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“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d
better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy.”

— Richard P. Feynman, Simulating Physics with Computers [Fey82]
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Abstract

Quantum Computation: Theory
and Implementation at IBM Q

This end of degree project constitutes an introduction to Quantum Compu-
tation. It presents a combination of theoretical concepts, mainly based in the
guidelines of “Quantum Computation and Quantum Information” of Michael
A. Nielsen & Isaac L. Chuang [NC02], and the implementation of some of
them at IBM’s online quantum computers [ibm18]. The aim is therefore to
realize a first approach to some basic concepts of Quantum Computation and
Quantum Information and put them in practice. Particularly, after the intro-
duction of qubits and essential ideas about entanglement and multiple qubit
states, the 14-qubit quantum computer IBM Q Melbourne was employed to
generate both Bell and GHZ states. After that, a quantum/classical hybrid
algorithm known as Variational Quantum Eigensolver (VQE) [Com16] was
introduced as a crucial tool for the next two targets of the project. The first
of them consists on exhaustively analyzing and solving an optimization prob-
lem named Exact cover problem [Gal17]. The second one relates to find the
ground state of a bidimensional Ising model and study the evolution of bipart-
ite entanglement, as measured by the von Neumann entropy, in the approach
of the system to its ground state.

Keyword: Quantum computation, Variational Quantum Eigensolver (VQE),
Exact cover, Ising model, Entanglement entropy.
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Resumen

Quantum Computation: Theory
and Implementation at IBM Q

El presente trabajo de fin de grado constituye una introducción a la Com-
putación Cuántica. En él se presenta una combinación de conceptos teóricos,
basados principalmente en las directrices del libro “Quantum Computation
and Quantum Information” of Michael A. Nielsen & Isaac L. Chuang [NC02],
y la implemantación de algunos de ellos en los ordenadores cuánticos de
IBM disponibles en la nube [ibm18]. El objetivo del proyecto es, por tanto,
realizar una primera aproximación a algunos de los conceptos básicos de la
Computación Cuántica e Información Cuántica y ponerlos en práctica. En
particular, tras introducir el concepto de cúbit y las ideas esenciales sobre en-
trelazamiento y estados formados por multiples cúbits, el ordenador cuántico
de 14 cúbits IBM Q Melbourne fue empleado para generar estados de Bell
y GHZ. Tras esto, se introdujo un algoritmo hı́brido clásico/cuántico cono-
cido como Variational Quantum Eigensolver (VQE) [Com16], el cual es una
herramienta fundamental a la hora de cumplimentar los siguientes dos obje-
tivos del proyecto. El primero de ellos consiste en el análisis exhaustivo y la
resolución de un problema de optimización conocido como Exact cover prob-
lem [Gal17]. El segundo se fundamenta en encontrar el estado fundamental de
un modelo de Ising bidimensional y estudiar la evolución del entrelazamiento
bipartito, medido mediante la entropı́a de von Neumann, en la evolución del
sistema hacia el estado fundamental.

Palabras clave: Quantum computation, Variational Quantum Eigensolver
(VQE), Exact cover, Ising model, Entanglement entropy.
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Preface

This work carried out by the undergraduate Javier Galván Fraile constitutes
his Final Degree Project at the Physics degree of the University of La Laguna.
It has mainly been developed at the Fundamental Physics Institute (CSIC,
Madrid) under the framework of a JAE Intro 2018 scholarship and the ment-
oring of Dr. Juan José Garcı́a Ripoll. This scholarship consist of 300 hours of
research stay and was fulfilled between February and April. Also mentoring
of Dr. Daniel Alonso Ramı́rez has been received while being in the island.
During the stay at the center, an introduction to quantum computation and
quantum information was undertaken, as well as a brief study of some applic-
ations of these technologies like solving optimization problems and improv-
ing the performance of Machine Learning techniques. For this purpose, the
IBM’s open-source framework for quantum computing, Qiskit, was employed
and all the work developed in several Jupyter Notebooks is available at Github
[GF19]. In the same way, the 55 hour course “Machine Learning” of the Uni-
versity of Standford taught online at Coursera [Ng16], was accomplished with
success. Moreover, many bibliography was explored with particular interest
in “Quantum Computation and Quantum Information” of Michael A. Nielsen
& Isaac L. Chuang [NC02]. Therefore, the aim of this project is an educated
introduction to quantum computation and quantum information theory.
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También quiero agradecer al Catedrático Daniel Alonso Ramı́rez por haberme
orientado y aconsejado desde su experiencia, despertando en mı́ el interés por
la investigación. No sabe lo importante que ha sido para mı́ en estos años de
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Chapter 1

Global overview and state of art

Abstract

In this chapter, a brief introduction to the idea of quantum computation
and quantum information is given within the view of Michael A. Nielsen
& Isaac I. Chuang [NC02]. It is stated that the birth of quantum compu-
tation and quantum information can not be understood from the evolu-
tion of just one field, but certainly as a communion of several branches
of science. In this sense, a quick review over the historical evolution of
main related fields is presented just to place the reader in the context
of the development of fundamental quantum computation and quantum
information concepts. Also, current state of art is provided, as well as
the main applications of the field.

Resumen

En este capı́tulo se proporciona una breve introducción al concepto de
computación cuántica e información cuántica desde la visión de Mi-
chael A. Nielsen & Isaac I. Chuang [NC02]. Es un hecho que el nacimi-
ento de la computación cuántica e información cuántica no puede ser en-
tendido desde la evolución de un único campo, sino como la comunión
de ideas de diferentes ramas de la ciencia. En este sentido, se presenta
un breve repaso de la evolución histórica de los principales campos con
el fin de situar al lector en el contexto del desarrollo de los principales
conceptos de la computación cuántica y la información cuántica. Asi-
mismo, se describen el estado del arte y las principales aplicaciones del
campo.
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CHAPTER 1. GLOBAL OVERVIEW AND STATE OF ART

Quantum computation and quantum information is defined as the study of
information processing tasks that can be accomplished using quantum mech-
anical systems [NC02]. To gain some insight into the fundamental ideas of
quantum computation and quantum information and how did they arise, is
not possible just to focus on one science field, but in the collaborative en-
vironment established between diverse branches such as computer science,
quantum mechanics, information theory and cryptography. A brief overview
of the historical evolution of them will allow us to get an overview of the need
of quantum computation and quantum information.

In the early nineteenth century, during the Industrial Revolution, the baptized
as the first programmable computing device was designed by Charles Bab-
bage, inspired in the work of J. M. Jacquard. This British mathematician and
engineer devised the Difference Engine (1812), which calculated tables of
operations applying the difference method. This machine is recognised as the
first prototype of current calculators. He also designed the Analytical En-
gine (1816-1871) which was programmable to realize desired calculations.
These machines worked with information stored in punched cards and re-
turned results with the same format, constituting one of the first approaches
to bits concept1 and assembly language. Years later, another notoriously ad-
vanced mechanical machine was designed by Herman Hollerith to tabulate
data for the 1890 census. Hollerith’s company gained popularity and years
later it merged with a competitor to found the corporation lately named as In-
ternational Business Machines (IBM) [Ade48]. All these preliminary efforts
of developing the first programmable machine concluded with the publication
of On computable numbers, with an application to the Entscheidungsproblem
by a brilliant mathematician named Alan Turing [Tur37]. In this paper Turing
proved that it can not exist an algorithm able to solve the decision problem
(German: Entscheidungsproblem), posed by David Hilbert and Wilhelm Ack-
ermann in 1928 as:

Given a statement of a first-order logic defined by a finite set of
axioms, is there an algorithm that can decide whether the state-
ment is true or false?

In this publication he introduced the concept of Turing machine, an abstract
notion of what we know as programmable computer. The Turing machine
mathematically models a machine that operates on an infinite memory tape
which is divided into discrete cells. In each cell may be written either a
symbol or a white space. The machine has a tape head in a specific internal
state which is positioned over a cell. Then, it reads the symbol, writes a new

1Although punched cards were developed by J. M. Jacquard in 1804, the modern concept
of bit as a logarithmic measure of information was introduced by Claude E. Shannon [Sha48].
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CHAPTER 1. GLOBAL OVERVIEW AND STATE OF ART

one, changes its state (or not) and moves one place to the right or left. Con-
sequently, programming a Turing Machine consist in giving the machine the
set of instructions associated to each possible situation. This machine com-
pletely captures what it means to perform a task in the algorithmic sense. That
is, if an algorithm can be ran on any hardware device, then there is an equi-
valent algorithm for a Universal Turing Machine that performs exactly the
same task. This assertion is known as Church-Turing thesis and it establishes
an equivalence between the physical concept of what kind of algorithms can
be performed on a physical device with the concept of Universal Turing Ma-
chine. The results of Turing’s work are considered the origin of computer
science from a theoretical perspective. Shortly afterwards, John von Neu-
mann developed a computer architecture fully as capable as Universal Turing
Machine [VN93]. Subsequent works came up with a strong Church-Turing
thesis:

Any algorithmic process can be simulated efficiently using a prob-
abilistic Turing machine.

