyrite structure of AgGaSe2 is dynamically unstable at pressure higher than
approximately 2 GPa. This also happens for the LDA and PBE approximations at 3.5 GPa
in both of them. This fact was also observed by Klotz et al. [53] experimentally on neutron
scattering. This softening of the E mode is related with the behaviour of the elastic constant
C44, which becomes negative at the same pressure. The rest of aspects (tendency of the curves
and crosses between phonons) happens approximately at the same frequencies for the other two
approximations. Just to comment, the frequencies given by the LDA approximation are a bit
higher that the ones given the PBEsol and that with the PBE, it happens the opposite, they
are a bit smaller, but the difference does not overcome 0.5 THz approximately.

Using a supercell 2x2x2 we have calculated the phonon dispersion curves inside the first
Brillouin zone till a pressure of 3 GPa. The path followed has been: Γ-X-P -N -Γ-M (Fig.11).
This path has been chosen following [57],[58]. We have also obtained the total density of states
(TDOS) and partial density of states (PDOS). These calculation were made only for the PBEsol
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approximation due to the great time cost of the process.

Figure 11: Phonon dispersion curves inside the first Brillouin zone at 0 GPa for the PBEsol
approximation.

Figure 12: TDOS (left) and PDOS (right) at 0 GPa for the PBEsol approximation.

In this work we do not consider the effects of the electric field due to charges transfer
between atoms. Therefore, the LO-TO splitting have not been calculated, however as shown by
Lazewski and Parlinski [46], this splitting is very small. There are some differences between this
work and our PDOS at 0 GPa: first, the high and intermediate bands of modes have greater
frequencies in their work and, while the higher band at the Γ-point which they obtain is more
splitted than ours, their intermediate band is more compact; and second, in our work there
exist a gap without modes (that can be seen in Fig.12 above 6 THz) which does not appear in
their work. However, these differences are smaller when we compare with a posterior work of
the same authors [55]. In that work we observe that the gap appears and that the frequencies
are smaller and very similar to ours (only the higher band is still more energetic, but it can be
due to the LDA approximation they use that continuously give bigger results that the PBEsol
one).

27



The only experimental data found on the literature referring to phonon dispersion curves
are from Fouret et al. [48]. Although, they also obtain higher frequencies for the top band,
our results are in good agreement with the experimental ones. It is known that at higher
pressures, experimental and theoretical data differ more, since the difference between then is
approximately 5 %.

Looking at Fig.12, we see that the contribution of the Ag-atoms to the higher frequency
band is null, due to its higher mass, and that the contribution of the Ga and Se atoms is
similar. In the lower frequency band, contrarily, the Ag-atoms are the ones who contribute the
most to this band. In the intermediate band, there exist a transition from the low range, where
all the atoms contribute the same, from the high range where the Se-atoms dominate.

The calculation of the dispersion curves inside the first Brillouin zone have also been
done at a pressure of 3 GPa with the PBEsol approximation (Fig.13). At this pressure,
both the C44 elastic constant (Fig.9) and the E-mode phonon (Fig.10) show that the crystal
structure is unstable and AgGaSe2 should have suffer a phase transformation according to
[41],[42],[52],[53],[54].

Figure 13: Phonon dispersion curves inside the first Brillouin zone at 3 GPa.

The first difference easily observable between the dispersion curves at 0 and 3 GPa is that
one of the modes is negative at the Γ-point (See Fig.13). This may be due to two things: the
structure is unstable or numerical errors. We can discard the numerical error because if this
were the cause, and the 2x2x2 supercell were not big enough to certainly obtain the dispersion
curves, this problem would have appeared in the dispersion curve at 0 GPa too; but here this
problem does not exist. So we can attribute these imaginary frequencies to the fact that the
structure is indeed dynamically unstable. Otherwise, the rest of the dispersion curves are very
similar, with the only difference that the frequencies of the intermediate and high energy bands
are a bit bigger at 3 GPa than at 0 GPa. However, this is completely normal since the modes
increase their frequency with pressure, as shown in Fig.10. The frequencies of the low energy
band should be smaller at 3 GPa, but this difference is more difficult to appreciate it, the slope
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of the change of frequency with pressure for this phonons in Fig.10 is lower for this band than
for the intermediate and high energy ones.

Figure 14: Total phonon density of states (left) and partial phonon density of states (right) at
3 GPa.

Studying the phonon density of states at 3 Ga in Fig.14 we see that the differences
with the density of states at 0 GPa (Fig.12) are tiny. The contributions of the different
atoms is exactly the same, but worth noting that at 3 GPa, the densities of the low and
intermediate bands are smaller and for the high energy band is higher. We can explain this
facts for three reasons: the low band "loses" one mode, which now has negative frequency,
which decreases the density of states; both the low and intermediate bands are a bit wider
at 3 GPa and thus the frequency at a determined frequency is smaller; the opposite happens
with the high energy band, which is narrower at 3 GPa and thus the states are more concentrate.

6 Conclusion

We have seen the great importance of the Ab Initio methods to obtain theoretically the
diverse properties of a material. Using elaborated and well tested approximations, these kind
of methods allow to simulate the experimental results, which in some cases are complicated
to obtain, with great accuracy. The material under study (AgGaSe2) has shown its utility
in many possible applications thanks to the unique characteristics that provides the fact of
having a chalcopyrite structure. We have made a complete study of the structural, elastic and
vibrational properties under pressure, observing the pressures at which the phase transitions
happen and what mechanisms are involved.

Of the three approximations used (LDA, PBE and PBEsol), this last one has proven to give
results closer to the experimental values for the volume at zero pressure and for the structural
parameters of the lattice (Tabs.1,2). We have seen that the LDA approximations leads to an
underestimation of the lattice parameters and thus to an overestimation of the bulk modulus.
The first derivative of the bulk modulus (B′0) has similar values with the three methods.

The linear compressibilities show that the c-axis is more compressible than the a-axis
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(Fig.5). The values obtained for the bulk modulus using the linear compressibilities agree with
the ones obtained by the adjustment of the equation of state. These also happens with the
elastic constants, whose value for the bulk modulus and for the linear compressibilities are
almost exactly to the ones previously obtained. We have studied the evolution of the internal
parameter u fitting to a third order polynomial (Fig.6) obtaining the coefficients shown in Tab.3.

The values at zero pressure of the experimental elastic constants are between our LDA
and PBEsol values (Tab.5). We have observed that it is the C44-constant which is involved in
the phase transition around 2.5 GPa (Fig.8). The violation of the generalized Born stability
criteria for the elastic constant C44 indicates that the chalcopyrite structure of AgGaSe2 is
dynamically unstable at higher pressures.

Finally, we have obtained the frequencies of the phonons that characterise the vibrations of
the crystal structure and we have compared them, with great agreement, with other available
data (Tab.6). The evolution of the frequencies of the phonons at the Γ-point has shown that one
of the E-modes becomes imaginary around 2.5 GPa (Fig.10) indicating that the chalcopyrite
structure of AgGaSe2, apart from mechanically, is also dynamically unstable. The dispersion
relation and the total and partial density of states inside the first Brillouin zone were also
obtained and the contribution of each atom is discussed at 0 and 3 GPa (Figs.11-14) and we
compare the phonon dispersion, TDOS and PDOS for an stable and an unstable case.
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