Note that efficiently means that the algorithm runs in polynomial time in
the size of the problem solved. Motivated by this assertion, in 1985 David
Deutsch looked for a physical theory to provide a foundation for the Church-
Turing as solid as the physical theory. As a result, Deutsch tried to define a
computational device capable of simulating efficiently an arbitrary physical
system. This device must be ruled by the principles of quantum mechanics
as law of physics are ultimately quantum mechanical. Even though it have
not been proved yet that Deutsch’s notion of a Universal Quantum Computer
is sufficient to efficiently simulate any physical system, it opens the question
of whether a quantum computer can solve problems which have no efficient
solution in a probabilistic Turing machine. Further investigations culminate
in 1994, when Peter Shor proved that the problem of finding the prime factors
of an integer and the discrete logarithm problem could be solved efficiently
on a quantum computer. This led to the quantum Church-Turing thesis:

A quantum Turing machine can efficiently simulate any realistic
model of computation.

being the quantum Turing machine a quantum analog of the Turing machine
proposed by Deutsch.

Since the development of the transistor in 1947, computer hardware has grown
in power at the same rate as the number of transistors in an integrated circuit,
doubling its power every two years (the well known Moore’s law). Never-
theless, this astonishing pace will take to the end in the following years as
engineers can not control electron’s flow (due to quantum tunneling) at the

3



CHAPTER 1. GLOBAL OVERVIEW AND STATE OF ART

nanometric scale that transistors have reached (silicon limit). One way to face
this challenge is to move to a different computer paradigm provided by the
theory of quantum computation. Moreover, quantum computers offer a re-
markable speed advantage over classical computers.

Alongside with development of the twentieth century computer science, a
new conception of the world jumped onto the stage. Wilhelm Wien and Lud-
wig Boltzmann studies on the black-body radiation, the photoelectric effect
explanation by Albert Einstein, the atomic theory by Niels Bohr and Ern-
est Rutherford; and other quantum phenomena led to a new interpretation of
the tiny and cold physics systems. In the mid-twenties, the explanation of all
this phenomena resulted in the creation of quantum mechanics, which can be
defined as a mathematical framework for the construction of physical theor-
ies. One of the main goals of quantum computation and quantum informa-
tion is to gain some transparency over the counter-intuitive nature of quantum
mechanics. In this sense, some success have been achieved, for example, with
the no-cloning theorem (1982) which states that it is not possible to clone an
unknown quantum state. Notice that, if cloning is achievable, it would be pos-
sible for signals to travel faster than light. Besides that, many advances have
been done in obtaining complete control over single quantum systems. These
advances are essential in order to exploit the power of quantum mechanics in
quantum computation and quantum information applications [Car00].

At the same time computer science and quantum mechanics were rising, an-
other revolution was taking place in the field of communication. In 1948
Claude Shannon defined mathematically the concept of information and proved
two fundamentals theorems of information theory: the noiseless channel cod-
ing theorem and the noisy channel coding theorem, which gives an upper limit
to the correction provided by error-correcting codes. The irruption of quantum
mechanics led to creation of the quantum information theory, and in 1995 Ben
Schumacher came up with the formal definition of a ’quantum bit’ or ’qubit’
as a tangible physical quantity [Sch95]. Besides, a theory of quantum error-
correction has been developed and it allows quantum computers to compute
effectively in the presence of noise.

Finally, cryptography is the practice and study of techniques for secure com-
munication in the presence of third parties [ASM12]. Its main challenge is
how to safely distribute the keys that allow to decrypt the messages sent. In
this sense, quantum mechanics can be used to ensure security between emitter
and receiver due to the basic principle that observation disturbs the system.
Consequently, if a third party tries to “listen” to the signal containing the key
the emitter and receiver will notice, throwing away the “contamined” bits and
starting over.

4



CHAPTER 1. GLOBAL OVERVIEW AND STATE OF ART

Between the various disciplines in which quantum computation can suppose
a great advance, Machine Learning (ML) stands out . This branch of compu-
tational algorithms focus in designing algorithms that emulate human kind of
thinking in the way that they learn from the “surroundings” [ENM15]. To per-
form a specific task these algorithms learn from a given dataset, which means
that they look for patterns, and then predict over a test set. Several types of
ML algorithms are known since the ’90s2 such as multivariate regression and
neural networks. However, they demand great computational power so it has
not been until the evolution of modern computers when they have become
a great commotion and fruitful field of research. Their applications cover a
range that goes from computer vision to finances and medicine.

After all the aforesaid, it is clear that quantum computation emerges as a
worthwhile field of study. The current idea of quantum computation is due to
Paul Benioff, who in 1981 suggested to work with quanta instead of electric
voltages. Later works proved the viability of designing quantum computers
and many companies ventured in the quantum computing race. Among these
companies, IBM is the one which has obtained more fruitful results. In 2017
IBM presented the model of a 49 qubit quantum computer whose simula-
tion power overcome today’s existing supercomputers [PGN+17]. Moreover,
IBM has launched a project named as IBM Q which is pioneer in provid-
ing quantum computing service available in the cloud for everyone, including
a 20 qubit quantum computer [Fer18]. Nevertheless, quantum computation
still have to face some obstacles such as quantum decoherence, which forces
quantum computers to work with really low temperatures (∼ mK) to keep
reasonable coherence times. Also minimizing the interference between qubits
in small quantum chips is an open problem.

2We all remember how an IBM computer, named Deep Blue, beat world chess champion
Garry Kasparov in 1997 by using machine learning techniques [Pan97].
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Chapter 2

Introduction

Abstract

In this chapter, the main building blocks of quantum computation and
quantum information are studied. First of all, the qubit is defined and
its principal properties are outlined, as well as the fundamental single
qubit quantum gates. Once single qubits are understood, attention will
be focused in multiple qubit system and its main gates and features,
with special interest in entanglement. Finally, the concepts of quantum
computer, quantum simulator and quantum circuits are introduced. With
these fundamentals, quantum circuits for creating both Bell and GHZ
states are designed and executed in a quantum simulator and in a 14-
qubit IBM quantum computer named IBM Q Melbourne [ibm18]. Fi-
nally, the results are analyzed and the principal error sources are de-
scribed.

Resumen

En el presente capı́tulo se estudian los pilares sobre los que se asientan
la computación cuántica y la información cuántica. En primer lugar se
define el concepto de cúbit ası́ como sus propiedades y las principales
puertas lógicas cuánticas de un cúbit. Una vez se han comprendido los
cúbits, la atención se centrará en sistemas de varios cúbits, analizando
sus caracterı́sticas y puertas lógicas esenciales, con especial interés en la
noción de entrelazamiento. Finalmente, se introducen los conceptos de
ordenador cuántico, simulador cuántico y circuito cuántico. Con estos
cimientos se procede a diseñar circuitos cuánticos capaces de generar
estados de Bell y GHZ. Estos circuitos son ejecutados en un simulador
cuántico y en un ordenador cuántico de 14 cúbits de IBM denominado
IBM Q Melbourne [ibm18]. Los resultados son analizados ası́ como las
principales fuentes de error.
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CHAPTER 2. INTRODUCTION

2.1 Quantum bits
2.1.1 The Qubit
The main advantage of quantum computation over classical computation lies
in the power of qubits over bits. But, what is a qubit? A qubit is basically,
a quantum system consisting of two levels, which we will label as |0〉 and
|1〉. According to this, many different types of physical systems can be used
as qubits: atomic orbitals, photon polarization, spin of 1/2 spin fermions,
etc.1 Nevertheless, in this project we will treat qubits as mathematical ob-
jects without concerning about their physical implementation [Vaz12].

As we already know, the classical bit of information have two possible states
- either 0 or 1 - just as the qubit - either |0〉 or |1〉. However, the qubit can
be in many more states, specifically in a superposition of both |0〉 and |1〉.
Therefore, it can be represented by a two-dimensional vector space over the
complex numbers, C2, where the widely used basis is the computational (or
standard) basis: {|0〉, |1〉}. In Dirac notation, the state of a qubit is given by:

|ψ〉= α|0〉+ β |1〉, α,β ∈ C. (2.1)

with |α|2 + |β |2 = 1. Making a measurement on the qubit usin the standard
basis yields 0 with probability |α|2 or 1 with probability |β |2, according to
Born rule, and give us the classical bit of information. Besides, the normal-
ization condition just mentioned provide us a geometric representation of the
qubit state. Notice that the qubit state can also be written as:

|ψ〉= cos(θ/2)|0〉+ eiϕ sin(θ/2)|1〉 (2.2)

where 0 ≤ ϕ < 2π and 0 ≤ θ ≤ π . Equation (2.2) characterizes the state of
the qubit within a global phase factor which turns out to have no observable
effect. The parameters θ and ϕ define a one-to-one correspondence between
qubit states (C2) and the points on the surface of a unit sphere (R3). This
sphere, known as Bloch sphere (see Figure 2.1), provides a useful visualiza-
tion of the state of a single qubit, but has no generalization for the multiple
qubits case.

1IBM Q quantum computers uses a physical type of qubit called superconducting trans-
mon qubit, which is made from superconducting materials such as niobium and aluminium,
patterned on a silicon substrate [IR17].

7



CHAPTER 2. INTRODUCTION

Figure 2.1: Bloch sphere representation for a qubit [NC02].

2.1.2 Single qubit gates
In the same way classical computers perform operations over bits by logic
gates, quantum computers change qubit states by the use of quantum gates.
If we restrict ourselves to the case of one qubit system, quantum gates can be
described by two by two matrices. Nevertheless, not every two by two matrix
is valid to represent an evolution of the quantum system, this transformation
must be unitary, and therefore reversible:

|ψ ′〉= U |ψ〉, U†U = 1 (2.3)

Since a unitary transformation represents a rotation of the Hilbert space, the
state vector length does no change and the new state remain in the Bloch
sphere. Therefore, the most general quantum gate must be able to take a qubit
from |0〉 to the general state mentioned before (2.2). Thus, the matrix repres-
enting this general quantum gate would be:

U3(θ ,ϕ,λ ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) ei(λ+ϕ) cos(θ/2)

)
(2.4)

From the general gate (2.4) every single qubit gate can be obtained. Particu-
larly, the following ones:

• Measurement. This operation converts a single qubit state into a prob-
abilistic classical bit.

• Paulis gates (X, Y, Z). These are the simplest quantum gates and their
mainly action is to perform a half rotation of the Bloch sphere around
the x, y and z axes respectively (see Figure 2.2).

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(2.5)

8



CHAPTER 2. INTRODUCTION

Notice that gate X is basically the classical NOT gate (or bit-flip):
X |0〉 = |1〉 and X |1〉 = |0〉; just as the Y gate, which also adds a phase
shift. Meanwhile, Z gate leaves |0〉 unchanged and flips the sign of |1〉.

(a) X gate. (b) Y gate. (c) Z gate.

Figure 2.2: Bloch sphere representation for Pauli gates [Ram18].

• Hadamard gate (H). This is the main quantum gate in order to generate
superposition states. Its matrix representation is given by:

H = U3(π/2,0,π) =
1√
2

(
1 1
1 −1

)
(2.6)

Notice that this gate turns a |0〉 state into |+〉 = (|0〉+ |1〉)/
√

2), and
turns a |1〉 state into |−〉= (|0〉−|1〉)/

√
2). In the Bloch sphere picture

it can be viewed as a rotation of the sphere about the y axis by 90◦,
followed by a rotation about the x axis by 180◦(see Figure 2.3).

Figure 2.3: Bloch sphere representation for a Hadamard gate [Ram18].
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CHAPTER 2. INTRODUCTION

2.2 Multiple qubits
Let us consider now a quantum system formed by n qubits. The vector space
associated to this system is the tensor product of the n single qubit vector
spaces and, consequently, has dimension 2n, denoted as C2n

. Therefore, the
computational basis of the system, given by {|a0〉 ⊗ |a1〉 ⊗ ...|an−1〉 : ai ∈
{0,1}}, presents an exponential growth in its dimension with the number of
qubits. Consider as an example a classical computer with n-bits. It presents
2n possible configurations but, at any point of time, the computer state is in
one and only one configuration. In a single operation the classical computer
takes a n-bit number, manipulates it, and outputs a n-bit number. Moreover,
a quantum computer also takes a n-bit number as input and outputs a n-bit
number but, due to superposition, the intermediate state requires 2n complex
numbers to be described, providing an astonishing computational power2.

2.2.1 Entanglement
Just as in the case of single qubit systems, multiple qubit systems present the
superposition property. Furthermore, this multiple qubit superposition states
can exhibit another quantum property: entanglement. Consider two quantum
systems A and B, with Hilbert spaces HA and HB, respectively. If the state
|ψ〉AB of the composite system can be written in the form:

|ψ〉AB = |φ〉A⊗|φ〉B (2.7)

where |φ〉i ∈ Hi is the state of system i, then the state is called product (or
separable) state3 . If the state is not separable, it is known as an entangled state.
In an entangled state, the whole system is in a definite state, even though
its parts are not. Observing one of two entangled particles makes it behave
randomly, but tells the observer exactly how the other particle would act if
a similar observation was made on it. It must be pointed out that entangle-
ment implies a correlation between individually random behaviours of the
two particles, and thus it can not be used to send a message, as it is some-
times wrongly thought.

2Even though superposition is computationally stronger than classical computation, it
is actually weaker than massive parallelism, which means having an army of 2N classical
computer working on the problem at once.

3Within the physics community, the qubits of a multi-qubit systems are typically ordered
with the first qubit on the left-most side of the tensor product and the last qubit on the right-
most side. This enables easy conversion from bitstrings to integers after measurements are
performed.
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CHAPTER 2. INTRODUCTION

2.2.2 Bell and GHZ states
Among all the possible entangled states for a two qubit system, the Bell states
are the simplest with maximum entanglement. They constitute a basis of the
four-dimensional Hilbert space of two qubits. They are given in term of the
computational basis by:

|Φ+〉=
1√
2

(|00〉+ |11〉) |Φ−〉=
1√
2

(|00〉− |11〉)

|Ψ+〉=
1√
2

(|01〉+ |10〉) |Ψ−〉=
1√
2

(|01〉− |10〉).
(2.8)

The maximum entanglement property of these states lead us to an indispens-
able tool of quantum computation and quantum information. To illustrate this,
consider a two qubit system in the Bell state |Φ+〉. If we measure the first
qubit in the computational basis we would obtain a perfectly random out-
come: either 0 or 1, both with probability 1/2. However, if then we measure
the second qubit, we would obtain the same outcome as for the first qubit,
showing a perfect correlation between both qubits. One interesting property
of Bell state |Φ+〉 is that the particular correlation between the measurement
outcomes on the two qubits holds true in every basis. The understanding
and implementation of Bell states turns out to be essential in the analysis
of quantum communication (superdense coding) and quantum teleportation
[Vaz12][NC02].

If we consider quantum systems with more than two qubits we may come
up with GHZ states (or “Schrödinger cat states”) which constitute a “gen-
eralization” of the Bell states. They were first studied in 1989 by Greenber-
ger, Horne, and Zeilinger [GHZ89], who gave them its name. Basically, these
states constitute a quantum superposition of all the qubits being in state |0〉
with all of them being in state |1〉:

|GHZ〉=
|0〉⊗n + |1〉⊗n

√
2

(2.9)

2.2.3 Multiple qubit gates
In the same way as classical computation uses multiple bit logical gates,
quantum computation also have multiple qubit quantum gates. They are unit-
ary transformations specified by a 2m×2m matrix, where m is the number of
qubits involved in the operation. For our purpose, we will consider only two
different multiple qubit quantum gates:

• Controlled Not (CNOT). This gate acts on two qubits: the control
qubit and the target qubit. Its modus operandi is the following: the con-
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trol qubit does not change, meanwhile the target qubit flips if and only
if the control qubit is 1.

Figure 2.4: CNOT gate representation [LZH19].

• Toffoli (CCNOT). Also known as “controlled-controlled-not” gate, it
acts on three qubits: two control qubits and a target qubit. It operates
in the following way: if and only if the two control qubits are 1 then
the target qubit is flipped and control qubits remain unchanged; in any
other case all the qubits will remain unaltered.

These two quantum gates are universal in the sense that any quantum circuit
can be built up from those gates.

2.3 Quantum circuit
A quantum computer is, essentially, a device able to manipulate delicate quan-
tum states in a controlled fashion, in the same way an ordinary computer ma-
nipulates its bits. They are used to implement quantum circuits, one of the
building blocks of quantum information theory, which are composed by three
main elements: quantum gates, wires (not necessarily physical ones) and an
input state. There are some features in classical circuits that are not allowed in
quantum circuits such as loops (quantum circuits are acyclic), FANIN (join-
ing of wires) and FANOUT (division of wires). Moreover, there have also
been designed quantum simulators for theoretical purposes. They are stand-
ard computers operating in the same way as a quantum computer would do.
However, simulators have memory requirements and runtime that are expo-
nential in the number of qubits due to the fact that they track the quantum
state of the system, what makes them really inefficient. In the next section,
some quantum circuits which generate Bell states and GHZ states are shown
(see Figure 2.5).

2.4 Bell and GHZ states at IMB Q
As it was said in Chapter 1 of this document, IBM is one of the pioneer com-
panies in developing quantum computation technologies. In this sense, they
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have launched IBM Q, where IBM offers both quantum simulators and real
quantum devices to the public via quantum cloud services that can be ac-
cessed through the IBM Q Experience or Qiskit.

In this project we will make use of Qiskit [AAB+19], an open-source quantum
programming framework based on Python language. Our main goal is to
design quantum circuits to generate the different Bell states and the GHZ
state: |GHZ〉 = (|000〉+ |111〉)/

√
2. Once we have designed those quantum

circuits we will run them in both quantum simulator and quantum computer
and then analyze the results. This is only a brief description of the implement-
ation is made. For further details check [GF19].

So, first of all, we have to construct quantum circuits to create the different
Bell and GHZ states. These circuits turn out to be really simple as they are
formed by the combination of three main quantum gates: X, Hadamard and
CNOT. The initial state of the qubits system presents all the qubits in the state
|0〉. Focusing on the case of the state |Φ+〉, at first instance a Hadamard gate
must be used to generate superposition in the first qubit. Then, a CNOT gate is
placed to create entanglement between the two qubits and finally, both qubits
are measured. Similar circuits are designed for the rest of states introducing
in some of them X gates or another CNOT gate in the case of the GHZ state
(see Figure 2.5). Once the circuits have been constructed, they are run in a
quantum simulator and in a real quantum device, particularly in a 14-qubit
quantum computer called IBM Q Melbourne [ibm18]. In each experiment,
1024 shots were taken and then the probability of each final state was cal-
culated and represented in an histogram. The results along with the quantum
circuits for each Bell and GHZ state are shown in Figure 2.5.

It can be seen that the quantum simulator does not offer the theoretical result
of 1/2 probability for each state in every case. This is due to the finite num-
ber of shots taken in the simulation and the law of large numbers. Moreover,
quantum device IBM Q Melbourne presents substantial errors and their nature
can be really complex. In Section 2.2.1 the importance of entanglement in
quantum computing was pointed out. However, entanglement can also occur
between environment and quantum computer, making quantum effects dis-
appear. This issue becomes more important if we take into account that the
quantum computer must be coupled to the external world so the user can run
programs on it and read the output from those programs. This requirement sets
a limit on how long can the system maintain its quantum behaviour, known as
coherence time. Consequently, the complex nature of real errors that happen
on a quantum device makes characterizing them very complicated, and cre-
ating accurate error models is an active area of quantum computing research
[Cho14].
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Bell state |Φ+〉

Bell state |Φ−〉

Bell state |Ψ+〉

Figure 2.5: Quantum circuits (left) and output histograms for quantum simu-
lator and 14-qubit quantum computer IBM Q Melbourne (right) for every Bell
and GHZ states. For each experiment 1024 shots were made.
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Bell state |Ψ−〉

GHZ state |GHZ〉

Figure 2.5: Quantum circuits (left) and output histograms for quantum simu-
lator and 14-qubit quantum computer IBM Q Melbourne (right) for every Bell
and GHZ states. For each experiment 1024 shots were made. (cont)
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Chapter 3

Quantum algorithms

Abstract

In this chapter, we will introduce quantum algorithms and compare them
to the classical ones, showing their main features and pointing out some
quantum algorithms which had overcome the classical ones [DJ92].
After this, our attention will be focused in a particular quantum/classical
hybrid algorithm really useful in finding optimal combinations: the Vari-
ational Quantum Eigensolver (VQE) [Com16]. This algorithm is based
on the variational method, so a quick review of it will also be done
[CTDLD06]. Finally, the algorithm will be sketched and its main char-
acteristics analyzed.

Resumen

En el presente capı́tulo introduciremos los algoritmos cuánticos y, tras
compararlos con los clásicos y destacar sus principales caracterı́sticas,
señalaremos algunos que han conseguido superar a los clásicos [DJ92].
Tras esto, pondremos nuestra atención en un algoritmo hı́brido (cuántico-
clásico) realmente útil a la hora de encontrar combinaciones óptimas:
el Variational Quantum Eigensolver (VQE) [Com16]. Este algoritmo
se basa en el método variacional por lo que realizaremos un breve re-
paso al mismo [CTDLD06]. Finalmente, esquematizaremos los dife-
rentes pasos del algoritmo y estudiaremos sus principales propiedades.
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CHAPTER 3. QUANTUM ALGORITHMS

3.1 Quantum vs classical algorithms
In the same sense that Newtonian mechanics are “recovered” from quantum
mechanics when taking the classical limit, quantum circuits can reproduce
classical circuits. This arises from the fact that every classical circuit has an
equivalent circuit containing only NAND gates1 which, despite being irre-
versible, can be replaced by an equivalent quantum circuit only making use
of the reversible Toffoli gate. Thus, quantum computation can, at least, emu-
late classical computation algorithms. As it was said in Section 2.2, quantum
superposition gives quantum computation the ability of evaluating a func-
tion on several values of the system at once (quantum parallelism). How-
ever, the skill to extract information about more than one output of the func-
tion is required. One of the first quantum algorithms that overcome classical
computation was Deutsch–Jozsa algorithm [DJ92]. There exist three types
of quantum algorithms which provide an advantage over known classical
algorithms: quantum simulation algorithms, quantum search algorithms and
quantum Fourier transform, where Deutsch–Jozsa algorithm belongs [NC02].

3.2 Variational Quantum Eigensolver (VQE)
Among the different quantum search algorithms one of particular interest is
the Variational Quantum Eigensolver (VQE), a quantum/classical hybrid al-
gorithm useful at finding optimal combinations. It minimizes cost functions
by applying the variational method. In this chapter, we will focus in under-
standing this algorithm to apply it in subsequent problems.

3.2.1 Variational method
Consider an arbitrary physical system whose Hamiltonian, H, is time inde-
pendent. In order to simplify the treatment of the problem assume that H
presents a discrete and non-degenerate spectrum:

H|ϕn〉= En|ϕn〉, n = 0,1,2, ... (3.1)

According to the spectral theorem for Hermitian operators, we have that the
eigenstates of the Hamiltonian satisfy the orthonormality condition:

〈ϕi|ϕ j〉= δi, j (3.2)

where δi, j is the Kronecker delta.

1NAND gate is a logic gate whose output is 0 if and only if all its inputs are 1.
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Although the Hamiltonian might be known, this does not yield for the eigen-
states, {|ϕn〉}, and eigenvalues, {En}, of the system which must be determ-
ined from the eigenvalue equation (3.1). However, diagonalizing H is not al-
ways computationally accessible so the variational method results crucial to
estimate them.

Let us consider that the discrete spectrum of the Hamiltonian is labelled in
such a way that n = 0 is the ground state (greatest lower bound), n = 1 is the
first excited state, and so on. Then, for an arbitrary state |ψ〉 of the Hilbert
space of the system, the expectation value of H satisfies:

〈H〉=
〈ψ|H|ψ〉
〈ψ|ψ〉

≥ E0 (3.3)

Towards finding the state |ψ〉 that satisfies the equality we could vary over
all possible states of the Hilbert space of the system and, once we have found
it, this would be the ground state of the system with energy E0. However,
varying over the entire Hilbert space is too expensive, so a subspace, F , of
the entire Hilbert space is chosen and parametrized by some real differentiable
parameters θi (i = 1,2, ...,Nθ ). This subspace is called ansatz and its election
is crucial in finding an accurate approximation2. Now we wish to minimize
the mean value of the energy for a trial wave function that belongs to the
ansatz subspace:

ε(θi) = 〈ψ(θi)|H|ψ(θi)〉, |ψ(θi)〉 ∈F (3.4)

under the the normalization constraint:

〈ψ(θi)|ψ(θi)〉= 1 (3.5)

Finding the global minimum might be difficult as setting the partial derivat-
ives of ε(θi) over all θi equal to zero could yield to local minimum. Several
methods can be applied to find the global minimum such as Ritz method or
Hartree-Fock method. An important inconvenient of the variational method is
that as ε tends toward E0 in the minimization proceeding, there is no guaran-
tee that the trial wave function will tend to the ground state of the system, so
not always the global minimum is achieved [CTDLD06].

2A good selection of the ansatz implies that there is some overlap between the ansatz
and the ground state.
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3.2.2 The algorithm
VQE is a hybrid algorithm that uses the variational method and interleaves
quantum and classical computations in order to find the eigenvalues of a large
matrix. Particularly, we will employ this algorithm to the case of the Hamilto-
nian H of a given system [Com16].

In this hybrid algorithm a quantum subroutine is run inside of a classical
optimization loop. The quantum subroutine has two fundamental steps:

1. Prepare the quantum state |ψ(~θ )〉, where ~θ are the set of parameters
that parametrize the ansatz Hilbert subspace.

2. Measure the expectation value 〈ψ(~θ )|H|ψ(~θ )〉. This measure is usually
performed on these states based on a Pauli operator decomposition of
H, as it will be seen in Section 5.5.

From Section 3.2.1 we know that the variational principle ensures that this
expectation value is always greater than the smallest eigenvalue of H. This
bound allows us to use classical computation to run an optimization loop to
find this eigenvalue with the following steps:

1. Use a classical non-linear optimizer to minimize the expectation value
by varying ansatz parameters ~θ .

2. Iterate until convergence.

Figure 3.1: Scheme of VQE algorithm [Kop19].
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3.3 VQE in Qiskit
To implement this hybrid algorithm in our simulations we make use of Qiskit
Aqua library [AAB+19]. Qiskit’s instance for VQE requires defining three
algorithmic subcomponents:

• An initial state from Aqua’s Initial States library in order to define the
input state for the trial function.

• A trial function from Aqua’s Variational Forms library.

• A classical optimizer from Aqua’s Optimizers library.

We will give a brief description of each of these topics in the following sec-
tions, with special attention in those functions used in further simulations.

3.3.1 Initial state
An initial state in Aqua is an object that specifies a starting state for the trial
state circuit. This allows the user to define a state, and then provide a cir-
cuit that can take the starting point of all zero qubits to the defined state.
Among the diverse initial states that Aqua offer, for simplicity we will restrict
ourselves to the initial state Zero, which consists of having all the qubits at
state |0〉 at the entrance of the trial wave function circuit, as it can be seen in
Figure 3.2.

3.3.2 Trial wave functions
Practically, the quantum subroutine of VQE amounts to preparing a state
based off of a set of parameters ~θ and performing a series of measurements.
These parameters usually refer to rotation angles so we briefly introduce the
rotation operators.

Rotation operators

One of the most important properties of Pauli matrices is that, when they are
exponentiated, they give rise to the rotation operators, which rotate the state
of the system in the Bloch sphere about the x̂, ŷ and ẑ axes, by an angle θ :

Rx(θ )≡e−i θ

2X

Ry(θ )≡e−i θ

2Y

Rz(θ )≡e−i θ

2Z.

(3.6)
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The most common type of trial wave functions are composed by several lay-
ers where, in each of them, both rotation and entanglement gates are con-
sidered (see Figure 3.2). The entangler circuit (UENT ) that creates entangle-
ment between qubits, is usually achieved with the use of CNOT and Toffoli
gates. It could be linear (next-neighbor coupling) or full (all-to-all coupling).
Also a different entangler map can be designed, but the most used are the
previous ones. These entanglers are interleaved with single-qubit rotations,
which are implemented as the product of j rotation operators, each of them
rotating an angle θ j:

Uq,i(~θk) = ∏
j

Rq,i
j (θ

q,i
k, j) (3.7)

where ~θk represents the set of all the Euler angles (optimizer parameters) at
iteration k, q identifies the qubit and i = 0,1, ...,d refers to the depth position
in the circuit. With this, the N-qubit trial state, considering that the initial state
is |00...0〉, is obtained by applying d entanglers UENT that alternate with N
single qubit rotations:

|ψ(~θ0)〉=
N

∏
q=1

[Uq,d(~θ0)]×UENT ×
N

∏
q=1

[Uq,d−1(~θ0)]× ...
N

∏
q=1

[Uq,0(~θ0)]|00...0〉

(3.8)
When none of qubits are unentangled to other qubits the number of optimizer
parameters is given by j×N× (d +1), where N is the total number of qubits,
j the number of rotation operators for each rotation step and qubit and d is
the depth of the circuit.

Figure 3.2: Quantum circuit for trial
function preparation and energy es-
timation. For each iteration k, the
circuit is composed of a sequence
of interleaved single-qubit rotations
Uq,i(~θk) and entangling unitary op-
erations UENT . A final set of post-
rotations (I, X−π/2 or Yπ/2) is used
to measure the expectation values
of the individual Pauli terms in the
Hamiltonian and to estimate the en-
ergy of the trial state [KMT+17].
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From all the trial wave functions (also known as variational forms) that Qiskit
Aqua offer, we will focus in two of them: Ry and RyRz.

• Ry. This trial wave function consists in layers of y rotations, Uq,i(~θk) =

Rq,i
y (~θk), with entanglements. Therefore, if there are no unentangled

qubits, the number of optimizer parameters is N× (d + 1).

• RyRz. This trial wave function consists in layers of y plus z rotations,
Uq,i(~θk) = Rq,i

y (~θk)Rq,i
z (~θk), with entanglements. Therefore, if there are

no unentangled qubits, the number of optimizer parameters turn out to
be 2×N× (d + 1).

One important thing that will be studied in subsequent sections is that many
Hamiltonians can be written in terms of Pauli matrices and identity matrix.
For that reason, at the end of the quantum circuit for the trial function of
Figure 3.2, there is a set of rotations to measure the expectation values of the
individual Pauli matrices terms of the Hamiltonian.

3.3.3 Classical optimizers
To conclude this chapter, let us remind that as it was previously stated, outside
the quantum subroutine there must be a classical optimization loop. There-
fore, a classical optimizer is needed and basically, there are two classes of
them attending to where the optimal value is looked for: local or global. Here
we will focus in two local optimizers which look for an optimal value within
the neighboring set of a candidate solution.

• Sequential Least Squares Programming (SLSQP). This is a gradient-
based algorithm and, thus, attempt to compute the absolute minimum
of the function through its gradient. This algorithm applies SQP method
and is commonly used for nonlinearly constrained, gradient-based op-
timization, supporting both equality and inequality constraints.

• Constrained Optimization by Linear Approximation (COBYLA).
This is a numerical optimization method for constrained problems where
the derivative of the objective function is not known. It works by itera-
tively approximating the actual constrained optimization problem with
linear programming methods.
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Quantum optimization

Abstract

Nowadays, it is still unknown how powerful is quantum computation
and what kind of problems it can solve that classical computation can
not. To get a deeper understanding of the type of problems which quan-
tum computation is expected to solve, we will introduce the field of
computational complexity theory and its most important open problem:
P vs NP [NC02]. Afterwards, an optimization NP problem called Exact
cover problem will be presented and exhaustively analyzed. This study
will show how physical models, such as those for ferromagnetism, ap-
pear in the most unexpected situations [Gal17]. Finally, a academical
example of exact cover problem will be solved with both, classical and
quantum computation, showing that quantum computation has much to
offer.

Resumen

A dı́a de hoy aún se desconoce cuán poderosa es la computación cuánti-
ca y qué problemas, irresolubles desde la computación clásica, puede
abordar. Para adquirir un mayor entendimiento acerca de los problemos
que se espera que la computación cuántica nos permita resolver intro-
duciremos la Teorı́a de la complejidad computacional y su problema
abierto más importante: P vs NP [NC02]. Tras esto, se presentará el
Exact cover problem y será exhaustivamente analizado. Este estudio
mostrará cómo modelos fı́sicos, como el ferromagnetismo, aparecen
en las situaciones más inesperadas [Gal17]. Finalmente se resolverá
un ejemplo académico del exact cover problem mediante computación
clásica y cuántica, poniendo de manifiesto que la computación cuántica
tiene mucho que ofrecer.
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4.1 Complexity theory
Before entering into further details, we will define a decision problem as a
problem whose answer is “Yes” or “No”. Another important concept is poly-
nomial time: we say that an algorithm has polynomial time if for some k > 0,
its running time on inputs of size n is O(nk). Within this framework, we define
complexity class as a collection of computational problems with some com-
mon features according to the computational resources needed to be solved
[NC02]. Some of the most important complexity classes are the following,
which are sketched at Figure 4.1:

• P: set of all decision problems that can be solved in polynomial time.

• NP: set of all decision problems whose solutions can be verified in
polynomial time. Hence, all P problems are contained in NP.

• NP-Complete: set of all problems X in NP for which it is possible to
reduce any other NP problem Y to X in polynomial time. Then, NP-
complete is a subset of the “toughest” problems in NP.

• NP-Hard: set of problems X , such that for each NP-hard problem x
exist an NP-complete problem y that is reducible to x in polynomial
time. Note that NP-hard problems do not have to be in NP.

• PSPACE: set of problems that can be solved using resources which are
few in spatial size and unlimited in time.

4.1.1 P vs NP problem
The P vs NP problem constitutes one of the biggest questions in Computa-
tional Theory, being also a Millennium Problem. It asks whether every prob-
lem whose solution can be verified in polynomial time can also be solved
in polynomial time (P = NP). Therefore, if every NP-complete problem was
included in P then the above statement will be satisfied (see Figure 4.1. If
P 6= NP, then no NP-complete problem can be efficiently (in polynomial time)
solved in a classical computer. Quantum computers have achieved to solve
quickly some NP problems -like factoring-, but it is unknown yet whether
quantum computers can solve all problems in NP and, consequently, prove
P 6= NP.

Some examples of NP-complete problems are exact cover, max-cut and 3-
SAT. The exact cover will be studied in the following section with both clas-
sical and quantum computer.
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Figure 4.1: Euler diagram for
P, NP, NP-Complete and NP-
Hard set of problems [Esf07].

4.2 Exact cover problem
In computer science, the exact cover problem is a decision problem to de-
termine whether an exact cover exists. It belongs to the NP-complete set and
is a kind of constraint satisfaction problem. The most well-known exact cover
problem is the traditional Sudoku [Gal17].

Definition 4.1. Given a finite nonempty set U = {u1, ...,un}, called universe,
and a family F = {S1, ...,Sm} of m ≥ 1 nonempty subsets of U. Then the
question is whether there is an exact cover, which is a subfamily C ⊆ F of
subsets in F such that the sets in C are disjoint and their union is equal to U.

The exact cover problem can be viewed as an optimization problem, which
means that the objective is to find some optimal solution by minimizing or
maximizing a certain cost function (or Hamiltonian of the system), H. We
have said that exact cover was a decision problem, thus we can reformulate
it by incorporating a budget cost B and instead of asking whether the cost
function H has a minimum or a maximum w, we ask if there is a solution w
such that H(w) ≤ B in the case of a minimum solution, or H(w) ≥ B in the
case of a maximum solution. For the exact cover problem, the objective is to
find a subfamily where each element appears only once and that the union of
its subsets form the universe. Therefore, we define the state of the system (or
subfamily) as:

|ψ〉= |αm−1〉⊗ |αm−2〉⊗ ...⊗|α0〉 (4.1)

where m is the total number of subsets of the family F and αi indicates
whether subset i is contained in the subfamily (αi = 1) or not (αi = 0). So
now we look for a Hamiltonian that presents its ground state for the exact
cover set:

H = ∑
e∈U

(
1−

m

∑
i=0

ξ (e, i)Xi

)2

(4.2)

where the first sum is extended over all the elements of the universe, the
second sum extends over all the subsets of family F and ξ (e, i) is a function
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that satisfies:

ξ (e, i) =

{
1, e ∈ subset i
0, e 6∈ subset i

(4.3)

Finally, Xi is an operator which takes eigenvalues:

Xi|αi〉= αi|αi〉, αi ∈ {0,1} (4.4)

It is clear that this Hamiltonian’s ground state, with energy E = 0, represents
the solution of the exact cover problem, which could be degenerated if several
exact covers are possible. Notice that operator Xi can also be written as1:

Xi = |1〉〈1|= 1

2
(1 + σ

z
i ), σ

z
i = |1〉〈1|− |0〉〈0|. (4.5)

The Hamiltonian of the system can be rewritten as a sum of individual Hamilto-
nians acting of each element:

H = ∑
e

He, He =

(
1−

Ne

∑
i

Xi

)2

, (4.6)

where now the sum present in individual Hamiltonians He extends only over
the subsets that include element e, and Ne is the number of subsets which
include element e and is obviously a constant of the problem. Inserting then
equation (4.5) into the individual Hamiltonian He and expanding the expres-
sion we have:

He =

(
1− 1

2

Ne

∑
i

(1 + σ
z
i )

)2

=
1

4

(
(2−Ne)−

Ne

∑
i

σ
z
i

)2

=

=
1

4

(
(Ne−2)2 + 2(Ne−2)

Ne

∑
i

σ
z
i +

Ne

∑
i, j

σ
z
i σ

z
j

)
.

(4.7)

Observing the form of the global Hamiltonian (4.6) we conclude that for hav-
ing the ground state with energy E = 0 each individual term He must be in
its own ground state with energy Ee = 0. This means that each element must
be in one and only one subset, as it states the exact cover problem. Rewriting
Hamiltonian He we get:

He = εe +
1

2
(Ne−2)

Ne

∑
i

σ
z
i +

1

4

Ne

∑
i, j

σ
z
i σ

z
j (4.8)

1In the notation we are following {X ,Y,Z} are used when we are talking about quantum
gates and {σx,σy,σz} when developing the Hamiltonian due to the analogy that will be es-
tablished with ferromagnetism and the literature’s notation commonly used in this field.
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being εe a constant shift unique for each element. Comparing (4.8) with the
general Hamiltonian of an Ising model (see Equation (A.4) in Appendix A)
we see that the single Hamiltonian He presents the form of an Ising model
with: 

εe = 1
4(Ne−2)2

J =−1
4 < 0

H ′ = µ0H =−1
2(Ne−2)


< 0, if Ne < 2

= 0, if Ne = 2

> 0, if Ne > 2

(4.9)

Notice that having J < 0 implies that there is an antiferromagnetic interac-
tion, with adjacent subsets tending to have opposite value of α; this is, if one
subset contents element e the next one does not. Otherwise, lower values of
the second term of He will be achieved when less subsets contain element e,
which means that subsets tend to present the state |0〉, achieving its minimum
value at Ne = 0. Finally, the energy shift εe increases quadratically with Ne,
presenting a minimum at Ne = 2. In the ground state of He, a commitment
between the three contributions is achieved showing a lower bound energy
Ee = 0 at Ne = 1.

4.3 Quantum optimization at IBM Q
Once the exact cover problem has been understood we will present a simple
problem of finding the exact cover for the following family of subsets:

{{1,3},{2,3,6},{1,5},{2,3,4},{5,6},{2,4}}

The problem will be solved by three different algorithms:

1. Brute-force method. This method does not require a cost function and
it basically consists in exhaustively try all the binary assignments.

2. Classical optimization. The classical algorithm used, Exact Eigen-
solver, computes up to the first k eigenvalues of a complex-valued square
matrix of dimension n×n, with k ≤ n.

3. Optimization with the Variational Quantum Eigensolver (VQE).
We will run this algorithm in an quantum statevector simulator2.

2Due to the communication bottlenecks when the quantum device and classical com-
puters are not physically co-located, it could not be run on real quantum processors of the
IBM Q Cloud.
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This problem, despite its simplicity, will allow us to program an optimization
problem based in a cost function and run it in both classical and quantum
ways3. The results obtained with the two classical algorithms satisfied the
expected solution of the problem:

Solution found: |1,0,0,0,1,1〉

which means that an exact cover is given by: {{1,3},{5,6},{2,4}}, what is
certainly true. One important fact that was checked is the slowness of the brute
force method compared with the classical optimization, with an approximate
difference of time of one order of magnitude. This is not a surprise as brute
force is always the worst way. Besides, the VQE was programmed with the
initial state Zero, a full entangler map, two layers of depth with RyRz rotations
in the trial function circuit and COBYLA optimizer. The result obtained with
the quantum statevector simulator also was the expected as it can be seen in
Figure 4.2, which evidence that quantum computers can solve optimization
problems.

Figure 4.2: Most probable final state found to the exact cover problem via
quantum statevector simulator. The time of computation in seconds, the en-
ergy of the final state in arbitrary units and the number of evaluations are also
shown.

3To check the code take a look to [GF19].
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Chapter 5

Quantum information and
Entropy

Abstract
As it was discussed in Section 2.2.1, entanglement is one of the most
powerful resources of quantum computation. In this chapter, we will dis-
cuss the basic notions of bipartite entanglement [GT09] and introduce
the Schmidt decomposition [Wil17], which is one of the most import-
ant theorems for understanding pure bipartite states. As many experi-
ments nowadays aim at the generation of multiparticle entangled states
[PLNT12], we will develop some basic notions about the theory of mul-
tipartite entanglement as well as introducing the entropy as a measure
of entanglement [GK16]. Finally, the evolution of entropy in the resolu-
tion of an optimization problem in a quantum simulator will be studied.
Particularly, the problem studied consist of finding the ground state of a
two-dimensional square-lattice Ising model.

Resumen
Como se señaló en la Sección 2.2.1, el entrelazamiento es uno de los
recursos más potentes de la computación cuántica. En este capı́tulo dis-
cutiremos las nociones básicas del entrelazamiento bipartito [GT09]
e introduciremos la descomposición de Schmidt [Wil17], uno de los
teoremas más importantes a la hora de entender los estados puros bi-
partitos. Hoy en dı́a muchos experimentos se centran en la generación
de estados multipartı́cula entrelazados [PLNT12], por ello desarrollare-
mos algunos conceptos básicos sobre la teorı́a de entrelazamiento mul-
tipartito además de introducir la entropı́a como unidad de medida del
entrelazamiento [GK16]. Finalmente, se analizará la evolución de la en-
tropı́a en la resolución de un problema de optimización empleando un
simulador cuántico. En particular, el problema estudiado consistirá en
determinar el estado fundamental de un modelo bidimensional de Ising
de malla cuadrada.
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5.1 Density operator
Our main goal is to quantify the degree of entanglement in a given multipartite
quantum state. Before that, some important concepts of quantum mechanics
must be introduced. The density operator is an alternative representation of
the state of a quantum system which is really useful when the quantum sys-
tem is an statistical ensemble of several quantum systems. It is defined as an
Hermitian operator, ρ , with Tr(ρ) = 1 and strictly positive (ρ ≥ 0):

ρ = ∑
j

p j|ψ j〉〈ψ j| (5.1)

for some ensemble {p j, |ψ j〉}. In this case, the density operator (5.1) rep-
resents a mixed state with probability p j that the system is in the state |ψ j〉.
Otherwise, the density operator ρ would describe a pure state if and only if:

p j = 1∧ pi = 0, ∀i 6= j or ρ = ρ
2 (5.2)

In further analysis we will put our attention on pure states because quantum
simulators work within this framework. Moreover, working with real quantum
computers will require a treatment in the mixed states context [CTDLD06].

5.2 Bipartite entanglement
The experiments run at quantum computers work with multiple qubits, gen-
erating multiparticle entangled states. To understand this kind of systems we
will first study the bipartite states. Consider two quantum systems A and B,
owned by Alice and Bob, that are described by states in Hilbert spaces HA of
dimension dA and HB with dimension dB, respectively. The composite sys-
tems is described by state vectors that belong to HA⊗HB.

5.2.1 Entanglement of pure states
In Section 2.2.1 we defined the product state as a state vector of the composite
system HA⊗HB that presents the following shape:

|ψ〉AB = |φ〉A⊗|φ〉B. (5.3)

If we restrict ourselves to the density operator framework, the product state
of the composite system will be:

ρAB = ρA⊗ρB (5.4)

which can be derived directly from (5.3). If the system is described by either
of the representations (5.3) and (5.4), then we say that subsystems A and
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B are independent. In this sense, a product state can be prepared in a local
independent way by Alice and Bob. Otherwise, if those representations does
not yield for the composite system state vector, we say that the subsystems
are entangled [GT09]. A crucial tool for analyzing bipartite pure states in
quantum information theory and quantifying the level of entanglement of the
system is the Schmidt decomposition, presented in Lemma 5.1.

Lemma 5.1 (Schmidt decomposition.). Suppose |ψ〉AB is a pure state of the
composite system, AB, given by the general form:

|ψ〉AB =
dA,dB

∑
i, j=1

ci j|φi〉A⊗|φ j〉B ∈ HA⊗HB (5.5)

with C = [ci j] a complex dA×dB matrix. Then there exist orthonormal states
|i〉A for system A, and orthonormal states |i〉B of system B such that the system
state can be expressed as:

|ψ〉AB =
d

∑
i=1

λi|i〉A|i〉B, (5.6)

where the amplitudes λi, known as Schmidt coefficients, are the singular
values of matrix C. They are real, strictly positive and normalized, so that
∑i λ 2

i = 1. The Schmidt rank (or Schmidt number), d, of a bipartite state is
equal to the number of non-zero Schmidt coefficients λi in the Schmidt decom-
position of the state. From this we see that a state |ψ〉AB is a product state if
and only if it has Schmidt rank 1. The Schmidt rank, d, satisfies the following
inequality:

d ≤ min{dA,dB} (5.7)

and it can be proved that it is preserved under unitary transformations on sys-
tem A or system B. This reflects that local quantum operations and classical
communication (LOCC) can not increase the level of entanglement (Check
proof at Appendix B.) [Wil17].

Corollary 5.2. Given the composite system AB, the reduced density operators
ρA and ρB can be described in terms of the Schmidt coefficients and the basis
{|i〉A} and {|i〉B}:

ρA = TrB(ρAB) =
d

∑
i=1

λ
2
i (|i〉A〈i|) = TrA(ρAB) = ρB (5.8)

Therefore, if |ψ〉AB has a Schmidt rank of 1, the reduced matrices ρA and ρB
have only one non-zero eigenvalue and are pure states. Otherwise, if Schmidt
rank is greater than 1, the reduced matrices have multiple non-zero eigenval-
ues and are mixed states (Check proof at Appendix B.) [Wil17].
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5.2.2 Entanglement of mixed states
Definition 5.3. A mixed state ρAB is separable if and only if it can be repres-
ented as a convex combination of the product of projectors on local states as
stated in the following expression:

ρAB =
K

∑
i=1

pi|e〉i〈e|⊗ | f 〉i〈 f | (5.9)

Otherwise, the mixed state is said to be entangled [BL19].

It should be noticed that (5.9) is the most general state that Alice and Bob can
prepare by local quantum operations and classical communication (LOCC).
Therefore, entangled states can not be prepared locally by two parties, phys-
ical systems must be brought together to interact, which means that a non-
local unitary operator must necessarily act in the physical system to produce
an entangled state. Besides, the “level of entaglement” is bounded and cannot
be infinitely increased by non-local transformations [GT09].

5.3 Multipartite entanglement
Let us consider a pure N-partite system. We say that the state of the system is
fully separable if it is a product state of all the parties state vectors:

|ψ〉=
N
⊗

i=1
|φi〉 (5.10)

If this is not the case, there exist some entanglement. This entanglement does
not have to be N-partite entanglement. In this sense, we say that a pure state
is m-separable if the N-partites state vector can be split into m parts as:

|ψ〉=
m
⊗

i=1
|ϕi〉, 1 < m < N (5.11)

So let us consider a system constituted of N qubits. The general wave function
of the system will be:

|ψ〉= ∑
s1,...,sN∈{0,1}

cs1,...,sN |s1, ...,sN〉 (5.12)

where the sum extends over all possible indices combinations. In the general
case, a total of 2N coefficients are necessary to fully describe the state of the
system. Suppose now the case where the general wave function can be written
as the product of the states of two subsystems:

|ψ〉= |φ1〉⊗ |φ2〉 (5.13)
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where |φ1〉 is the state of the first k qubits {q1, ...,qk} and |φ2〉 the state of
the N − k following qubits {qk+1, ...,qN}. In this case, the total amount of
coefficients necessary to characterize the system is: 2k +2N−k, which is expo-
nentially less than in the general case. The number of coefficients necessary
to characterize the system gives us an idea of the entanglement level. With
this in mind, we introduce the following Lemma 5.4:

Lemma 5.4. The Schmidt decomposition applies not only to bipartite systems
but to any number of systems where we can make a bipartite cut. For example,
given a state |φ〉ABCDE on systems ABCDE, we could make a bipartition AB-
CDE and write a Schmidt decomposition for the state1 as follows:

|φ〉ABCDE = ∑
y

βy|y〉AB|y〉CDE (5.14)

where {|y〉AB} is an orthonormal basis for the joint system AB and {|y〉CDE}
is an orthonormal basis for the joint system CDE.

5.4 Entanglement entropy
In order to quantify the entanglement of a system, the von Neumann entropy
is frequently used. For a system in a state ρ it is given by2:

S =−Tr[ρ log2 ρ ]. (5.15)

5.4.1 Bipartite entanglement entropy
Let us now consider a bipartition of a system of N qubits into two parts, A
and B, with k and N − k qubits, respectively. To quantify the entanglement
of the state of the composite system we require the von Neumann entangle-
ment entropy S, defined as the von Neumann entropy of either of the reduced
subsystems:

S(A) = S(ρA) =−TrA[ρA log2 ρA], (5.16)

where ρA = TrBρ . In terms of their Schmidt decomposition3:

S(A) =−
d

∑
i=1

λi log2 λi = S(B) (5.17)

1The Schmidt decomposition does not apply for partitions bigger than two [NC02].
2The common definition of von Neumann entropy presents a natural logarithm, however,

the binary nature of qubits makes more fruitful work in base-2 logarithm and in “bits” unit.
3From Corollary 5.2 we know that both reduced density matrices ρA and ρB present the

same eigenvalues according to their Schmidt decomposition.
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where d is the Schmidt rank. As S(A) = S(B), it makes sense talking about
entropy as a measure of the entanglement of the state in the way we define
it. From (5.17) we also see that entropy values goes from 0 (product state) to
log2(min{dA,dB}) in the maximally entangled states4.

5.4.2 Multipartite entanglement entropy
As we stated in Section 5.3, the classification of entangled states in pure mul-
tipartite systems (m > 2 subsystems) is notably richer than the bipartite case.
Several methods have been developed for measuring entanglement in these
systems: Tangle, Schmidt measure, measures based on normal forms, etc.
[HHHH09]. However, we will focus in a generalization of the entropy of en-
tanglement to the multipartite case.

Consider an N qubit system given by the generic state function (5.12). Let
U = {1,2, ...,N} and Π the set of all bipartitions of U . For example, consider
a bipartition π = (π1,π2 = π1) ∈ Π, where: π1 ⊆U , π1 6= /0 and π1∪π2 = U .
The total number of different bipartitions composing Π is equal to 2N−1−1.
Then, for a given bipartition π = (π1,π2):

π1 ={i1, i2, ..., ik}, i1 < i2 < ik
π2 ={ j1, j2, ..., jN−k}, j1 < j2 < jN−k

(5.18)

where letters i and j represent the different qubits. Therefore, we have the
corresponding matrix:

Mπ(|ψ〉) = [cπ1,π2 ] (5.19)

which corresponds to the bipartite division π of the N-qubit state into two
parts given by the sequences π1 and π2. We now apply the Schmidt decom-
position by getting the singular value decomposition of the matrix Mπ(|ψ〉).
Then, with the knowledge of the Schmidt coefficients, we can quantify the
entanglement of the given bipartition π by calculating the von Neumann en-
tropy: S(π, |ψ〉), given by (5.17). Extending this procedure to all the biparti-
tions of Π we compute the total entropy of the system as:

S(|ψ〉) = ∑
π∈Π

S(π, |ψ〉). (5.20)

This definition of the entropy of a given state of the system is useful as it
obeys some natural conditions that should be fulfilled for this kind of quantity;
such as the local unitary invariance and monotonicity with respect to local
manipulations [GK16].

4This result can be obtained by finding the maximum of entropy defined as (5.17) under
the restriction ∑i λ 2

i = 1 by using Lagrange multipliers.
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5.5 Application case: Ising model
Consider an optimization problem where the objective is to minimize a cost
function to determine the optimal combination, as we did in Section 4.3. Our
main goal now is to analyze the entanglement present in the N-qubit state in
each minimization step of an optimization problem. For that purpose, we will
consider an m×m square lattice Ising model with Hamiltonian (A.1):

H(σ) =−µ0 ∑
j

h jσ j− ∑
<i, j>

Ji jσiσ j (5.21)

where the sums extend over all the N = m2 particles of the lattice and < i, j >
indicates that the sum extends over nearest neighbours. We will consider
that the parameters of the Hamiltonian take the following values: µ0h j = 2,
Ji j =−1; and we will not concern much about their units and just take arbit-
rary units. As the internal interaction in the lattice only takes place between
the nearest neighbors, we require to define the adjacency matrix A, whose
elements indicate whether there is an interaction between the spins located at
each pair of vertices. Let us focus in the case of m = 2 just for illustration:

Figure 5.1: Bidimensional square lattice and its adjacency matrix.

Just as we did with the Exact cover problem, we will associate to each lat-
tice vertex a qubit with value 1 if its spin is up (σ j = 1) and 0 if it is down
(σ j = −1). To find the ground state energy combination we will employ
a quantum simulator and the VQE algorithm. Particularly, we will use the
SLSQP optimizer, an initial state Zero and a trial wave function Ry with 3
layers of depth and linear entanglement. This lead us to the solution:

Figure 5.2: Square Ising model optimum configurations. Energy: E ≈−4.

35



CHAPTER 5. QUANTUM INFORMATION AND ENTROPY

As we said before, we want to quantify the level of entanglement of each
state in the minimization process. To achieve that we could employ expres-
sion (5.20), however, finding all the bipartitions of a given state is an NP-
problem and implies a high computational cost as the number of qubits grow.
Therefore, we consider an educated approximation where, for a given state,
we only consider the combinations: {{s1},{s2,s3,s4}},{{s1,s2},{s3,s4}},
{{s1,s2,s3},{s4}}, being si qubit i, and as an approximate upper bound to en-
tropy we take 2N−1−1 times the highest entropy among the Schmidt bipartite
decomposition’s of the cited combinations. Then we repeat this process to the
successive states achieved in the minimization, resulting in Figure 5.3.

Figure 5.3: Entropy evolution
in the successive iterations of
the minimization process with
low magnetic field (frustrated
case).

We see that the existence of degeneracy in the ground state, also known as
frustration, causes a non-zero final entropy. Finally, let us consider the case
of an stronger magnetic field (see Figure 5.4).

Figure 5.4: Configuration of the ground state and entropy evolution in the
successive iterations of the minimization process with high magnetic field
(non-frustrated case).

In the same way the degeneracy is reduced the same happens with the entropy,
achieving a zero entropy in the case of a full product state vector.
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Chapter 6

Conclusions

To sum up, we have started this project giving a global inside of quantum
computation and quantum information origin and its evolution until the present.
This overview has allowed us to notice the relevance that future advances
in this field could mean towards science, society and technology. With this
in mind, we went over the fundamental concepts that settle the basis for
quantum computation and quantum information. This review concluded with
the designing of quantum circuits capable of generating Bell and GHZ states,
and their implementation in a 14-qubit quantum computer. Then, basic nota-
tions about quantum algorithms were presented with special attention in the
Variational Quantum Eigensolver (VQE). Afterwards, the main advantages
of quantum computation for solving optimization problems were illustrated
with the resolution of the Exact cover problem, which turned out to be ruled
by the Ising model. Finally, it was studied the level of entanglement of the
successive states in the resolution of an optimization problem at a quantum
simulator. The continuation of this project may focus on analyzing with more
detail the relation between entropy and the path of minimization at optimiza-
tion problems solved in quantum simulators.

Quantum computation has taught us to think physically about computation,
and we have discovered that this vision yields outstanding capabilities for
information processing and communication. In this sense, quantum compu-
tation also shows that many interesting aspects of Nature arise when consid-
ering large and complex systems. In accordance with this idea, further steps
might be taken in applying quantum algorithms in fields which require the
computational advantage that quantum computation can offer. Among these
fields, Quantum Machine Learning stands out as a groundbreaking research
area, halfway between quantum mechanics and computer science. For all the
aforesaid, I expect to take further steps in this field under the mentoring of
prominent researchers like Professor Juan José Garcı́a Ripoll.
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Appendices

A Ising model
General model

Consider a set Λ of lattice sites, each with a set of adjacent sites forming a d-
dimensional lattice. For each lattice site k ∈ Λ, there is a discrete variable σk such
that σk ∈ {−1,+1}, representing the site’s spin. A spin configuration, σ = (σk)k∈Λ,
is an assigment of spin value to each lattice site [Aro13].

For any two adjacent sites i, j ∈ Λ, there is an interaction Ji j. Also a site j ∈ Λ has
an external magnetic field h j interacting with it. The energy of a configuration σ is
given by the Hamiltonian:

H(σ) =−µ0 ∑
j

h jσ j− ∑
<i, j>

Ji jσiσ j (A.1)

where µ0 is the magnetic moment, the first sum is over pairs of adjacent spins (every
pair counted once) and the notation < i, j > indicates that sites i and j are nearest
neighbours.

The probability of finding the system with configuration σ is given by:

P(σ) =
e−βH(σ)

Zβ

, Zβ = ∑
σ

e−βH(σ) = Tre−βH(σ), β =
1

kBT
(A.2)

where this probability is maximum in the case of being σ the ground state of the
system.

Qualitative discussion

Ising models can be classified according to the sign of the interaction. If for all pairs
i, j: 

Ji j > 0−→ Spins parallel (Ferromagnetic interaction)

Ji j < 0−→ Spins antiparallel (Antiferromagnetic interaction)

Ji j = 0−→ Spins not interacting
(A.3)
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When no magnetic field affects the spins (h j = 0), the Ising model is symmetric under
switching the value of the spin in all the lattice sites. A non-zero field, therefore,
breaks the symmetry. For our purposes, we will consider that the interaction strength
is the same for all pairs: J = Ji j and also the field will be the same over each spin:
H = h j, so from (A.1) we have:

H(σ) =−µ0H ∑
j

σ j− J ∑
<i, j>

σiσ j (A.4)
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B Schmidt decomposition
Proof: Lemma 5.1. Consider systems A and B with dimensions dA and dB, respect-
ively, where dA ≥ dB. Let {|φ〉A} and {|φ〉B} be any fixed orthonormal basis for
systems A and B. Then the global state |ψAB〉 can be written as:

|ψ〉AB =
dA

∑
j=1

dB

∑
k=1

c jk|φ j〉A|φk〉B (B.1)

Let us consider now the matrix C formed by the complex coefficients c jk which is an
dA×dB matrix:

[C jk] = c jk (B.2)

Since every matrix has a singular value decomposition (SVD) for C we can write:

C = UΛV † (B.3)

where U is a dA× dA unitary matrix, V is a dB× dB unitary matrix and Σ is a dA×
dB matrix with d real, strictly positive coefficients λi along the diagonal and zeros
elsewhere. If we denote the matrix elements of U as u ji and those of V as vik, the
above matrix equation (B.3) is equivalent to the following set of equations:

c jk =
d

∑
i=1

u jiλivik (B.4)

Making this substitution into the expression for the state (B.1) we get:

|ψ〉AB =
dA

∑
j=1

dB

∑
k=1

(
d

∑
i=1

u jiλivik

)
|φ j〉A|φk〉B (B.5)

Readjusting the terms we find that:

|ψ〉AB =
d

∑
i=1

λi

(
dA

∑
j=1

u ji|φ j〉A

)
⊗

(
dB

∑
k=1

vik|φk〉B

)
=

d

∑
i=1

λi|i〉A|i〉B (B.6)

where we defined the orthonormal basis on systems A and B as:

|i〉A ≡
dA

∑
j=1

u ji|φ j〉A

|i〉B ≡
dB

∑
k=1

vik|φk〉B

(B.7)

It is easy to see that setting the normalization condition over the state |ψ〉AB requires
that the Schmidt coefficients satisfy the relation:

d

∑
i=1

λ
2
i = 1 (B.8)
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Let us proof now that the sets {|i〉A} and {|i〉B} are orthonormal basis of systems A
and B, respectively. Starting with system A we remember that dim(HA) = dA and
that {|φ j〉A} constitutes an orthonormal basis of system A. From (B.7) we see that,
since i varies from 1 to dA, dim({|i〉A}) = dA. Let us see that this set satisfies the
orthonormal relation. For this purpose we will ignore notation related to the system
in the bra and kets:

〈l|i〉=

(
dA

∑
k=1

u∗lk〈k|

)(
dA

∑
j=1

u ji| j〉

)
=

dA

∑
k=1

dA

∑
j=1

u∗lku ji〈k| j〉=

=
dA

∑
k=1

dA

∑
j=1

u∗lku jiδk j =
dA

∑
k=1

u∗lkuki = δli

(B.9)

where the unitary matrix condition has been used in the last step. Therefore, the set
{|i〉A} cosntitute a basis of system A. For system B the same steps must be followed
achieving the same result.

Proof: Corollary 5.2. The density operator of the composite system is given by:

ρAB = |ψ〉AB〈ψ| (B.10)

where |ψ〉AB can be written in its Schmidt decomposition (B.6) resulting in the dens-
ity operator:

ρAB =
d

∑
i, j=1

λiλ j(|i〉A〈 j|)⊗ (|i〉B〈 j|) (B.11)

Then, the reduced density operator for system A is:

ρA = TrB(ρAB) =
d

∑
k=1

B〈k|

(
d

∑
i, j=1

λiλ j(|i〉A〈 j|)⊗ (|i〉B〈 j|)

)
|k〉B =

=
d

∑
k=1

d

∑
i, j=1

λiλ jδikδ jk(|i〉A〈 j|) =
d

∑
k=1

λ
2
k (|k〉A〈k|)

(B.12)

where the orthonormalization relation of states {|i〉A} and {|i〉B} has been used. Pro-
ceeding in the same way for the reduced density operator of system B the following
result is obtained:

ρB = TrA(ρAB) =
d

∑
k=1

λ
2
k (|k〉B〈k|) (B.13)

This shows that both reduced density operators present the same eigenvalues.
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